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Description of a classical system

» Positions ¢ (configuration), momenta p = M q (M diagonal mass matrix)

# Microscopic description of a classical system (/V particles):

(Q7p):(Q17"'7QN7 pla"-apN) c&

# Forinstance, £ = T*D = D x R3N with D = R3YN or T3V

#» More complicated situations can be considered... (constraints defining
submanifolds of the phase space)

# Hamiltonian

H(q,p) Z D Vg, an)

# All the physics is contained in V

» Forinstance, pair interactions V(q1,...,qn) = Y v(lgj — al)
1<i<j<N
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Extracting macroscopic properties: Statistical physics

» Given the structure and the laws of interaction of the particles, what are
the macroscopic properties of the matter composed of these particles?

» Equilibrium thermodynamic properties (pressure,...):

(4) Z/*DA(q,p)u(dqdp)

# Choice of thermodynamic ensemble (probability measure dpu):
constrained maximisation of entropy

S(p) = —ks /plnp,

under the constraints p > 0, /,0 =1, /A,L- p=A;

# The choice of the variables and the observables A; (1 <i <m)
determines the ensemble
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Some examples: NVT, NPT ensembles

# Canonical ensemble = measure on (q,p), average energy fixed Ao = H
puxvr(dg dp) = Zyyp e PP dg dp,

where ( is the Lagrange multiplier associated with the constraint

H(q,p)p(q,p)dgdp = Ey
T*D

# NPT ensemble = measure on (q, p, z), where x indexes volume changes

3N
(for a fixed geometry). For instance, D = ((1 — x)LT)

# Average energy and average volume /Vol(x) p(dq dp dx) fixed

# Denoting by B8P (pressure) the Lagrange multiplier of the volume
constraint,

{q€[L(14=)T]3N }
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Sampling the canonical ensemble: Overdamped Langevin dynamics

#» SDE on the configurational part only (momenta trivial to sample)
dqt — —VV(qt) dt + O'th,

where (W, ),>¢ is a standard Wiener process of dimension d N

# Invariance of the canonical measure

v(dg) = Z~ 1 e PV qq, 7 — / e V() 4q
M

2
If steady state of Fokker-Planck equation 0;¢; = div (vat + %th>

. L . 2
# Fluctuation/dissipation relation o = /—

g

# Invariance + irreducibility (elliptic process):

1

T
lim —/ A(qy) dt:/ A(q)dv a.s.
1" Jo D

T — o0
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Convergence of the Overdamped Langevin dynamics

# Several notions of convergence: here, longtime convergence in law

# Evolution PDE 0,y = div (%Ov (%)) e = Z 1 exp(—BV)
» Relative entropy H(y(t,-) |1s) = /ln (ﬁ(f’.)) Yoo

» Itholds [|1(t,) — YoollTv < V2H((t, ) [1eo)
2
Yoo

» Fisher information I(1(t,-) | ¥es) = / ‘Vln <¢;t»'))

» A simple computation shows %H(w(t, V] too) = =B ((t, ) | Poo)

# When a Logarithmic Sobolev Inequality holds for ., namely
1 :
H(¢| V) < ﬁI(qﬁ | Y00 ), then, by Gronwall’'s lemma, the relative entropy
converges exponentially fast to O, as well as the total variation distance

# Obtaining LSI: Bakry-Emery criterion (convexity), Gross (tensorization),
Holley-Stroock’s perturbation result

ICNAAM, Crete, september 2009 - p. 6/25




Satisfying constraints in average



Formulation of the problem

» Set some external parameter (temperature, pressure/volume) to obtain
the right value of a given thermodynamic property

# Forinstance, vary the temperature in the canonical ensemble

# Given some observable A, the problem then reads
Find T such that (A)r = 0,

# Since the momenta are straightforward to sample, there is no restriction in
considering A = A(q)

# [n this case,

F(T) = (A)p = /D A(q) pr(da),

pr(q) = ZLT exp (— Zé?) ,  Zp= /D exp (— Z}g) dq,
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Physical motivation: Computation of the Hugoniot curve

.. 1
» Hugoniot curve = all admissible shocks & — & — 5(7? +Po) (Vo —V) =0

» Statistical physics reformulation?

