Computational Statistical Physics: A Mathematical Overview

Gabriel STOLTZ

CERMICS & MICMAC project team, ENPC (Marne-la-Vallée, France)

http://cermics.enpc.fr/~stoltz/

Description of a classical system

- Positions q (configuration), momenta $p = M\dot{q}$ (M diagonal mass matrix)
- Microscopic description of a classical system (N particles):

$$(q,p) = (q_1, \dots, q_N, p_1, \dots, p_N) \in T^*\mathcal{D}$$

- For instance, $T^*\mathcal{D}=\mathcal{D} imes\mathbb{R}^{3N}$ with $\mathcal{D}=\mathbb{R}^{3N}$ or \mathbb{T}^{3N}
- More complicated situations can be considered... (constraints defining submanifolds of the phase space)
- Hamiltonian

$$H(q,p) = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(q_1, \dots, q_N)$$

- ullet All the physics is contained in V
- For instance, pair interactions $V(q_1, \dots, q_N) = \sum_{1 \le i < j \le N} v(|q_j q_i|)$

Extracting macroscopic properties: Statistical physics

- Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?
- Equilibrium thermodynamic properties (pressure,...):

$$\langle A \rangle = \int_{T^*\mathcal{D}} A(q, p) \, \mu(dq \, dp)$$

• Choice of thermodynamic ensemble (probability measure $d\mu$): constrained maximisation of entropy

$$S(\rho) = -k_{\rm B} \int \rho \ln \rho,$$

under the constraints $\rho \geq 0$, $\int \rho = 1$, $\int A_i \rho = A_i$

• The choice of the variables and the observables A_i ($1 \le i \le m$) determine the ensemble

An example of macroscopic data

- Pressure observable $A(q,p)=rac{1}{3|\mathcal{D}|}\sum_{i=1}^{N}\left(rac{p_i^2}{m_i}-q_i\cdot
 abla_{q_i}V(q)
 ight)$
- Lennard-Jones potential $v(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} \left(\frac{\sigma}{r} \right)^6 \right]$
- Argon: $\varepsilon/k_{
 m B}$ =120 K, $\sigma=3.405$ Å

Argon state law at $T=300~\mathrm{K}.$

Sampling the microcanonical ensemble

The microcanonical measure

- Lebesgue measure conditioned to the set $\Sigma(E) = \{H(q, p) = E\}$
- Measure $d\mu_{\text{NVE}}(q) = Z_E^{-1} \delta_{H(q,p)-E}(dq \, dp) = Z_E^{-1} \frac{\sigma_{\Sigma(E)}(dq \, dp)}{|\nabla H(q,p)|}$
- The partition function Z_E is a normalization constant

Mathematical Methods for Ab Initio Quantum Chemistry, Nice, october 2009 - p. 6/29

The Hamiltonian dynamics

Evolution of isolated systems (Newton's law)

$$\begin{cases} \frac{dq(t)}{dt} &= \frac{\partial H}{\partial p}(q(t), p(t)) &= M^{-1}p(t) \\ \frac{dp(t)}{dt} &= -\frac{\partial H}{\partial q}(q(t), p(t)) &= -\nabla V(q(t)) \end{cases}$$

- Energy and volume preserving
- Ergodic postulate (on connected components of $\Sigma(E)$)

$$\langle A \rangle = \lim_{T \to +\infty} \frac{1}{T} \int_0^T A(q(t), p(t)) dt$$

- Proof for integrable systems and their perturbations (KAM theory)
- Numerically interesting since it allows to replace a high-dimensional integral with an integral in dimension 1

Numerical integration of the Hamiltonian dynamics

Verlet scheme^a (finite difference discretization for the equation on \ddot{q})

$$\begin{cases} p^{n+1/2} = p^n - \frac{\Delta t}{2} \nabla V(q^n) \\ q^{n+1} = q^n + \Delta t \ M^{-1} p^{n+1/2} \\ p^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}) \end{cases}$$
 Estimate the ensemble average as
$$\frac{1}{N} \sum_{n=1}^N A(q^n)$$

- Symplectic scheme: recall that a map $(q,p) \mapsto \phi(q,p)$ is symplectic if

$$\nabla \phi(q, p) J \nabla \phi(q, p) = J, \qquad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

Backward analysis: exact preservation of an approximate energy, hence approximate preservation of the exact energy^b

^aL. Verlet, *Phys. Rev.* **159**(1) (1967) 98-105.

