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Shock waves: Non equilibrium MD

# (All atom) Hamiltonian dynamics

dg= M 'pdt
dp = —-VV(q)dt

: : 1
o Hamiltonian H(q, p) = ipTM_lp + V(q)
# All the physics is contained in V!

# Shock obtained through a piston compression

# Bond order potentials such as REBO and ReaxFF are now routinely used
and the simulations are qualitatively correct

# Problem =reachable time (ns) and space (um) scales are not large
enough... Ultimately, not all microscopic details are relevant!
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A typical simulation
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Shock wave in a Lennard-Jones fluid (Hamiltonian dynamics): piston
compression + relaxation




Reducing the complexity of the system

# Replace deterministic all atom dynamics by a stochastic dynamics on the
variables of interest

# General strategy (Mori-Zwanzig) — average over the unrelevant degrees
of freedom to eliminate them: replace their influence by some mean
action (drift) and fluctuations around the mean behavior (random noise)

# In this context:
s 1D model of shock waves in crystalline solids?

s Replace a complex by molecule by a center of mass with some
internal energy (unresolved internal modes)®

2G. Stoltz, Nonlinearity 18, 1967-1985 (2005)
PStrachan and Holian, Phys. Rev. Lett. (2005)
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Reduced dynamics:
the Inert case




A typical stochastic dynamics

# Langevin dynamics (e.g. implicit solvents in biology)

dqg = M"1pdt
dp = —VV(q)dt—yM1pdt + ocdW,;

# Fluctuation/dissipation relation

_ 2*}/

2
0% =2vkgT = —
5

ensures that the canonical measure is preserved

# Cannot be used for the simulation of shock waves:
s the dynamics is not invariant through a Galilean transform:;
s the temperature is fixed a priori.
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(Almost) Dissipative Particle Dynamics

o Galilean invariance — DPD philosophy?-°

» Friction depending on the relative velocities (with some cut-off):

(dg = P
my;
< 2 2y
dp; = Z —VV (rij) dt — X" (rij)vij dt + FX(Tij)dWij
\ JF1
s relative distances r;; = |¢; — ¢;|, relative velocities v;; = P By
m; mj

s (radial) weight function x with support [0, ]
s antisymmetric standard Brownian motions W;; = —Wj;.

# No projection along the lines of center

*Hoogerbrugge and Koelman, Europhys. Lett. 19(3), 155-160 (1992)
bEspanol and Warren, Europhys. Lett., 30(4), 191-196, (1995)
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(Almost) Dissipative Particle Dynamics (2)

# Preserve the canonical measure (cf. Fokker-Planck equation)
# Ergodicity in a 1D framework when density high enough?®

» Numerical integration through a splitting strategy®:
s Verlet step

s loop aver particles for a Verlet-like treatment of the dissipation

( +1/2 n 1 VA
:L / p; §7X (7“”)’0 T 0 X(T’LJ) zy?
1
n+1/2
j / =pj + 5 X (T%J) _UV Atx(ri;) Usj,
Vi< S ntl _ nt1j2 1 nt1
Pt = p; — 57X 2(rig)vi + Ov tx(ri;) U,
1
n n+1/2 n /
D; = = Dj / + Q’YX (sz) H _0 Atx(ri;) U i
\

?Shardlow and Yan, Stochastics and dynamics 6(1) (2006)
°T. Shardlow, SIAM J. Sci. Comput. 24(4) (2003) 1267-1282
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Dissipative Particle Dynamics with conserved energy (DPDE)

# Variation of temperature when the shock passes? Energy conservation:.
transfers between external and internal modes (DPDE?* philosophy)

# Replace a complex by molecule by°
» acenter of mass, effective interactions H(q, p)
s an internal energy e = all the unresolved (internal) modes

» Evolution such that dH (q,p) + » de; =0

# Microscopic state law: entropy s = s(e), internal temperature defined from

(032> .
the entropy as 7T; =
86&'

# Harmonic internal degrees of freedom: T'(¢) = £

Cy

2Avalos and Mackie, Europhys. Lett. 40, 141-146 (1997)

PEspafiol, Europhys. Lett. 40 631-636 (1997)
“Strachan and Holian, Phys. Rev. Lett. (2005)
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Dissipative Particle Dynamics with conserved energy (2)

» Store energy dissipated by the frictional forces in the internal energies

( .
dg; = 2 di
m;
dpi =Y =VV(ri)dt —vi;x*(rij)vij dt + oi;x(ri;)dWij,
3 JF1
) 1 o /1 1
de; = B Z <X2("“z'j)%'jvi2j - 2] (mi + mj) X2(?“7:j)) at
J, JF1
\ _Uij X(’I“Z'j)vij . dWZ‘j,

» Fluctuation-dissipation relation depending on the internal temperatures:

2 and o with 3 ! ( ! — ! ) to preserve the
gii =0 i = = =
J J ij J 2]{']3 Tz Tj

measure
1

du(q, p,€) = Ee—ﬁ(H(q,p)Jrf(e)) dq dp de

where f(e) = ¢ — T's(e) is a free energy
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Numerical implementation

» Existence of invariants: total energy and total momentum

# Numerical scheme based on splitting

L dg= M 1pdt, _
s Hamiltonian part , velocity Verlet scheme
dp= —VV(q)dt
s Stochastic part:
(
dp; = —’Yz‘jXQ(Tz'j)Uz'j dt + ox(rij) dWij,
dpj = —dp;,
Vi < 7 { ’ 1 p? p2
de; = —3d (z—ni,ﬂLGij)’
X dEj = dEi.

