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Shock waves: Non equilibrium MD

(All atom) Hamiltonian dynamics







dq = M−1p dt

dp = −∇V (q) dt

Hamiltonian H(q, p) =
1

2
pT M−1p + V (q)

All the physics is contained in V !

Shock obtained through a piston compression

Bond order potentials such as REBO and ReaxFF are now routinely used
and the simulations are qualitatively correct

Problem = reachable time (ns) and space (µm) scales are not large
enough... Ultimately, not all microscopic details are relevant!
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A typical simulation

Shock wave in a Lennard-Jones fluid (Hamiltonian dynamics): piston
compression + relaxation
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Reducing the complexity of the system

Replace deterministic all atom dynamics by a stochastic dynamics on the
variables of interest

General strategy (Mori-Zwanzig) → average over the unrelevant degrees
of freedom to eliminate them: replace their influence by some mean
action (drift) and fluctuations around the mean behavior (random noise)

In this context:

1D model of shock waves in crystalline solidsa

Replace a complex by molecule by a center of mass with some
internal energy (unresolved internal modes)b

aG. Stoltz, Nonlinearity 18, 1967-1985 (2005)
bStrachan and Holian, Phys. Rev. Lett. (2005)
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Reduced dynamics:
the inert case
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A typical stochastic dynamics

Langevin dynamics (e.g. implicit solvents in biology)







dq = M−1p dt

dp = −∇V (q) dt−γM−1p dt + σdWt

Fluctuation/dissipation relation

σ2 = 2γkBT̄ =
2γ

β

ensures that the canonical measure is preserved

Cannot be used for the simulation of shock waves:

the dynamics is not invariant through a Galilean transform;

the temperature is fixed a priori.
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(Almost) Dissipative Particle Dynamics

Galilean invariance → DPD philosophya,b

Friction depending on the relative velocities (with some cut-off):















dqi =
pi

mi
dt

dpi =
∑

j 6=i

−∇V (rij) dt − γχ2(rij)vij dt +

√

2γ

β
χ(rij)dWij

relative distances rij = |qi − qj |, relative velocities vij =
pi

mi
− pj

mj

(radial) weight function χ with support [0, rc]

antisymmetric standard Brownian motions Wij = −Wji.

No projection along the lines of center

aHoogerbrugge and Koelman, Europhys. Lett. 19(3), 155–160 (1992)
bEspanol and Warren, Europhys. Lett., 30(4), 191–196, (1995)
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(Almost) Dissipative Particle Dynamics (2)

Preserve the canonical measure (cf. Fokker-Planck equation)

Ergodicity in a 1D framework when density high enougha

Numerical integration through a splitting strategyb:

Verlet step

loop aver particles for a Verlet-like treatment of the dissipation

∀i < j,



















































p
n+1/2
i = pn

i − 1

2
γχ2(rij)v

n
ij +

1

2
σ
√

∆tχ(rij) Un
ij ,

p
n+1/2
j = pn

j +
1

2
γχ2(rij)v

n
ij −

1

2
σ
√

∆tχ(rij) Un
ij ,

pn+1
i = p

n+1/2
i − 1

2
γχ2(rij)v

n+1
ij +

1

2
σ
√

∆tχ(rij) Un
ij ,

pn+1
j = p

n+1/2
j +

1

2
γχ2(rij)v

n+1
ij − 1

2
σ
√

∆tχ(rij) Un
ij ,

aShardlow and Yan, Stochastics and dynamics 6(1) (2006)
bT. Shardlow, SIAM J. Sci. Comput. 24(4) (2003) 1267-1282
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Dissipative Particle Dynamics with conserved energy (DPDE)

Variation of temperature when the shock passes? Energy conservation:
transfers between external and internal modes (DPDEa,b philosophy)

