

Removing the mini-batching error in Bayesian inference with Adaptive Langevin dynamics

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

In collaboration with B. Leimkuhler, M. Sachs and I. Sekkat

CIRM, "On Future Synergies for Stochastic and Learning Algorithms" (Sept./Oct. 2021)

Outline

- Mini-batching for (overdamped) Langevin dynamics
 - Structure of the covariance matrix of gradient estimator
 - Bias on the posterior distribution
- Adaptive Langevin dynamics (AdL)
 - Motivation for constant covariance matrix
 - Error estimates for generic covariance matrices
 - Theoretical convergence results¹
- Extended AdL (non-constant covariance matrices²)

¹B. Leimkuhler, M. Sachs and G. Stoltz, Hypocoercivity properties of adaptive Langevin dynamics, *SIAM J. Appl. Maths.* (2020)

²I. Sekkat and G. Stoltz, Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics, *arXiv preprint* **2105.10347**

Mini-batching for (overdamped) Langevin dynamics

Bayesian inference

- \bullet Data $\{x_i\}_{i=1,\ldots,N_{\rm data}}$ to be explained by a statistical model
 - Parametrization by $\theta \in \mathbb{R}^n$: individual likelihoods $P_{\text{elem}}(x_i|\theta)$
 - Prior $P_{\text{prior}}(\theta)$ on the parameters

• Sample
$$\theta$$
 from $\pi(\theta|\mathbf{x}) \propto P_{\text{prior}}(\theta) \prod_{i=1}^{N_{\text{data}}} P_{\text{elem}}(x_i|\theta)$

- Usual MCMC: each step costs $O(N_{data})$
- **Running example**: Gaussian mixture model $\theta = (\mu_1, \mu_2)$

$$P_{\text{elem}}(x_i|\theta) = \frac{w}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}\right) + \frac{1 - w}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{(x_i - \mu_2)^2}{2\sigma_2^2}\right),$$

with $\sigma_1 = \sigma_2 = 0.4$, w = 0.4, and Gaussian prior Sample $N_{\text{data}} = 200$ points from $P_{\text{elem}}(\cdot|\theta^*)$ with $\theta^* = (1, 0.5)$ Sample n data points with(out) replacement: random set I_n

Unbiased stochastic estimator of $\nabla_{\theta} (\log \pi(\theta | \mathbf{x}))$ $\widehat{F_n}(\theta) = \nabla_{\theta} (\log P_{\text{prior}}(\theta)) + \frac{N_{\text{data}}}{n} \sum_{i \in I_n} \nabla_{\theta} (\log P_{\text{elem}}(x_i | \theta))$ $= \nabla_{\theta} (\log \pi(\theta | \mathbf{x})) + \sqrt{\varepsilon(n)} \Sigma_{\mathbf{x}}(\theta)^{1/2} Z_{\mathbf{x}, N_{\text{data}}, n}$

where
$$\varepsilon(n) \sim \frac{N_{\text{data}}^2}{n}$$
 for $n \ll N_{\text{data}}$
 $\Sigma_{\mathbf{x}}(\theta) = \frac{1}{N_{\text{data}} - 1} \sum_{i=1}^{N_{\text{data}}} [\nabla_{\theta}(\log P_{\text{elem}}(x_i|\theta)) - \text{average}] [\dots]^T \in \mathbb{R}^{d \times d}$

 $Z_{\mathbf{x},N_{\mathrm{data}},n}$ centered with identity covariance (Non-Gaussian for n small)

Covariance of gradient estimator for Gaussian mixture

Nature of the random variable $Z_{\mathbf{x},N_{\text{data}},n}$

Mini-batching and overdamped Langevin dynamics

• Overdamped Langevin $d\theta_t = \nabla_{\theta} (\log \pi(\theta_t | \mathbf{x})) dt + \sqrt{2} dW_t$, discretization

$$\theta^{m+1} = \theta^m + \Delta t \nabla_{\theta} (\log \pi(\theta^m | \mathbf{x})) + \sqrt{2\Delta t} \, G^m$$

