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Outline

Generalize! Zappa/Holmes-Cerfon/Goodman (2017): large timesteps

e Motivation
o Computational statistical physics
@ Where constraints appear
@ Metropolis & standard Generalized Hybrid Monte Carlo

e RATTLE dynamics with reverse projection check (truly reversible)
@ Standard RATTLE scheme
@ “Abstract” reversible RATTLE scheme
@ Local and theoretical realization through the implicit function theorem
@ A more practical scheme based on Newton's method

e Generalized Hybrid Monte Carlo algorithms (Reversibility is key!)

e Some numerical results

IT. Leligvre, M. Rousset, G. Stoltz, arXiv preprint 1807.02356
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Motivation
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Computational statistical physics
e Predict macroscopic properties of matter from its microscopic description

e Microstate

@ positions g = (¢g1,...,qn) and momenta p = (p1,...,pn)
N p2

e energy V(q) + Z ﬁ
i=1

e Macrostate
@ described by a probability measure u

@ constraints fixed exactly or in average (number of particles, volume,
energy)

e Properties :
@ static (A) = / A(q, p) 1(dg dp) (equation of state, heat capacity,...)
£
e dynamic (transport coefficient, transition pathway, etc)
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Examples of molecular systems (1)

What is the melting temperature of Argon?
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(a) Solid Argon (low temperature) (b) Liquid Argon (high temperature)
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Examples of molecular systems (2)

Equation of state of Argon: density as a function of pressure at fixed
temperature T = 300 K
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Sampling measures with constraints

e Typical probability measures in stat. physics/Bayesian statistics
@ unknowns = parameters in statistics, atomic coordinates for stat phys
e position space measure Z e AV(9) dg with 871 = kg T

@ phase-space measure

p(dgdp) = Zre PH@P dgdp,  H(q,p) = V(q)+

e Equality constraints arise from
@ molecular constraints (fixed bond lengths, angles, etc)

o fixed values of reaction coordinates £(q) [free energy]

e Inequality constraints could be considered as well
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Metropolis-Hastings algorithm (1)
e Markov chain method?3 to sample v(dq) = Z~1e=#V(9) dg

e Given g", propose §"*! according to transition probability T(q", )
@ Accept with probability

. T( n+1 n) ( n+1)
min (1 ey

and set in this case ¢"T! = §"*1; otherwise, set ¢"™! = ¢".

e Example of proposals
@ Gaussian displacement E]”H =q" + 0 G" with G" ~ N(0,1d)
@ Biased random walk*® §"™! = ¢" — aVV(q") + V2231 G"

2Metropolis, Rosenbluth (x2), Teller (x2), J. Chem. Phys. (1953)
3W. K. Hastings, Biometrika (1970)

*G. Roberts and R.L. Tweedie, Bernoulli (1996)

°P.J. Rossky, J.D. Doll and H.L. Friedman, J. Chem. Phys. (1978)
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Metropolis-Hastings algorithm (2)
e Transition kernel
P(q,dq') = min (1, r(a, q’)) T(q.q')dq’ + <1 = a(q)) dq(dq’),
where a(q) € [0,1] is the probability to accept a move starting from g:
a(q) = [ min (1.1(.4)) T(q.') do'.
D
e The canonical measure is reversible with respect to v, hence invariant:
P(q,dq")v(dq) = P(q’, dq)v(dq’)

e Pathwise ergodicity® when the chain is irreducible
1N
lim — A(q") = A
WimoN n§_1 (a") /D (q) v(dq)

Allows for unbiased sampling and stabilization of numerical schemes )

®S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability (1993)
Gabriel Stoltz (ENPC/INRIA) CIMS, October 2018 9 /36



How GHMC works (1)

e Aim: sample the phase-space measure through Hamiltonian dynamics +
momentum resampling

p(t) = —VV(q(t))

Reversibility: ¢;0S =S o ¢_ where S(q, p) = (g, —p) and ¢; flow

{d(t) = M~p(t),

e In practice, discretization using a reversible scheme, e.g. Verlet

At
pTTYE = p" = -V V(")
qn+1 — qn —|—At M—lpn+1/2

n n At n
ptl — prtl/2 _ 7VV(q +1

e Two importants properties of the scheme: reversible and preserves the
Lebesgue measure
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How GHMC works (2)

e Transition kernel T(x,x") with x = (g, p)
T(S(x"), S(dx)) m(dx")
T(x, dx") m(dx)

e Assume that r(x,x’) = is defined and positive’

Generalized Hybrid Monte Carlo (Horowitz, 1991)
e given x”, propose a new state X" from x” according to T(x",-);

o accept the move with probability min (1, r(x",>"<"+1)), and set in this

case x™1 = X"*1; otherwise, set x"1 = S(x").