N
» Reference temperature Ty, simulation cell D, = ((1 +¢)LT x (LT)z)

| . D)
with ¢ = 0 at the pole — vary the compression rate ¢ = W
0

# Consider the observable

Ac(q,p) = H(q,p) — (H)py),1 +

N
where P, (q,p) =Dl 2; ~ Qi20q; .V (q)

’L

o For a given compression cmax < ¢ < 1, find T'= T'(¢) such that

(Ac)ip.r =0
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Possible strategies

# Finding a zero of the function f(7T') = (A)r... Several methods!

» Assume that there exists an interval I+ = [T, , T4 ], a temperature

min’ - max

T* ¢ (T4 T4 ), and constants a,a > 0 such that

Ay — (A)ps
VT € I#, (A)T:Ooz§< >;_;*>T <a

# Newton strategy: requires the computation of the derivative, either
through f/(T) o< (AH)r — (A)r(H)r, or through finite differences.
Difficult to converge in both cases

#» New thermodynamic ensemble = (unknown) ergodic limit of dynamics

such as
( 1
4 p = _VV(Q> - fp
: A(q,p)
2 ;
\ 5 B Y Aref
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Alternative strategy

» Notice that the (deterministic) dynamics T"(t) = —v (A) 7 is such that
T(t) — T

# On the other hand, the dynamics

dg = —VV (qp) dt + /2ksT dW,

. . . V
is ergodic for the canonical measure u7(q)dg = Z ' exp (— . (CIT))
B

» Approximate the equilibrium canonical expectation by the current one:

—VV (q)dt + /2ksT(t) dWy,

dqy
T'(t) = —vE(A(q)),

# Notice that (7™, pup+) is invariant
» Extensions possible: T'(t) = —y(t)f(E(A(qt))) with y(¢) > 0

ICNAAM, Crete, september 2009 - p. 11/25




Partial differential equation reformulation

# Nonlinear PDE on the law ); of the process ¢;

p

o) = kpT(t)V- [uT(t)v( )] = kpT(t) Ap + V - (¥ VV),

KT (t)

\

T'() = — /D Alg) ¥(t, q) da
(1)

Theorem 1 (Short time existence/unigueness) Assume that the observable

A € C3(D) and V € C#(D). For a given initial condition (7, "), with T° > 0
: : T°
and ¢° € H*(D), 4" > 0, / ¥ = 1, there exists a time 7 > > ()

such that (1) has a unique solution (T,%) € C*([0, 7], R) x C°([0, 7], H*(D)).

# In particular, the temperature remains positive

# Proof = Schauder fixed-point theorem using a mapping 7' — 1 — g(T)
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Longtime convergence

» Convergence results for initial conditions close to the fixed-point

1
o Total entropy £(t) = E(t) + §(T(t) — T*)?, where the reference measure
In the spatial entropy is time-dependent:

BO) = [ h(Durw, S - N;”(t).

# For instance, relative entropy estimates h(x) = xlnz —x+1>0
e IfE(t) —0thenT(t) — T and ¢ — up-
# It holds

T/
B0 = kaT(0) [ W) 191 wr + s [ oo

# First term bounded by —pFE(t) using some functional inequality,
remainder small when ~ small enough (since T"(t) « 7)
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Precise convergence result

Assumption 1 There exists an interval 155! = [TL31 TL511 gych that

min?’ - max

{MT}TE%SI satisfies a logarithmic Sobolev inequality with uniform constant 1/p:

1 [ |Vf]?
/Dh(f)MTSIO/D 7 .

Theorem 2 Consider an initial data (7°, y") with ¢ € H%(D), 4° > 0,
/ " = 1, and associated entropy £(0) < £*, where
D

£ int { (T, — T, 5 (T = TP, 5 (T80 = 702, (18— 772 |
2 2 2 2
Then, there exists v, > 0 such that, for all 0 < v < ~g, (1) has a unigue solution
(T,+) € CL(]0, 7], R) x C°([0, 7], H?(D)) for all - > 0, and the entropy
converges exponentially fast to zero: There exists « > 0 (depending on ~) such
that £(¢) < £(0) exp(—~t). In particular, the temperature remains positive at all
times, and it converges exponentially fast to 7.
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Some comments