Replace a complex by molecule byc

a center of mass, effective interactions H(q, p)

an internal energy ǫ = all the unresolved (internal) modes

Evolution such that dH(q, p) +
∑

i

dǫi = 0

Microscopic state law: entropy s = s(ǫ), internal temperature defined from

the entropy as Ti =

(

∂si

∂ǫi

)−1

Harmonic internal degrees of freedom: T (ǫ) =
ǫ

Cv

aAvalos and Mackie, Europhys. Lett. 40, 141-146 (1997)
bEspañol, Europhys. Lett. 40 631-636 (1997)
cStrachan and Holian, Phys. Rev. Lett. (2005)
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Dissipative Particle Dynamics with conserved energy (2)

Store energy dissipated by the frictional forces in the internal energies















































dqi =
pi

mi
dt

dpi =
∑

j, j 6=i

−∇V (rij) dt − γijχ
2(rij)vij dt + σijχ(rij)dWij ,

dǫi =
1

2

∑

j, j 6=i

(

χ2(rij)γijv
2
ij −

σ2
ij

2

(

1

mi
+

1

mj

)

χ2(rij)

)

dt

−σij χ(rij)vij · dWij ,

Fluctuation-dissipation relation depending on the internal temperatures:

σij = σ2 and γij =
σ2

βij
with βij =

1

2kB

(

1

Ti
+

1

Tj

)

to preserve the

measure

dµ(q, p, ǫ) =
1

Z
e−β(H(q,p)+f(ǫ)) dq dp dǫ

where f(ǫ) = ǫ − T̄ s(ǫ) is a free energy
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Numerical implementation

Existence of invariants: total energy and total momentum

Numerical scheme based on splitting

Hamiltonian part







dq = M−1p dt,

dp = −∇V (q) dt
, velocity Verlet scheme

stochastic part:

∀i < j,



























dpi = −γijχ
2(rij)vij dt + σχ(rij) dWij ,

dpj = −dpi,

dǫi = − 1
2d
(

p2

i

2mi
+

p2

j

2mj

)

,

dǫj = dǫi.

Estimators of the thermodynamic temperature

kB〈Tkin〉 = β−1, kB

(〈

1

Tint

〉)−1

= β−1
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An example (PVDF)
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Average temperature in a slice: T̂kin, T̂int, compared with T̂kin when Cv = 0.
Reduction: from 18 d.d.l. to 3, time step ∆t = 10−14 s !
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Reduced dynamics:
the reactive case
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The progress variable

One more parameter per particle: progress variable λi, describing the
progress along the free energy profile associated with the decomposition
process

The interaction potential depends on the reaction rate. For instance, in
the Lennard-Jones case,

Vij(rij , λi, λj) = 4Eij

(

(

aij

rij

)12

−
(

aij

rij

)6
)

,

with Eij = E
√

(1 + kEλi)(1 + kEλj), aij = a (1 + ka(λi + λj)/2).

Reversible kinetics AB ⇄ A2 + B2, depending on the temperature

dλi

dt
=
∑

i 6=j

ω(rij)
[

K1(T
int
ij )(1 − λj)(1 − λi) − K2(T

int
ij )λjλi

]

For instance, arrhénius form Ki(T ) = Zie
−Ei/kBT .

A reduced stochastic model for shock and detonation waves – p. 14



Treating the exothermicity

Exothermicity of the reaction ∆Eexthm(= E2 − E1).

Seek a dynamics such that dHtot(q, p, ǫ, λ) = 0 with

dHtot(q, p, ǫ, λ) = d





∑

1≤i<j≤N

V (rij , λi, λj) +

N
∑

i=1

p2
i

2mi
+ ǫi + (1 − λi)∆Eexthm



 .

Additional assumption: during the elementary step corresponding to
exothermicity, the total energy of a given mesoparticle does not change:

d





1

2

∑

i 6=j

V (rij , λi, λj)



+ d

(

p2
i

2mi

)

+ dǫi − ∆Eexthmdλi = 0.