^b E. Hairer, C. Lubich and G. Wanner (Springer, 2006)

Sampling the canonical ensemble

Classification of the methods

• Computation of $\langle A \rangle = \int_{T^*\mathcal{D}} A(q,p) \, \mu(dq \, dp)$ with

$$\mu(dq \, dp) = Z_{\mu}^{-1} e^{-\beta H(q,p)} \, dq \, dp, \qquad \beta = \frac{1}{k_{\rm B}T}$$

Actual issue: sampling canonical measure on configurational space

$$\nu(dq) = Z_{\nu}^{-1} e^{-\beta V(q)} dq$$

- Several strategies:
 - (1) Purely stochastic methods (i.i.d sample)
 - (2) Markov chain methods and stochastic differential equations
 - (3) Deterministic methods à la Nosé-Hoover
- Theoretical and numerical comparison: convergence for (1)-(2), in practice (2) is more convenient

^aE. Cancès, F. Legoll et G. Stoltz, M2AN, 2007

Metropolis-Hastings algorithm

- Markov chain method (Metropolis et al. (1953), Hastings (1970))
- Given a current configuration q^n , propose \tilde{q}^{n+1} according to a transition probability $T(q^n, \tilde{q})$
 - Gaussian displacement $\tilde{q}^{n+1}=q^n+\sigma\,G^n$ with $G^n\sim\mathcal{N}(0,\mathrm{Id})$, in which case $T(q,\tilde{q})=\left(\sigma\sqrt{2\pi}\right)^{-3N}\,\exp\left(-\frac{|\tilde{q}-q|^2}{2\sigma^2}\right)$
 - $\text{ Biased random walk } \tilde{q}^{n+1} = q^n \alpha \nabla V(q^n) + \sqrt{\frac{2\alpha}{\beta}} \, G^n \text{, in which case }$ $T(q,\tilde{q}) = \left(\frac{\beta}{4\pi\alpha}\right)^{3N/2} \exp\left(-\beta \frac{|\tilde{q}-q+\alpha\nabla V(q)|^2}{4\alpha}\right)$
- Accept the proposition with probability

$$\min\left(1, \frac{T(\tilde{q}^{n+1}, q^n) \nu(\tilde{q}^{n+1})}{T(q^n, \tilde{q}^{n+1}) \pi(q^n)}\right),\,$$

and set in this case $q^{n+1} = \tilde{q}^{n+1}$; otherwise, set $q^{n+1} = q^n$.

Convergence

Transition kernel

$$P(q, dq') = \min\left(1, r(q, q')\right) T(q, q') dq' + \left(1 - \alpha(q)\right) \delta_q(dq'),$$

where $\alpha(q) \in [0,1]$ is the probability to accept a move starting from q:

$$\alpha(q) = \int \min \left(1, r(q, q')\right) T(q, q') dq'.$$

• The canonical measure is reversible with respect to ν , hence invariant:

$$P(q, dq')\nu(dq) = P(q', dq)\nu(dq')$$

- Show irreducibility (properties of the proposition function): defining the n-step transition probability as $P^n(q,dq') = \int_{x \in \mathcal{D}} P(q,dx) \, P^{n-1}(x,dq')$, the condition is that, for almost all q_0 and any set A of positive measure, there exists n_0 such that $P^n(q_0,A) > 0$ when $n \geq n_0$
- Pathwise ergodicity $\lim_{N\to+\infty}\frac{1}{N}\sum_{n=1}^N A(q^n)=\int_{\mathcal{D}}A(q)\,\nu(dq)$

Error estimates

Under additional assumptions, the pathwise convergence result can be refined to a central limit theorem for Markov chains:

$$\sqrt{N} \left| \frac{1}{N} \sum_{n=1}^{N} A(q^n) - \int_{\mathcal{D}} A(q) \, \nu(dq) \right| \longrightarrow \mathcal{N}(0, \sigma^2),$$