- With mini-batching (Stochastic gradient Langevin dynamics³) $\theta^{m+1} = \theta^m + \Delta t \widehat{F_n}(\theta^m) + \sqrt{2\Delta t} G^m.$
- Amounts to adding additional Brownian motion of unknown magnitude

Effective Langevin dynamics

$$d\widetilde{\theta}_t = \nabla_{\theta} (\log \pi(\widetilde{\theta}_t | \mathbf{x})) \, dt + \sqrt{2\left(1 + \frac{\varepsilon(n)\Delta t}{2} \Sigma_{\mathbf{x}}(\widetilde{\theta}_t)\right)} \, d\widetilde{W}_t$$

 $\text{Key point: } \mathbb{E}^{\theta_0}(\varphi(\theta^1)) = \mathbb{E}^{\theta_0}(\varphi(\widetilde{\theta}_{\Delta t})) + \mathrm{O}(\Delta t^3) = \mathbb{E}^{\theta_0}(\varphi(\theta_{\Delta t})) + \mathrm{O}(\Delta t^2)$

• Bias of order $\varepsilon(n)\Delta t$ on the invariant measure⁴

³Welling/Teh, *ICML* (2011) ⁴S. Vollmer, K. Zygalakis, Y. Teh, *JMLR* (2016) Gabriel Stoltz (ENPC/Inria)

Mini-batching and underdamped Langevin dynamics

• Underdamped Langevin dynamics ($\Gamma \in \mathbb{R}^{d imes d}$ symm. positive definite)

$$\begin{cases} d\theta_t = p_t \, dt \\ dp_t = \nabla_\theta (\log \pi(\theta_t | \mathbf{x})) \, dt - \Gamma p_t \, dt + \sqrt{2} \Gamma^{1/2} \, dW_t \end{cases}$$

- Preserves the measure $\pi(\theta|\mathbf{x}) \times \mathcal{N}(0, \mathrm{Id}_d)$
- Splitting scheme + mini-batching

$$\begin{cases} p^{m+1/3} = \alpha_{\Delta t/2} p^m + (\mathbf{I}_d - \alpha_{\Delta t})^{1/2} G^m, & \alpha_t = \mathrm{e}^{-\Gamma t} \\ \theta^{m+1/2} = \theta^m + \Delta t \, p^{m+1/3}/2 \\ p^{m+2/3} = p^{m+1/3} + \Delta t \widehat{F_n}(\theta^{m+1/2}) \\ \theta^{m+1} = \theta^{m+1/2} + \Delta t \, p^{m+2/3}/2 \\ p^{m+1} = \alpha_{\Delta t/2} \, p^{m+2/3} + (\mathbf{I}_d - \alpha_{\Delta t})^{1/2} G^{m+1/2} \end{cases}$$

• Bias $O(\varepsilon(n)\Delta t)$ since effective Langevin dynamics corresponds to $\sqrt{2}\Gamma^{1/2} dW_t \longleftarrow \left(2\Gamma + \varepsilon(n)\Delta t\Sigma_{\mathbf{x}}(\widetilde{\theta_t})\right)^{1/2} d\widetilde{W}_t$

Numerical evidence of the bias

 L^1 error on the θ_1 marginal of the posterior distribution for various values of Δt and n, when sampling with (\circ) and without replacement (\Box).

Adaptive Langevin dynamics

Motivation for Adaptive Langevin dynamics (1/2)

Key assumption: $\Sigma_{\mathbf{x}}(\theta)$ is constant (not realistic)

• Variable friction $\xi \in \mathbb{R}^{d \times d}$, Nosé–Hoover type feedback

Adaptive Langevin dynamics¹: unknown A

$$\begin{split} d\theta_t &= p_t \, dt, \\ dp_t &= (\nabla (\log \pi(\theta_t | \mathbf{x})) - \xi_t p_t) \, dt + \sqrt{2} A^{1/2} \, dW_t \\ d[\xi_t]_{i,j} &= \frac{1}{\eta} \left(p_{i,t} p_{j,t} - \delta_{i,j} \right) dt, \quad 1 \leqslant i, j \leqslant d, \end{split}$$

- Invariant measure $\pi(\theta|\mathbf{x}) \times \mathcal{N}(0, \mathrm{Id}_d) \times \prod_{i,j=1}^d \mathcal{N}(A_{ij}, \eta^{-1})$
- Marginal in θ is indeed $\pi(\theta|\mathbf{x})$ whatever A... Prove convergence/CLT?

