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Description of a classical system

# Positions ¢ (configuration), momenta p = Mq (M diagonal mass matrix)

# Microscopic description of a classical system (/V particles):

(Q7p) — (Q17'°°7QN7 p17'°~7pN) ET*D

# Forinstance, T*D = D x R3N with D = R3Y or T3V

#» More complicated situations can be considered... (constraints defining
submanifolds of the phase space)

o Hamiltonian
N 2

Z & +Vg177QN)

» All the physics is contained in V

» For instance, pair interactions V(q1,...,qv) = Y v(lgj — al)
1<i<j<N
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Extracting macroscopic properties: Statistical physics

» Given the structure and the laws of interaction of the particles, what are
the macroscopic properties of the matter composed of these particles?

» Equilibrium thermodynamic properties (pressure,...):

(4) Z/*DA(q,p)u(dqdp)

# Choice of thermodynamic ensemble (probability measure dpu):
constrained maximisation of entropy

S(p) = —ks /plnp,

under the constraints p > 0, /,0 =1, /A,L- p=A;

# The choice of the variables and the observables A; (1 <1 < m) determine
the ensemble
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An example of macroscopic data

N
1 D2
p e A(gp) = ==> (L —g¢ v,V
» Pressure observable A(g, p) 3D] 2~ (mi i - Vg, (Q))

. 0) 12 o) 6
# Lennard-Jones potential v(r) = 4¢ (—) — (-) ]
”

® Argon: e/kg =120 K, o = 3.405 A
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Argon state law at 7' = 300 K.
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Sampling the microcanonical
ensemble




The microcanonical measure

# Lebesgue measure conditioned to the set X(F) = {H(q,p) = E'}

Os(E) (dq dp)
IVH(q, p)|
# The partition function Zg iIs a normalization constant

® Measure dunve(q) = Z;;lcsH(q,p)_E(dq dp) = Z;?l

VH(Qzapzj
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The Hamiltonian dynamics

# Evolution of isolated systems (Newton’s law)

<’ = o) = M
Y - S aat) = ~TVia)

# Energy and volume preserving

# Ergodic postulate (on connected components of X(E))

) = i [ AGa(0).p(e) d

T'—~+o00 T

# Proof for integrable systems and their perturbations (KAM theory)

# Numerically interesting since it allows to replace a high-dimensional
integral with an integral in dimension 1
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Numerical integration of the Hamiltonian dynamics

» Verlet scheme? (finite difference discretization for the equation on §)

At
prH A=t — -V (")

4 qn—l—l _ qn + At M—lpn—|—1/2
At

(

\ pn—l—l :pn—|—1/2 . ; vv(qn—l—l)
N
1
Estimate the ensemble average as — A(q"™
» Esti s verage as — nz::l (¢")
o Symplectic scheme: recall that a map (¢, p) — ¢(q, p) is symplectic if
0 I
Vé(g,p) IVo(q,p) =J,  J= Lo

# Backward analysis: exact preservation of an approximate energy, hence
approximate preservation of the exact energy®

2L. Verlet, Phys. Rev. 159(1) (1967) 98-105.
b E. Hairer, C. Lubich and G. Wanner (Springer, 2006)
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Sampling the canonical ensemble




Classification of the methods

o Computation of (A) :/ A(q, p) u(dq dp) with
D

1

dadp) = 7 Le=BH@DP) 144 _
u(dqdp) = 7 "e qdp, [ T

# Actual issue: sampling canonical measure on configurational space
v(dg) = Z; e PV gq

» Several strategies:
(1) Purely stochastic methods (i.i.d sample)
(2) Markov chain methods and stochastic differential equations
(3) Deterministic methods a la Nosé-Hoover

# Theoretical and numerical comparison:* convergence for (1)-(2), in
practice (2) is more convenient

2E. CANCES, F. LEGOLL ET G. STOLTZ, M2AN, 2007
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Metropolis-Hastings algorithm

o Markov chain method (Metropolis et al. (1953), Hastings (1970))
» Given a current configuration ¢, propose ¢" ™! according to a transition
probability T'(¢™, )
s Gaussian displacement ¢"*! = ¢" 4+ o G™ with G™ ~ N(0,1d), in

_3N ~ 12
which case T'(q, q) = (m/%) exp (_ g — q| )

202

. /2 . .
s Biased random walk ¢"*! = ¢" — aVV(¢™) + ﬁa G", in which case

(g, d) = ( B )W o (_ gli- q+avv(q)\2>

1Y ¢ 4oy

# Accept the proposition with probability

T ~n+1 . n ~n-+1
min (1, (4 ,~q+)1u(q )> ;
T(q",q" ) m(q")

and set in this case ¢! = g"*!; otherwise, set ¢" "' = ¢".
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Convergence

# Transition kernel
P(Q) dq/) — min (17 T(Q) q,))T(Q7 q,) dq/ + (1 o @(Q))dq(dq/),

where a(q) € [0, 1] is the probability to accept a move starting from ¢:

a(q) = /min (LT(q,q’))T(q,q’)dq’-
# The canonical measure is reversible with respect to v, hence invariant:

P(q,dq")v(dq) = P(q',dq)v(dq’)
# Show irreducibility (properties of the proposition function): defining the

n-step transition probability as P"(q,dq’) = / P(q,dx) P" ' (x,dq),
xeD
the condition is that, for almost all ¢o and any set A of positive measure,

there exists ng such that P™(qg, A) > 0 when n > ng

N ——+o0

N
» Pathwise ergodicity lim iE:A(q”) :/A(q)l/(dq)
anl D
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Error estimates

# Under additional assumptions, the pathwise convergence result can be
refined to a central limit theorem for Markov chains:

N
1 n 2
VN | 2o A | At vidp| — N(0.0%)
» The asymptotic variance o2 takes into account the correlations:
+00
0> = Var,(A)+2) E, [(A(qo) —E,(A))(A(q™) — E,,(A))}
n=1

# Numerical efficiency: trade-off between acceptance and sufficiently large
moves in space (rejection rate around 0.5), the aim being to reduce the
sample autocorrelation

# Practical computation of error bars (confidence intervals): independent
realizations or block averaging
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Hybrid Monte Carlo

Markov chain in the configuration space (Duane et al. (1987), Schuette et al.
(1999)). Starting from ¢":

» generate momenta p™ according to Z ! e—BP*/2m gy,

» compute (an approximation of) the flow ®..(¢", p™) = (g"*!,p" 1) of

Newton’s equations, i.e. integrate
. Di .
¢ =—, Pi=—-VgV(q) (1)

m;

on a time 7 starting from (¢, p").

| p
[
# accept ¢"™! and set ¢"*! = g*T! with a
orobability min (1, exp —B(E — En)); oth-
erwise set ¢" ™ = ¢". '__//T ,
| . R __q
1 | >
Two parameters : 7 and At. q0 q ° \i

Extensions: correlated momenta, random times 7, constrained dynamics, ...
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Overdamped Langevin dynamics

# SDE on the configurational part only (momenta trivial to sample)
dqt - —VV(qt) dt + O'th,

where (W;);>¢ is a standard Wiener process of dimension d N
» Numerical scheme: ¢"*! = ¢ — AtVV (¢") + oV At G"
» Invariance of the canonical measure v(dq) when o = (2/3)1/2

# Evolution PDE for the law of the process at time ¢:

O = div (%N (%)) . oo = Z7 L exp(—BV)
# Invariance + irreducibility (elliptic process):
1"
Hm T/o Alge) dt = /D A(q)v(dg) as.

# Numerical scheme samples an approximate measure va;(dq)
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Convergence of the Overdamped Langevin dynamics

# Several notions of convergence: here, longtime convergence in law

# Relative entropy H(y(t,) | so) = /1n (%ﬁ')) Yoo

® Itholds ||1(t,-) — teollzr < V2H@W(E, ) [1eo)

2
o Fisher information I(y(¢,-) | Vo) :/‘Vln (wg"» Voo

» A simple computation shows %H(w(t, Vo) = =B HI(Y(L, ) | Vso)

#® When a Logarithmic Sobolev Inequality holds for ., namely

1 :
H(p| o) < ﬁI(gb | Y0), then, by Gronwall's lemma, the relative entropy
converges exponentially fast to 0, as well as the total variation distance

» Obtaining LSI: Bakry-Emery criterion (convexity), Gross (tensorization),
Holley-Stroock’s perturbation result
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Langevin dynamics

o

Stochastic perturbation of the Hamiltonian dynamics

dgs = M~ 'p, dt
dps = —VV(q:) dt—yM p, dt + o dW,

Fluctuation/dissipation relation 0% = 2vkgT = 2v/3

Invariance of the canonical measure (stationary solution of the
Fokker-Planck equation)

Convergence of the trajectorial average, starting from a given (¢°, p°):
/ A(q,p) e PHaP) dg dp
*D

/ e~ PH(a,p) dq dp
*D

Numerical schemes obtained by a splitting strategy for instance (Verlet
scheme + partial randomization of momenta)

1 T
0

a.s.
T——+o00 T
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Free energy biased dynamics



Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

" =q¢" — AtVV(q") + oVALG"

i
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Projected trajectory in the z variable for At = 0.01, g = 8.
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Metastability (2)

# Although the trajectorial average converges to the phase-space average,
the convergence may be slow...

» Slowly evolving macroscopic function of the microscopic degrees of
freedom

# Two origins : energetic or entropic barriers (in fact, free energy barrier)

y coordinate
o = o
SL = S &2 SL %
Free energy
I I
=, 9
N R G

o

|
N
[S)

1 1 1 1 1 1 1 L L L L L L L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X coordinate X coordinate
(@) Entropic barrier. (b) Associated free energy.
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Metastability (3)

#» Assume the free energy I’ associated with the slow direction = has been
computed, and sample the modified potential V(z,y) = V(x,y) — F(x).

y coordinate

_115 _i _015 0 015 1 1‘5 0 2000 4000 6000 8000 10000
x coordinate Time

Projected trajectory in the x variable for At = 0.01, g = 8.