Evolutions of momenta and internal energies balancing the variations in
the total energy due to the variations of λ (exothermicity, changes in the
potential energies) → processes Zp

i , Zǫ
i .
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Treating the exothermicity (2)

Distribution between internal energies and kinetic energies following
some predetermined ratio 0 < c < 1.

For the internal energies (fix r, vary λ)

dǫi = −c



d





1

2

∑

i 6=j

V (rij , λi, λj)



− ∆Eexthmdλi



 .

For the momenta, we consider a process Zp
i such that dpi = dZp

i with

d

(

p2
i

2m

)

= −(1 − c)



d





1

2

∑

i 6=j

V (rij , λi, λj)



− ∆Eexthmdλi



 .

In practice (2D case), for a variation δEn
i due to the variations of {λn

i },

pn+1
i = pn

i + αn(cos θn, sin θn),
(pn+1

i )2

2mi
=

(p̃n
i )2

2mi
+ (1 − c) δEn

i .
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The reactive DPDE dynamics

Finally, the reactive DPDE dynamics is

dqi =
pi

mi
dt,

dpi =
∑

j, j 6=i

−∇qi
V (rij , λi, λj) dt − γijχ

2(rij)vij dt + σχ(rij)dWij + dZp
i ,

dǫi =
1

2

∑

j, j 6=i

(

χ2(rij)γijv
2
ij −

dσ2

2

(

1

mi
+

1

mj

)

χ2(rij)

)

dt

−σ χ(rij)vij · dWij + dZǫ
i ,

dλi =
∑

j 6=i

ωr(rij) [K1(Tij)(1 − λi)(1 − λj) + K2(Tij)λiλj ] dt,

Numerical implementation: splitting of the dynamics as (inert) + (reaction)

Integration of the reaction: update first λi, compute then the exothermicity
(variations in the potential and liberated chemical energy), compute finally
the new internal energies and velocities.
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Numerical application

Parameters inspired by the nitromethane example (replace CH3NO2 by a
mesoparticle in a space of 2 dimensions).

Classification of the parameters in five main categories

(Material parameters) molar mass m = 80 g/mol, Lennard-Jones
potential with ELJ = 3 × 10−21 J (melting 220 K), a = 5 Å, cut-off
radius rcut = 15 Å for the computation of forces. Changes of the
material use kE = 0 and ka = 0.2 (pure expansion).

(Parameters of the inert dynamics) Microscopic state law is ǫ = CvT

with Cv = 10 kB (i.e., 20 d.o.f). Friction is γ = 10−15 kg/s, dissipation
weighting function χ(r) = (1 − r/rc), with rc = rcut.

(Chemical kinetics) Prefactors Z1 = Z2 = 1017 s−1, activation
energies E1/kB = 15000 K, exothermicity ∆Eexthm = 6.25 eV.
Weighting function ω(r) = χ(r);

(Exothermicity) distribution fraction c = 0.5.

(Initial conditions) density ρ = 1.06 g/cm3, temperature T̄ = 300 K.
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Numerical application (2)
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Velocity profiles in the material at different times (lower curve (red):
t = 1.2 × 10−10 s; middle curve (black): t = 1.6 × 10−10 s; upper curve (blue):
t = 2 × 10−10 s). Time-step ∆t = 2 × 10−15 s.
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Conclusion and perspectives

Systematic parametrization from small all atom simulations (potential,
friction, microscopic state law s = s(ǫ), reaction constants, exothermicity)

Dimensionality reduction allows to treat larger systems, for longer times
→ truly mesoscopic model? (polycrystalline materials)

Hierarchy of models from discrete to continuum hydrodynamic equations
(discretized with particle methods such as Smoothed Particle Hydrodynamics)

References for this work:

G. STOLTZ, A reduced model for shock and detonation waves. I. The
inert case, Europhys. Lett. 76(5) (2006) 849-855.

J.-B. MAILLET, L. SOULARD AND G. STOLTZ, A reduced model for shock and
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Europhys. Lett. (2007).
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