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Microscopic origin of macroscopic dielectric properties (1)

In a dielectric material, the presence of an electric field causes the nuclear
and electronic charges to slightly separate, inducing a local electric dipole
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This generates an induced response inside the material (reorganization of
the electronic density), screening the applied field
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Microscopic origin of macroscopic dielectric properties (2)

e Dielectric material: can polarize in presence of external fields

‘ density ‘ electric field
external v D, divD = 4rv
polarization dp P, div P = 4xdp D=E+P J
total 0 E, divE =4np

e Constitutive equation: ¢y = 3 x 3 symmetric real matrix with ey > 1

D=ecyE <= P=(ew—-1)E=(1-¢,)D J

e Time-dependent fields: the response of the material is not

instantaneous, but given by a convolution with some response function.
With E(t) = —VW(t) where W/(t) is the macroscopic potential,

~div (em() VW (w)) = 47 5(w) J
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Outline

Some background material
@ Description of perfect crystals
@ Crystals with defects: static picture

Static dielectric response of crystals
@ Linear response to an effective perturbation
@ Definition of the macroscopic dielectric permittivity

Time evolution of defects in crystals
@ Response to an effective potential
@ Static polarization in some adiabatic limit
@ Well-posedness of the nonlinear Hartree dynamics
@ Frequency dependent macroscopic dielectric permittivity
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Some background material
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Some elements on trace-class operators

+oo
e Compact self-adjoint operator A = Z i |#i) (6i] with Aj — 0
i=1
+o0
e The operator A is called trace-class (A € &) if Z |Ai] < oo. Its density
i=1

+oo
pa(x) = ZA;\(;S,-(X)\Z belongs to L!(R3) and
i=1
+o0 +oo
T(A) =3 A= (eilAle) = /R3 pa
i=1 i=1

o Ais Hilbert-Schmidt (A € &;) if A*A € &1, ie. Y |Ai]> <o0. If Als
i>1
self-adjoint, its integral kernel is in L?(R3 x R3)
Al y) = Xi di(x)eily).
i>1
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Density operators for a finite system of N electrons in R3

e Bounded, self-adjoint operator on L2(R3) such that 0 < v < 1 and
Tr(y) = N. In some orthonormal basis of L2(R3),

+oo +o00
v=_nilgi)¢il,  0<m<1, > m=N
i=1 i=1

e For the Slater determinant ¥(xi, ..., xy) = (N1)"Y/2det(di(x))1<ij<n,

N
Yo = Y1006
i=1

+0o0

e Electronic density p,(x) = Z ni|#i(x)|* with p, > 0 and py = N.
R3

i=1
—+00

R 1 1
e Kinetic energy T(v) = ETr(\VMVD =5 Z n,-HVqS,-H%z(Re,)
i=1
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The Hartree model for finite systems

1 1
e Hartree energy E%ﬁﬁtree(’y) =Tr <—2A’y> + ED(pq/ — P, py = ™)

D(fvg):/R3/R3WdXdX,:47r/R3f(k‘3(‘/g;(k)dk

is the classical Coulomb interaction, defined for f, g € L5/5(R3), but which
can be extended to

c={fe ' ®) |TeLh(®), |-[77() e 2R |

where

Variational formulation
inf {E%%ﬁtree(fy), v e S(LAR3)), 0< v < 1, Te(y) = N, Tr(—Aq) < oo}J

e More general models of density functional theory: correction term Ex.(7)

[Sol91] J.-P. Solovej, Invent. Math., 1991
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Euler-Lagrange equations for the Hartree model

Nonlinear eigenvalue problem, ep Lagrange multiplier of Tr(vy) = N

+o0 oo
V=D mileaeil, () =D nilei(x),
i=1 i=1
HO(Z)I' :€i¢i7 <¢)I7¢j> :6117
1 if e < e —+00
n; = 6[0,1] if€;:6F ZI‘I,’—N,
0 if Ei > EF i=1
Tr s =T 0
o_ 1 0 =
=8tV T
\ —AVO = 4_7T(pnuc _ pO)‘ :
N=6
’70 = 1(—00,6F](H0)a
When ey < eny1 (gap): HO — _%A + VO,

—_AVO = 47T(pnuc
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The Hartree model for crystals (1)
e Thermodynamic limit, periodic nuclear density ppcr, lattice R ~ (az)3

3
. . . . 27 . .
with unit cell T, reciprocal lattice R* ~ <Z> with unit cell T*
a

o
e Bloch-Floquet transform: unitary L?(R%) — f L%er(r) d

g
. 27)3/2 - .
=3 it RyeirteR) Tr)\ S Fa+ K)o
RER KeR*

@ Any operator commuting with the spatial translations 7 (R € R)

can be decomposed as (Af)q = Aqfy, and o(A) = U o(Ag)
qer*
@ Bloch matrices: Ak K/(q) = <eK,A eK/>L2 L(r) eK(x) =

FAV)(q+K)= > Axk(a)Fv(g+K')
K'eR*

‘r’71/2eiK-X

[CLLO1] I. Catto, C. Le Bris, and P.-L. Lions, Ann. I. H. Poincaré-An, 2001
[CDLO8] E. Cances, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
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The Hartree model for crystals (2)

Nonlinear eigenvalue problem

’Yger - 1( (%) SF]( per) pger = p?’ger’
1
0 0
Hper =—ZA+ Vper?