» Estimators of the thermodynamic temperature

—1
kp(Tin) = 671, kB <<T'1t >> =6
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An example (PVDF)

16000

14000+

12000

10000+

8000

Temperature (K)

6000

4000

2000

Average temperature in a slice: Tyin, Tint, compared with Tyi., when C, = 0.
Reduction: from 18 d.d.l. to 3, time step At = 10714 s 1
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Reduced dynamics:
the reactive case




The progress variable

#» One more parameter per particle: progress variable );, describing the
progress along the free energy profile associated with the decomposition
process

# The interaction potential depends on the reaction rate. For instance, In
the Lennard-Jones case,

Vii(rii o Aio \:) = 4E;; ~Y _ [ 2y ’
J(rjv ; ]) J ((Tij) (""ij) )

with Ez’j = E\/(l + kE)\z>(1 + kE)\j), a;; = a (1 + ka(>\z’ + )\])/2)

» Reversible kinetics AB = A, + B,, depending on the temperature

d\;
dt

D wlrg) [Ku(TE)(1 = M) (1 = X)) — Ko (T A\
i)

» For instance, arrhénius form K;(T) = Z;e=Fi/ksT,
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Treating the exothermicity

» Exothermicity of the reaction AFEexthm (= Fo — E7).

# Seek a dynamics such that dH.:(q, p, €, A) = 0 with

dHtot(Qapa €, >‘) =d Z V rZJ’ )\Z’ )\ + Z

1<’I,<j<N

) - >\z AE1ex m
2my; Te ) th

o Additional assumption: during the elementary step corresponding to
exothermicity, the total energy of a given mesoparticle does not change:

2
d —Zvrw,xz,x +d(pi >+dei—AEexthmd)\7;:O.

2m;
7] "

# Evolutions of momenta and internal energies balancing the variations in
the total energy due to the variations of A (exothermicity, changes in the
potential energies) — processes 7, Z¢.
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Treating the exothermicity (2)

» Distribution between internal energies and kinetic energies following
some predetermined ratio 0 < ¢ < 1.

# For the internal energies (fix r, vary \)

de; = —c|d|= Z V(rij, Mis A) | — ABeyenmd\s
Z#J

» For the momenta, we consider a process Z! such that dp;, = dZ? with

2
D; Z
1#]

In practice (2D case), for a variation J E* due to the variations of {\” },

n+1y2 ~n,\ 2
p; " =p 4+ a"(cosf",sinh"), —2m7; o + ( c)OE;
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The reactive DPDE dynamics

# Finally, the reactive DPDE dynamics is

d;, = -,
m;
dpz’ = Z —tiV(Tz'j, )\1;, )\j) dt — ’7in2 (rij)vij dt —+ O'X(Tz'j)sz’j + de,
j JF#t
do? [ 1 1
2 2
de; = — Z ( (735 )Vijvi; — 5 (mi + m—]) X (rij)> dt
J J7u
—0 X(Tij)vij . sz] -+ dZ,f,
dhi = Y we(re) [Ki(Ty) (1= X) (1= Aj) + Ka(Ty5) A \j] dt,
JF

# Numerical implementation: splitting of the dynamics as (inert) + (reaction)

# |Integration of the reaction: update first \;, compute then the exothermicity
(variations in the potential and liberated chemical energy), compute finally
the new internal energies and velocities.
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Numerical application

o Parameters inspired by the nitromethane example (replace CH3;NO, by a
mesoparticle in a space of 2 dimensions).

» Classification of the parameters in five main categories

s (Material parameters) molar mass m = 80 g/mol, Lennard-Jones
potential with Fr; = 3 x 1072! J (melting 220 K), a = 5 A, cut-off
radius 7., = 15 A for the computation of forces. Changes of the
material use kr = 0 and k, = 0.2 (pure expansion).

s (Parameters of the inert dynamics) Microscopic state law is e = C, T
with C, = 10 kg (i.e., 20 d.o.f). Friction is v = 10~!° kg/s, dissipation
weighting function x(r) = (1 — r/r¢), with 7o = 7cys.

s (Chemical kinetics) Prefactors Z; = Z, = 10'7 s—1, activation
energies E; /kg = 15000 K, exothermicity A Feythm = 6.25 eV.
Weighting function w(r) = x(r);

s (Exothermicity) distribution fraction ¢ = 0.5.

s (Initial conditions) density p = 1.06 g/cm3, temperature 7' = 300 K.
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Numerical application (2)

Velocity (m/s)
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Velocity profiles in the material at different times (lower curve (red):
t =1.2 x 10719 s; middle curve (black): t = 1.6 x 1071V s; upper curve (blue):
t=2x 10710 s). Time-step At =2 x 107 1° s.
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Conclusion and perspectives

# Systematic parametrization from small all atom simulations (potential,
friction, microscopic state law s = s(e€), reaction constants, exothermicity)

# Dimensionality reduction allows to treat larger systems, for longer times
— truly mesoscopic model? (polycrystalline materials)

# Hierarchy of models from discrete to continuum hydrodynamic equations
(discretized with particle methods such as Smoothed Particle Hydrodynamics)

® References for this work:

s G. StoLtz, A reduced model for shock and detonation waves. I. The
Inert case, Europhys. Lett. 76(5) (2006) 849-855.

s J.-B. MAILLET, L. SOULARD AND G. StoLTz, A reduced model for shock and
detonation waves. II. The reactive case, accepted for publication in
Europhys. Lett. (2007).
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