• The asymptotic variance σ^2 takes into account the correlations:

$$\sigma^2 = \operatorname{Var}_{\nu}(A) + 2 \sum_{n=1}^{+\infty} \mathbb{E}_{\nu} \left[\left(A(q^0) - \mathbb{E}_{\nu}(A) \right) \left(A(q^n) - \mathbb{E}_{\nu}(A) \right) \right]$$

- Numerical efficiency: trade-off between acceptance and sufficiently large moves in space (rejection rate around 0.5), the aim being to reduce the sample autocorrelation
- Practical computation of error bars (confidence intervals): independent realizations or block averaging

Hybrid Monte Carlo

Markov chain in the configuration space (Duane et al. (1987), Schuette et al. (1999)). Starting from q^n :

- ullet generate momenta p^n according to $Z_p^{-1} \ {
 m e}^{-eta p^2/2m} dp$
- compute (an approximation of) the flow $\Phi_{\tau}(q^n, p^n) = (\tilde{q}^{n+1}, \tilde{p}^{n+1})$ of Newton's equations, *i.e.* integrate

$$\dot{q}_i = \frac{p_i}{m_i}, \quad \dot{p}_i = -\nabla_{q_i} V(q) \tag{1}$$

on a time τ starting from (q^n, p^n) .

• accept \tilde{q}^{n+1} and set $q^{n+1}=\tilde{q}^{n+1}$ with a probability $\min\left(1,\exp-\beta(\tilde{E}-E_n)\right)$; otherwise set $q^{n+1}=q^n$.

Two parameters : au and Δt .

Extensions: correlated momenta, random times τ , constrained dynamics, ...

Overdamped Langevin dynamics

SDE on the configurational part only (momenta trivial to sample)

$$dq_t = -\nabla V(q_t) dt + \sigma dW_t,$$

where $(W_t)_{t>0}$ is a standard Wiener process of dimension dN

- Numerical scheme: $q^{n+1} = q^n \Delta t \nabla V(q^n) + \sigma \sqrt{\Delta t} G^n$
- Invariance of the canonical measure $\nu(dq)$ when $\sigma = (2/\beta)^{1/2}$
- Evolution PDE for the law of the process at time t:

$$\partial_t \psi = \operatorname{div}\left(\psi_\infty \nabla\left(\frac{\psi}{\psi_\infty}\right)\right), \quad \psi_\infty = Z^{-1} \exp(-\beta V)$$

Invariance + irreducibility (elliptic process):

$$\lim_{T o\infty}rac{1}{T}\int_0^T A(q_t)\,dt = \int_{\mathcal{D}} A(q)\,
u(dq)$$
 a.s

• Numerical scheme samples an approximate measure $u_{\Delta t}(dq)$

Convergence of the Overdamped Langevin dynamics

- Several notions of convergence: here, longtime convergence in law
- Relative entropy $\mathcal{H}(\psi(t,\cdot) \mid \psi_{\infty}) = \int \ln \left(\frac{\psi(t,\cdot)}{\psi_{\infty}}\right) \psi_{\infty}$
- It holds $\|\psi(t,\cdot)-\psi_\infty\|_{L^1} \leq \sqrt{2\mathcal{H}(\psi(t,\cdot)\,|\,\psi_\infty)}$
- Fisher information $I(\psi(t,\cdot)\,|\,\psi_\infty) = \int \left|\nabla \ln\left(\frac{\psi(t,\cdot)}{\psi_\infty}\right)\right|^2 \psi_\infty$
- A simple computation shows $\dfrac{d}{dt}H(\psi(t,\cdot)\,|\,\psi_\infty) = -\beta^{-1}I(\psi(t,\cdot)\,|\,\psi_\infty)$
- When a Logarithmic Sobolev Inequality holds for ψ_{∞} , namely $H(\phi|\psi_{\infty}) \leq \frac{1}{2R}I(\phi|\psi_{\infty})$, then, by Gronwall's lemma, the relative entropy converges exponentially fast to 0, as well as the total variation distance
- Obtaining LSI: Bakry-Emery criterion (convexity), Gross (tensorization),
 Holley-Stroock's perturbation result