AV = 4r( = ) [ [ =N

More explicit expressions using the Bloch decomposition

1 \q!
(Hper) g = —5A—iq-V+ -+ Vo =

“+o00
(’Yger)q = Z 1{5,,,q<51:}‘u” q><”n q’
n=1

Fermi level obtained from N = |F*| Z Hgel™ | eng <ecrll
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The Hartree model for crystals (3)

The spectrum of the periodic Hamiltonian is composed of bands

o(H) = U =, 5], Y, =ming,g, i =maxeng
n>1 gelr* qer*

Assume in the sequel that g =% | — %7, > 0 (insulator)

t t i

1
Insulator / Conductor ’
semi-conductor [* q

N=2 N=3
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Defects in crystals (1)

e Nuclear charge defect ppit + v, expected ground state v = 'yger +Qy

e A thermodynamic limit shows that @, can be thought of as some defect
state embedded in the periodic medium

. _ 1
Q.= argmin {Tio (1,Q) = | oI ")+ ;D(paura)}
QReQ R3
7’chr < Q <1 7’chr

where, defining Q= = vgernger and QT+ =(1- fyger)Q(l — 7ger),
0={Q =0 (1-8)1Qee; (1-4)120*(1-n)"c6 |

e Generalized trace Tro(Q) = Tr(Q*) + Tr(Q~ ")

e Density pg € L2(R3)NC

[HLSO05] C. Hainzl, M. Lewin, and E. Séré, Commun. Math. Phys., 2005 (and subsequent works)

[CDLO08] E. Cancgs, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
[CL10] E. Cances and M. Lewin, Arch. Rational Mech. Anal., 2010
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Defects in crystals (2)

Definition of the embedding energy

Tro((ngr - 8F)Q) = Tr(’ngr - 5F‘1/2(Q++ - Q_—)’ngr - 5F‘1/2)

[CL, Theorem 1]

Let v such that (v« |-|71) € L2(R3) +C’. Then, there exists at least one
minimizer Q, ¢, and all the minimizers share the same density p, ... In
addition, Q, .. is solution to the self-consistent equation

QIJ,EF = 1(—00,6F) (ngr + (pl/,EF - V) *‘ : |_1) - 1(—00,61:] (ngr) + 67

where § is a finite-rank self-adjoint operator on L?(R3) such that
0 <6 <1and Ran(8) C Ker (H)o, + (prer —v) * |- |71 —¢r).

When v is sufficiently small, § = 0 and the minimizer is unique.
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Static dielectric reponse
of crystals:

effective perturbations
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Expansion of the time-independent response

e Perturbation by a sufficiently small effective potential V € L?(R3) 4 C":

Qv = 1(—00,5%) (ngr + V) - 1(—00,5%] (Hl(a)er)

-t €((z—HO ~V) T (2= H) ) o

- 2im per per
= Qv+ -+ Qnv+ Qnr1v
e The linear response in V reads

1

Qv = g f e H) PV (e )
¢
i o(HS,)
+ lei—i—l T —
A
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Expansion of the time-independent response (2)

The higher order contributions and the remainder are respectively given by

Qv = 515 Hle) ™ [V( ngr)_l}k dz

and

= 1 _ n+1
Qni1,v = 55 (z — ngr — V) ! [V (z HO ) 1] dz.
¢

2im per

[CL10, Lemma 3]

For V sufficiently small in L2(R3) + C’, the operators Qv and ék,\/ are
in @ and Tro(Qk,v) = 0.

For k > 6, it holds Qx.v, Qv € &1 and Tr(Qk.v) = 0.