¹A. Jones and B. Leimkuhler, *J. Chem. Phys.* (2011); Ding et al., *NIPS* (2014); B. Leimkuhler and X. Shang, *SIAM J. Sci. Comput.* (2015)

Gabriel Stoltz (ENPC/Inria)

CIRM, October 2021 12 / 22

Motivation for Adaptive Langevin dynamics (2/2)

• effective dynamics of Strang splitting $\rightarrow \text{AdL}$ for $A = \gamma \text{Id}_d + \frac{\varepsilon(n)\Delta t}{2} \Sigma_x$

$$\begin{cases} p^{m+1/2} = e^{-\Delta t \xi^m/2} p^m + \left[\gamma(\xi^m)^{-1} \left(I_d - e^{-\Delta t \xi^m} \right) \right]^{1/2} G^m, \\ \xi^{m+1/2} = \xi^m + \frac{\Delta t}{2\eta} \left(p^{m+1/2} \left(p^{m+1/2} \right)^T - I_d \right), \\ \theta^{m+1/2} = \theta^m + \frac{\Delta t}{2} p^{m+1/2}, \\ \tilde{p}^{m+1/2} = p^{m+1/2} + \Delta t \widehat{F_n} \left(\theta^{m+1/2} \right), \\ \vdots \end{cases}$$

- When Σ_x is constant, bias on the invariant measure is $\mathrm{O}(arepsilon(n)^{3/2}\Delta t^2)$
- When $\Sigma_{\mathbf{x}}$ is not constant, bias of order $\varepsilon(n)\Delta t \left\| \Sigma_{\mathbf{x}} \int_{\Theta} \Sigma_{\mathbf{x}} \pi(\cdot|\mathbf{x}) \right\|_{L^{2}(\pi)}$

Reduction of the mini-batching error with AdL

 L^1 error on θ_1 marginal of posterior; sampling without replacement

Linear (asymptotic) regime: error $\sim \varepsilon(n)\Delta t \min_{M \in \mathcal{M}_d} \|\Sigma_{\mathbf{x}} - M\|_{L^2(\pi)}$ \mathcal{M}_d depends on representation of ξ (full matrices, diagonal, isotropic...)

Convergence of

adaptive Langevin dynamics

Convergence of Adaptive Langevin dynamics

- Case $A = a \operatorname{Id}_d$ and scalar friction (otherwise ergodicity issues)
- Change of variable $\xi = A + \eta^{-1/2} \zeta \operatorname{Id}_d$ with $\zeta \in \mathbb{R}$

Normalized Adaptive Langevin dynamics (a unknown)

$$\begin{cases} d\theta_t = p_t \, dt \\ dp_t = \left(\nabla(\log \pi(\theta_t | \mathbf{x})) - ap_t - \frac{\zeta_t}{\sqrt{\eta}} p_t\right) dt + \sqrt{2a} \, dW_t \\ d\zeta_t = \eta^{-1/2} \left(|p_t|^2 - d\right) dt \end{cases}$$

- Generator $\mathcal{L}_{AdL} = \mathcal{L}_{ham} + a\mathcal{L}_{FD} + \eta^{-1/2}\mathcal{L}_{NH}$
 - $\mathcal{L}_{ham}, \mathcal{L}_{NH}$ antisymmetric and \mathcal{L}_{FD} symmetric
 - exponential rate of decay $\sim \min(a, a^{-1})$ for $\mathcal{L}_{ham} + a \mathcal{L}_{FD}$
 - Nosé–Hoover-like part rewritten as $\eta^{-1/2}(\mathcal{L}_{\rm NH} + a\sqrt{\eta}\mathcal{L}_{\rm FD})$
 - \rightarrow suggests rate of decay $\sim \eta^{-1/2} \min(a \sqrt{\eta}, (a \sqrt{\eta})^{-1})$