Langevin dynamics

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sigma dW_t \end{cases}$$

- Fluctuation/dissipation relation $\sigma^2=2\gamma k_{\mathrm{B}}T=2\gamma/\beta$
- Invariance of the canonical measure (stationary solution of the Fokker-Planck equation)
- Convergence of the trajectorial average, starting from a given (q^0, p^0) :

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T A(q_t, p_t) dt = \frac{\int_{T^*\mathcal{D}} A(q, p) e^{-\beta H(q, p)} dq dp}{\int_{T^*\mathcal{D}} e^{-\beta H(q, p)} dq dp} \quad \text{a.s.}$$

 Numerical schemes obtained by a splitting strategy for instance (Verlet scheme + partial randomization of momenta)

Free energy biased dynamics

Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

$$q^{n+1} = q^n - \Delta t \,\nabla V(q^n) + \sigma \sqrt{\Delta t} \,G^n$$

where $G^n \sim \mathcal{N}(0,1)$ i.i.d.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

Metastability (2)

- Although the trajectorial average converges to the phase-space average, the convergence may be slow...
- Slowly evolving macroscopic function of the microscopic degrees of freedom
- Two origins: energetic or entropic barriers (in fact, free energy barrier)

(a) Entropic barrier.

(b) Associated free energy.

Metastability (3)

• Assume the free energy F associated with the slow direction x has been computed, and sample the modified potential $\mathcal{V}(x,y) = V(x,y) - F(x)$.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

- Many more transitions! The variable x is uniformly distributed.
- Estimate canonical averages through reweighting: $\frac{\sum_{n=1}^{N} A(x^n) e^{-\beta F(x^n)}}{\sum_{n=1}^{N} e^{-\beta F(x^n)}}$

Computation of free energy differences (1)

- Absolute free energy $F = -\frac{1}{\beta} \ln \int_{T^*\mathcal{D}} \mathrm{e}^{-\beta H(q,p)} \, dq \, dp$
- Motivation (Gibbs, 1902):
 - canonical measure $\mu(q,p) = Z^{-1} \exp(-\beta H(q,p))$
 - start from the thermodynamic identity F = U TS
 - average energy $U = \int H\mu$
 - entropy $S=-k_{\mathrm{B}}\int\mu\ln\mu$
- (given) reaction coordinate $\xi : \mathbb{R}^{3N} \to \mathbb{R}^m$ (angle, length,...):

$$\Delta F = -\beta^{-1} \ln \left(\frac{\int_{T^*\mathcal{D}} e^{-\beta H(q,p)} \, \delta_{\xi(q)-z_1} \, dq \, dp}{\int_{T^*\mathcal{D}} e^{-\beta H(q,p)} \, \delta_{\xi(q)-z_0} \, dq \, dp} \right).$$

Recall $\delta_{\xi(q)-z} = |\nabla \xi|^{-1} d\sigma_{\Sigma_z}$ supported on $\Sigma_z = \{\xi(q) = z\}$

Cartoon comparison of the methods

Adaptive dynamics (1)

• Simplified setting: q=(x,y) and $\xi(q)=x\in\mathbb{R}$ so that

$$F(x_2) - F(x_1) = -\beta^{-1} \ln \left(\frac{\overline{\psi}_{eq}(x_2)}{\overline{\psi}_{eq}(x_1)} \right), \quad \overline{\psi}_{eq}(x) = \int e^{-\beta V(x,y)} dy$$

- Notice that the mean force $F'(x) = \frac{\int \partial_x V(x,y) \, \mathrm{e}^{-\beta V(x,y)} \, dy}{\int \mathrm{e}^{-\beta V(x,y)} \, dy}$
- The dynamics $dq_t = -\nabla V(q_t)\,dt + \sqrt{\frac{2}{\beta}}\,dW_t$ is metastable, contrarily to

$$\begin{cases} dq_t = -\nabla \left(V(q_t) - F(\xi(q_t)) \right) dt + \sqrt{\frac{2}{\beta}} dW_t \\ F'(x) = \mathbb{E}_{\mu} \left(\partial_x V(q) \, \middle| \, \xi(q) = x \right) \end{cases}$$