Gabriel Stoltz (ENPC/INRIA) IPAM, October 2012 17 / 35



Independent particle polarizability

[CL10, Proposition 1]

If V € L2(R3) 4+ C’, the operator Qv isin Q and Tro(Qq,v) = 0.
If V € L}(R3), then @y v is trace-class and Tr(Qy,v) = 0.
The independent particle polarizability operator xqo defined as

XOV = PQiv

is continuous L}(R3) — L1(R3) and L2(R3) +C' — L2(R3)NC

Potential generated by a charge defect: V = v.(0) = ox |- |7}

Linear reponse at the density level: Lo = —xove(0) = —pq, .,

This linear response is a fundamental tool to prove that Q, ¢ &1 and
py = pq, & LY(R3) in general.
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Static dielectric reponse
of crystals:

macroscopic dielectric permittivity
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Linear response in the nonlinear Hartree model (1)

e Screening of the bare defect charge by the response of the Fermi sea
— Effective perturbation v.(v — py)

pr=LW=p)t oy, nre=pg,

v—puv)

so that
vep=1+L) v -1+L) ",

[CL10, Proposition 2]

The operator L is a bounded, self-adjoint and nonnegative operator on C;
hence 1 + L is invertible.

e Homogenization limit: The nonlinear terms disappear in some
homogenized limit where the charge is spread out in space

vn(x) = n’v(nx)
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Linear response in the nonlinear Hartree model (2)

e Consider the rescaled potential generated by the screened defect
W (x) = 1 vely = o) (77 %)

When £ = 0, the potential is W, = v.(v)

[CL10, Theorem 3]

There exists a 3 x 3 symmetric matrix ey > 1 such that, for all
v € L1(R3) N L?(R3), the rescaled potential W, weakly converges in C’ as
1 — 0 to the unique solution W, of the equation

—div (EMV Wl,> = 47,

e The matrix ep(w) can be expressed using the Bloch decomposition

o |t gives the electronic contribution to the dielectric permittivity
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Time evolution of defects
in crystals:

effective perturbations
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The time-dependent Hartree dynamics

e Finite system described by the density matrix y(t), von Neumann
equation

idv(t)
dt

1
= [ (0], HO = —5 8 Vane + ve(py)

e When a perturbation v(t) is added, the dynamics is modified as

I [0+ (0,00

e Formal thermodynamic limit: state y(t) = 73, + Q(t) and dynamics

dvy

i =[H)0], HY(8) = Hye + velpa(t) — v(1))

[Chadam76] J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb
two-body interaction, Commun. Math. Phys. 46 (1976) 99-104

[Arnold96] A. Arnold, Self-consistent relaxation-time models in quantum mechanics, Commun.
Part. Diff. Eq. 21(3-4) (1996) 473-506

Gabriel Stoltz (ENPC/INRIA) IPAM, October 2012 23 /35



Defects in a time-dependent setting: the dynamics

Classical formulation: nonlinear dynamics

40 _ ¢
dt

ngr + VC(IOQ(t) - V(t))a WSer + Q(t)]

. 0 .
Denote Up(t) = e~ !tHrer the free evolution.

Mild formulation for an effective potential v(t)

Q(t) = Uo(1)Q° Ui (2) / Uo(t = $)[v(S): Tper + Q(s)]Uo(t — 5)" d

Mild formulation for the nonlinear dynamics
Replace v(s) by ve(pq(s) — ¥(s)) in the above formula

V.
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Well-posedness of the mild formulation

If initially Q(0) € Q, the Banach space allowing to describe local defects
in crystals, does Q(t) € Q7

[CS12, Proposition 1]

The integral equation has a unique solution in CO(R+, Q) for Q%€ 9 and
v =v.(p) with p € LI (R4, L>(R3)NC).

In addition, Tro(Q(t)) = Tro(Q°), and, if —yger <QRU<1-— WSer: then
_Vger < Q(t) <1l- VSer'

This result is based on a series of technical results
@ boundedness of the potential: v € LL (R, L®(R3))

1
@ stability of time evolution: BHQ”Q < || Uo(t)QUo(t)* |0 < BlIRllo

@ commutator estimates with 79, : Hi[V”Yger]HQ < Ceoml||V]|er
@ commutator estimates in Q: [|i[vc(0), Qlllg < Ceom,allelli2rcl|Rllo

Gabriel Stoltz (ENPC/INRIA) IPAM, October 2012 25/ 35



Dyson expansion and linear response

Response at all orders (formally): Q(t) = Up(t)Q°Uo(t)* + Z Qn,v(
Qu(©)= i [ Ul = 3) [W(9) s + U )oouo( )] Uole — 5)" s,
Qn(t) = —i/t Uo(t — s) [v(s), @n-1,v(s)] Uo(t —s)*ds for n>2

Obtained by plugoging the formal decomposition into the integral equation

[CS12, Proposition 5]
Under the previous assumptions, Q,, € CO(R;, Q) with Tro(Qn,(t)) =0,

1 0
@nul®)l0 < 5212 ”Q< / lo(s Hmcds)

The formal expansion therefore converges in Q, uniformly on any compact
subset of R, , to the unique solution in CO(R, Q) of the integral equation.

v
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Definition of the polarization (1)

e Aim: Justify the Adler-Wiser formula for the polarization matrix

e Damped linear response: standard linear response as  — 0

t
Q{]’V(t) - _i/ Uo(t o S) [V(S), 7ger] UO(t - 5)*6—77(1'—5) ds

—00

LYR,C’ R, LA(R3)NC
@ polarization operator xg : ( ’ 3 : Pb"( | ( ) )
Ql,v

o linear response operator &7 = va/?yove!? acting on LL(R, L2(R3))