# Many more transitions! The variable x is uniformly distributed.
D pey Alz™) e PFE)

qujzl e~ AE(")

» Estimate canonical averages through reweighting:
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Computation of free energy differences (1)

1
» Absolute free energy F = —= In e PH@P) qg dp

5 Jrp
# Motivation (Gibbs, 1902):

s canonical measure u(q,p) = Z texp(—SH(q,p))
s start from the thermodynamic identity ' =U — TS

s average energy U = /Hu

s entropy S = —kB/MInu
# (given) reaction coordinate ¢ : R3Y — R™ (angle, length,. . .):
/ . e~ PHOP) 5¢ gy, dq dp

/*D e~ PBH(a,p) 5§(q)—z0 dq dp

AF = —p"11n

Recall 6¢(y)—. = |VE| " 'dos, supported on ., = {£(q) = =z}
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Cartoon comparison of the methods

RIRIERLS

(b) Thermodynamic integration

(C) Nonequilibrium switching dynamics (d) Adaptive dynamics
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Adaptive dynamics (1)

» Simplified setting: ¢ = (z,y) and £(¢) = « € R so that

ry) — F(z1) = -8 'In Poq(2) ) = [ e BV(zw)
F(es) — F(a1) = = 1<¢eq(x1)>, Gl = [ iy

/(%V(:E, y) e PV @) gy

/e—BV(fc,y) dy

. 2 . .
# The dynamics dg; = —VV (q) dt + \/% dW; is metastable, contrarily to

» Notice that the mean force F’(a:) =

/

=~ (Vg - Flela) di + /3 aw,
F'(x) =B, (0:V(0) | €(a) = )

N\

\

# Replace equilibrium expectation with F' (¢, z) = E(@m‘/(qt)

§(qt) = 5’7)
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Adaptive dynamics: numerical implementation

# Adaptive Biasing Force method?

o= =9 (V@) = Bt 6(a)) di + /5 aw,
F'(t,7) =E(0:V(0) | ¢(a)) = )

o Can be proved to converge as ¢t — +od”

(

2/

\

» Replace the conditional expectation by a time-average:

E(axV(Qt) ‘ﬁ(qt) = :v) ~ %/Ot 02V (qs) Le(q.)—= dS

» Possibly use several replicas of the system, driven by independent noises
and contributing to the same biasing potential

# Selection strategy® to enhance the diffusion

2See the works by Darve, Pohorille, Chipot, Hénin, ...

b T LELIEVRE, M. ROUSSET AND G. STOLTZ, Nonlinearity 21 (2008) 1155-1181
“T. LELIEVRE, M. ROUSSET AND G. STOLTZ, J. Chem. Phys. 126 (2007) 134111
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Adaptive dynamics: convergence

# Nonlinear PDE on the law v(t, q):

[ B, = div [v(v — Fhias(t,2)) ¥ + 871V
< / 0,V (. ) (t,z,y) dy
F/ias(t7x) — .
\ i /w(t,fv,y) dy

» Stationary solution ., oc e AV =F°¢)

» Simple diffusion for the marginals ;1 = 9, v

# Decomposition of the total entropy H (¢ | 1Y) = / In (%) Y
D oo
Into @ macroscopic contribution (marginals in ) and a microscopic one
(conditioned measures)

» Convergence of the microscopic entropy provided some uniform
logarithmic Sobolev inequality holds for the conditioned measures
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Application: Solvatation effects on conformational changes (1)

(r —rg —w)? 2
2

# Two particules (q1,q2) interacting through Vs(r) = h |1 —
w

# Solvent: particules interacting through the purely repulsive potential

Vivea (r) = 4e [(€>12 — (g)(i] +eifr <rg, 0ifr > rg

r r

U o compact state £-1(0),

# Reaction coordinate £(q)

stretched state £~1(1) .
= & = = & N
- = = =
S e o e S
= - - = e &
= & n -~ . S
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Application: Solvatation effects on conformational changes (2)

3.5

3.0

N
a1
] | ] ]
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=
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Time

Blue: without biasing term. Red: adaptive biasing force.
Parameters: h = 10, density p = 0.250 2, w=1,=3,e=1,7=0.1
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Conclusion — Mathematical classification (september 2009)

Free energy perturbation Homogeneous MCs and SDEs
Projected MCs and SDEs
Nonhomogenous MCs and SDEs
Nonlinear SDEs and MCs

Particle systems and jump processes

Thermodynamic integration
Nonequilibrium dynamics

Adaptive dynamics

Lo bl

Selection procedures

# Which method is the most efficient in practice...?

o Some advertisement for a book to appear this year:

T. LELIEVRE, M. ROUSSET AND G. STOLTZ Free energy computations: A Mathematical
Perspective, Imperial College Press.
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