Precise convergence result

Hypocoercive estimates⁵ in $L^2(\nu)$; complements Lyapunov estimates⁶

Exponential convergence of the semigroup

There exist $C, \overline{\lambda}$ such that, for any $a, \eta > 0$, there is $\lambda_{a,\eta} > 0$ for which

$$\begin{split} \forall t \ge 0, \ \forall \varphi \in L^2(\nu), \quad \left\| \mathrm{e}^{t\mathcal{L}_{\mathrm{AdL}}} \varphi - \int \varphi \, d\nu \right\|_{L^2(\nu)} & \leq \mathrm{Ce}^{-\lambda_{a,\eta}} \left\| \varphi - \int \varphi \, d\nu \right\|_{L^2(\nu)} \\ \text{with the lower bound } \lambda_{a,\eta} \ge \overline{\lambda} \min\left(a, \frac{a\eta}{a}, \frac{1}{a}, \frac{1}{a\eta}\right). \ \text{As a consequence,} \\ \left\| \mathcal{L}_{\mathrm{AdL}}^{-1} \right\|_{\mathcal{B}(L^2_0(\nu))} & \leq \frac{C}{\overline{\lambda}} \max\left(a, a\eta, \frac{1}{a}, \frac{1}{a\eta}\right) \end{split}$$

Bounds on the resolvent hence on the asymptotic variance⁷ and CLT

⁵F. Hérau (2006); J. Dolbeault, C. Mouhot and C. Schmeiser (2009, 2015)
 ⁶D. Herzog, *Commun. Math. Sci.* (2018)

⁷E. Bernard, M. Fathi, A. Levitt and G. Stoltz, arxiv preprint 2003.00726

Gabriel Stoltz (ENPC/Inria)

CIRM, October 2021 17 / 22

Extended

adaptive Langevin dynamics

Construction of extended AdL

Key assumption:
$$\Sigma_{\mathbf{x}}(\theta) = \sum_{k=0}^{K} S_k f_k(\theta)$$
 with $S_k \in \mathbb{R}^{d \times d}$

• Position dependent friction $\xi_t(\theta) = \sum_{k=0}^{n} \xi_{k,t} f_k(\theta)$ with $\xi_{k,t} \in \mathbb{R}^{d \times d}$

Extended Adaptive Langevin dynamics for $A = \gamma Id_d + \varepsilon(n)\Delta t \Sigma_x/2$

$$d\theta_t = p_t \, dt,$$

$$dp_t = \nabla_\theta (\log \pi(\theta_t | \mathbf{x})) \, dt - \xi_t(\theta_t) p_t \, dt + \sqrt{2} A(\theta_t)^{1/2} \, dW_t,$$

$$d[\xi_{k,t}]_{i,j} = \frac{f_k(\theta_t)}{\eta_k} \left(p_{i,t} p_{j,t} - \delta_{i,j} \right), \qquad 1 \leqslant i, j \leqslant d, \quad 0 \leqslant k \leqslant K,$$

• Bias on invariant measure $\sim \varepsilon(n)\Delta t \min_{\mathscr{M}_0,\ldots,\mathscr{M}_K} \left\| \Sigma_{\mathbf{x}} - \sum_{k=0}^K \mathscr{M}_k f_k \right\|_{L^{2}(\mathbb{T}^3)}$

Error on the posterior for Gaussian mixture

Basis functions: spatial decomposition of the domain + polynomials

Left: L^1 error on the θ_1 -marginal for n = 15. Right: $L^2(\pi)$ projection error of $\Sigma_{\mathbf{x}}$ onto $\operatorname{Span}(f_0, \ldots, f_K)$.

Conclusion and perspecives

Main messages

• Bias on posterior for underdamped-like Langevin dynamics

$$\sim \frac{N_{\text{data}}^2 \Delta t}{n} \| \Sigma_{\mathbf{x}} - \mathcal{P}_K \|_{L^2(\pi)}$$

where \mathcal{P}_K depends on the dynamics which is considered

- Scalar AdL sufficient when $\overline{\Sigma}_{\mathbf{x}}$ almost isotropic (ex. MNIST logistic regression)
- Need to better understand the structure of $\Sigma_{\mathbf{x}}$ (low rank?)