(f2, EM1) 1212 2/<ftf2(w)7Cg’"(w)ftfl(w»p(m) dw
R

@ Bloch decomposition: for a.e. (w,q) € R x * and any K € R*,

/
Fer (") (w,q+ K) = Y &R o (w,q) Feuf(w, g+ K')
K'eR*
[Adler62] S. L. Adler, Phys. Rev., 1962
[Wiser63] N. Wiser, Phys. Rev., 1963
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Definition of the polarization (2)

[CS12, Proposition 7]
The Bloch matrices of the damped linear response operator & read

1r-(q) [q+ K'|
5;?,;«(%‘7): Ir| m K,K/(waQ),

where the continuous functions T’7 K K are uniformly bounded:

—iK iK' -x
Um q/,e U,-, ,q-+q’ >L§)er<un7q+q/,e Umq >L]2;)er p
K k(W q) = E : dq
- Engt+q —Emyg —W— 1N

(the sumisover 1< n< N<mand1l<m<N<n)

e The Bloch matrices of the standard linear response are recovered as
n — 0, the convergence being in .7/(R x R3)
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Recovering the static polarizability in some adiabatic limit

e The static polarizability corresponds to formally setting w =0
ostatic _,1/2 o
= (g )

1
on L2(R3), with Q' = meg( —H° ) 'V(z—H®, ) dz

per per

e Adiabatic limit: long times t/a, slowly evolving perturbation v(«t)

affv(t) = _i/t/a Uo <— - s) [v(as),'yger} Uo (— - s) ds.

—00

[CS12, Proposition 10]
Define (£0F)(t) = &tatic(£(t)). Then, for any function f € (R x R3),

lim E%F = E% in (R x R3).
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Time evolution of defects
in crystals:

nonlinear dynamics

Gabriel Stoltz (ENPC/INRIA) IPAM, October 2012 30/ 35



Time-dependent Hartree dynamics for defects

Well-posedness of the mild formulation

For v € L} (R4, L2(R3)) N WE (R4, C), and =104 < Q° < 1 — Y, with
Q° € Q, the dynamics

Q(e) = Uo(6)Q°Un(2)" i [ Un(e=9) 1oty QL) i e5) 0

has a unique solution in C°(Ry, Q). For all t > 0, Tro(Q(t)) = Tro(Q°)
and _Vger < Q(t) < 1- ’Yger'

e |dea of the proof: (i) short time existence and uniqueness by a
fixed-point argument; (ii) extension to all times by controlling the energy

£(t, Q) = Tro(H2.,Q) — Dlpa. (1)) + 5 D(0a. pa)

e Classical solution well posed under stronger assumptions on Q°, v
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Macroscopic dielectric permittivity (1)

Starting from Q° = 0, the nonlinear dynamics can be rewritten as

Q(t) = Ql,vc(prl/)(t) + 62,vc(pQ71/)(t)

In terms of electronic densities: [(1+ £)(v — pg)] (t) = v(t) — ra(t)

Properties of the operator £
For any 0 < Q < g, the operator £ is a non-negative, bounded,
self-adjoint operator on the Hilbert space

o = {0 € 2(R,0) |supp(Fix0) € [-2,9] x R?},

endowed with the scalar product

Q _—
F X 7k F X ,k
(02, 01)12(c) :47r/ tx02(w, k) Fex01(w, k)

dw dk.
—q Jr3 | k|2

Hence, 1 + £, considered as an operator on %4, is invertible.
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Macroscopic dielectric permittivity (2)

e Linearization: given v € 74, find p, such that (1+ L)(v — p,) = v

e Homogenization limit: spread the charge as v, (t, x) = n3v(t,nx) and
consider the rescaled potential

W(t,x) =0 ve(vy — pu,) (£.77 %)
When £ = 0, the potential is W, = v.(v)
[CS12, Proposition 14]

The rescaled potential W,/ converges weakly in Hq to the unique solution
W, in Hq to the equation

—div (en(@)V [FeW] (w, ) = 47 [Fer] (w,°)

where ep(w) (for w € (—g, g)) is a smooth mapping with values in the
space of symmetric 3 x 3 matrices, and satisfying eni(w) > 1.

e The matrix eyj(w) can be expressed using the Bloch decomposition
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Perspectives
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Perspectives and open issues

e Metallic systems (no gap: many estimates break down)
e Longtime behavior of the defect

e Influence of electric and magnetic fields (rather than a local perturbation
as was the case here)

e Interaction of electronic defects with phonons (lattice vibrations)

e GW methods (the polarization matrix enters the definition of the
self-energy)
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