# The convergence rate is larger when

s £(0) is smaller (the dynamics starts closer from the fixed point and/or
closer from a spatial local equilibrium)

s the slope of the function T' — (A)r is steeper around 7™

s pis larger (the relaxation of the spatial distribution of configurations at
a fixed temperature happens faster)

# The proof relies on the estimates

(1) <5 (a|T() = T*| + || Al v2E(D)

so that a Gronwall inequality can be shown to hold for £ upon choosing ~
small enough

# Other functional setting possible: L? estimates and Poincaré inequalities
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Numerical results

» Multiple replica implementation (interacting only through the update of
their common temperature)

# In many codes, ergodic limits for a single replica are easier to implement:

dg = —VV(q)dt + 2EksT, dW,,

t
/ A(qs) 5Tt_Ts ds
th = —7 0

t
/ 5Tt_Ts ds
\ 0

# (Remark) In both cases, the temperature is now random

_/\

dt,

» Obtain orders of magnitude for v by some recasting the problem in
non-dimensional terms
- A(TY)
NkBTref

. T
# In the Hugoniot case, d (—t> =
Tref

v dt
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Choice of v
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Temperature as a function of time (in reduced units) for different values of the
frequency v (in s—1), for a system of size N = 4,000, and a fixed compression
c = 0.62. Pole: Ty = 10 K, py = 1.806 x 103 kg/m? (so that P, ~ 0).
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Hugoniot curve (reduced units)
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Adaptive computation of free energy
differences




Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

2At
" =" - AtVV (") + \ 6 ¢

where G" ~ N(O,Idd]\]’) .1.d.
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Projected trajectory in the x variable for At = 0.01, g = 8.
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Metastability (2)

# Although the trajectory average converges to the phase-space average,
the convergence may be slow...

# Slowly evolving macroscopic function of the microscopic degrees of
freedom: reaction coordinate £(q) € R™ with m < N

# Two origins : energetic or entropic barriers (in fact, free energy barriers)

s
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| ==
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(@) Entropic barrier. (b) Associated trajectory.

ICNAAM, Crete, september 2009 —-p. 21/25




Metastability (3)

o Assume the free energy F' associated with the slow direction x has been
computed, and sample the modified potential V(z,y) = V(x,y) — F(x).

5

y coordinate
X coordinate

I I I I I I I ] I T T T T T T T T T 1
-15 -1 05 0 05 1 15 0.0 2000 4000 6000 8000 10000
X coordinate Time

Projected trajectory in the x variable for At = 0.01, g = 8.

o Many more transitions! The variable z is uniformly distributed.
» Reweighting with weights ¢=#F(*) to compute canonical averages

» Compute efficiently the free energy?
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Adaptive dynamics (1)

» Simplified setting: ¢ = (z,y) and £(¢) = « € R so that

ry) — F(z1) = -8 'In Poq(2) b (x) = | e BV (w)
F(es) — F(a1) = = 1<¢eq<x1>>’ Gl = [ iy

/(%V(:E, y) e PV @) gy

/e—BV(fc,y) dy

. 2 . .
# The dynamics dg; = —VV (q) dt + \/% dW; is metastable, contrarily to

» Notice that the mean force F’(a:) =

/

=~ (Vg - Flela) di + /3 aw,
F'(x) =B, (0:V(0) | €(a) = )

N\

\

» Replace equilibrium expectations by F'(t,z) = E((?xV(qt)

§(qt) = fC)
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Adaptive dynamics: convergence

# Nonlinear PDE on the law v(t, q):
(O = div [v(v — Fhas(t,2)) ¥ + 871V

/%V(w,y)w(t,x,y)dy
Flgias(t7x): P

Y(t, z,y) dy
\ D

» Stationary solution ., oc e =#(V=F08)

» Simple diffusion for the marginals ;¢ = 9, v

# Decomposition of the total entropy H (¢ | 1Y) = / In (%) Y
D o0
Into a macroscopic contribution (marginals in ) and a microscopic one
(conditioned measures)

» Convergence of the microscopic entropy provided some uniform
logarithmic Sobolev inequality holds for the conditioned measures
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