• Replace equilibrium expectation with $F'(t,x) = \mathbb{E}\Big(\partial_x V(q_t)\,\Big|\,\xi(q_t) = x\Big)$

Adaptive dynamics: numerical implementation

Adaptive Biasing Force method^a

$$\begin{cases} dq_t = -\nabla \left(V(q_t) - F(t, \xi(q_t)) \right) dt + \sqrt{\frac{2}{\beta}} dW_t \\ F'(t, x) = \mathbb{E} \left(\partial_x V(q) \, \middle| \, \xi(q_t) = x \right) \end{cases}$$

- Can be proved to converge as $t \to +\infty^b$
- Replace the conditional expectation by a time-average:

$$\mathbb{E}\Big(\partial_x V(q_t) \,\Big|\, \xi(q_t) = x\Big) \simeq \frac{1}{t} \int_0^t \partial_x V(q_s) \,\mathbf{1}_{\xi(q_s) - x} \,ds$$

- Possibly use several replicas of the system, driven by independent noises and contributing to the same biasing potential
- Selection strategy^c to enhance the diffusion

^aSee the works by Darve, Pohorille, Chipot, Hénin, ...

^b T. Lelièvre, M. Rousset and G. Stoltz, Nonlinearity 21 (2008) 1155-1181

^cT. Lelièvre, M. Rousset and G. Stoltz, *J. Chem. Phys.* **126** (2007) 134111

Adaptive dynamics: convergence

• Nonlinear PDE on the law $\psi(t,q)$:

$$\begin{cases} \partial_t \psi = \operatorname{div} \left[\nabla \left(V - F_{\text{bias}}(t, x) \right) \psi + \beta^{-1} \nabla \psi \right], \\ F'_{\text{bias}}(t, x) = \frac{\int \partial_x V(x, y) \psi(t, x, y) \, dy}{\int \psi(t, x, y) \, dy}. \end{cases}$$

- Stationary solution $\psi_{\infty} \propto \mathrm{e}^{-\beta(V-F\circ\xi)}$
- Simple diffusion for the marginals $\;\partial_t\overline{\psi}=\partial_{xx}\,\overline{\psi}\;$
- Decomposition of the total entropy $H(\psi \,|\, \psi_\infty) = \int_{\mathcal{D}} \ln\left(\frac{\psi}{\psi_\infty}\right) \psi$ into a macroscopic contribution (marginals in x) and a microscopic one (conditioned measures)
- Convergence of the microscopic entropy provided some uniform logarithmic Sobolev inequality holds for the conditioned measures

Application: Solvatation effects on conformational changes (1)

- ullet Two particules (q_1,q_2) interacting through $V_{
 m S}(r)=h\left[1-rac{(r-r_0-w)^2}{w^2}
 ight]^2$
- Solvent: particules interacting through the purely repulsive potential $V_{\text{WCA}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \left(\frac{\sigma}{r} \right)^{6} \right] + \epsilon \text{ if } r \leq r_0, \ 0 \text{ if } r > r_0$
- Reaction coordinate $\xi(q)=\frac{|q_1-q_2|-r_0}{2w}$, compact state $\xi^{-1}(0)$, stretched state $\xi^{-1}(1)$

Application: Solvatation effects on conformational changes (2)

Blue: without biasing term. Red: adaptive biasing force.

Parameters: h=10, density $\rho=0.25\,\sigma^{-2}$, w=1, $\beta=3$, $\epsilon=1$, $\tau=0.1$

Conclusion – Mathematical classification (september 2009)

Free energy perturbation \rightarrow Homogeneous MCs and SDEs

Thermodynamic integration \rightarrow Projected MCs and SDEs

Nonequilibrium dynamics \rightarrow Nonhomogenous MCs and SDEs

Adaptive dynamics \rightarrow Nonlinear SDEs and MCs

Selection procedures \rightarrow Particle systems and jump processes

- Which method is the most efficient in practice...?
- Some advertisement for a book to appear this year:

T. Lelièvre, M. Rousset and G. Stoltz *Free energy computations: A Mathematical Perspective*, Imperial College Press.