e Reversibility up to S, i.e. P(x,dx") u(dx) = P(S(x"), S(dx)) u(dx)

e Standard HMC: T(q, dq’) = d¢,(q)(dq’), momentum reversal upon
rejection (not important since momenta are resampled, but is important
when momenta are partially resampled)

"T. Lelidvre, M. Rousset, and G. Stoltz, Free Energy Computations: A Mathematical
Perspective
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How GHMC works (3)

Complete algorithm: starting from (q°, p°),

(i) update the momentum as p"! = ap” +

(ii) propose (qn+1 n+1) — q)At( n75n+1)
iii) accept with probability min (1, ?IH(@ "L =H(@"P"]) and set
y
(g"*1, p™t1) = (@™, p™*1) in this case; otherwise set
(qn—l-l’ pn+1) — (qn7 _5n+1)

e Limiting case o = 0: one-step HMC = MALA = Euler-Maruyama
discretization of the overdamped Langevin dynamics + Metropolis

_ [2h At?
qn+1 — qn — hv V(qn) —+ F Gn h = T

e Possible application: sampling eigenvalues of random matrices®

8D. Chafai and G. Ferre, arXiv preprint 1806.05985
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(Truly) Reversible RATTLE
dynamics
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Constrained Gibbs measures (1)

e Submanifold: level set of smooth function ¢ : R — R™ with m < d:
M={qger? ¢q) =0}
o M € RY*4 fixed symmetric positive definite matrix

Assumption

The matrix Gy (q) = [VE(q)]T M~1VE(q) € R™*™ is invertible in a
neighborhood of M in RY

e Associated cotangent space
Tam={p e R, [Ve(@) Mp =0} C R
and cotangent bundle
T"M = {(q, p) € RIXRY, ¢(q) =0 and [V&(q)] M~ 1p = 0} C RIxR?
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The RATTLE integrator

e Second order discretization of the constrained Hamiltonian dynamics

dge = M~ 'p; dt,
() =0

RATTLE scheme (Andersen, 1983)

(
pn+1/2 _ pn _ %VV((]") + V{(qn) )\n+1/2’

qn+1 _ qn +AtM_1 pn+1/2’

(g™ =0, (Co)
n n At n n n

p +1 _ p +1/2 7v‘/(q +1) +v€(q +1))\ +1’

| [Ve(g™™h)]) T M1t — o, (Cp)

e Momentum constraint always satisfied, but not the position constraint
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Formal reversibility of RATTLE

e Start from (g"*1, —p™*1) and go to (¢", —p")

o Initially [V&(g™1)] T M~1p"1 = 0 and £(g") = 0
e Call A" and A"+1/2 the Lagrange multipliers

( [Vg(qn+1)] T M~1pmtl —

_pmHl/2 o gt At

g(anrl) =0,
qn _ qn+1 _AtM1 pn+1/2’
£(q") =0, (Cq)

VV( n+1)+v€( n+1) )\n+1/2

At ~
n+1/2 7V\/(qn) + vg(qn) )\nJrl7

[VE(g™)]T M~1p" =0, (Cp)

e Suggests AL — \n+1/2 g0 \n+1/2 — y\ntl

—p"=-p
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Admissible Lagrange multiplier functions

e Note that g"*! = §" + At M—1V&(g")A" /2 (unconstrained move §")

e Lagrange multipliers AtA"1/2 = A(g",g"™) function of current position
(direction of projection) and unconstrained move §” (can be far off g”)

Admissible Lagrange multiplier function A

C! function defined on an open set D of M x RY with values in R™ with
@ projection property: ¥(q,d) € D, §+ M~1VE(q)A (g, §) € M
@ non-tangential projection property: for all (g, §) € D,

(Ve (§+ M1VE(q)N(q,8))] T M1VE(q) € R™*™ is invertible,

e D contain elements (g, §) € M x M for which [V¢ (§)]" M~1V&(q) is
invertible (in this case, A(q, §) = 0)
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What can go wrong with the projection?

The projection may not exist, or may not be unique

RATTLE may not be reversible for large timesteps due to the choice of
projection
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About the non-tangential property

Vé(q)

There may be infinitely many possible projections (not isolated points)
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Towards a reversible RATTLE scheme

e Composing RATTLE with momentum reversal (involution = good for
Metropolis!)

e Admissible set (open) of moves which can be projected back onto M

A= {(q,p) € T*M, (q,q+At M-t [p A;VV(q)}) € D}

Can be proved to be non-empty!

e Define Wa,(q, p) = (g*, —p*) for (g, p) € A where (g, p!) is obtained
from (g, p) by one step of the RATTLE scheme

Properties of W,

The application Wa; : A — T*M is a C! local diffeomorphism, locally
preserving the phase-space measure? o1+ ((dq dp)

“to be defined later on...
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The reversible RATTLE scheme

e Difficulty: analysis at fixed At, for all configurations (g, p)

Reversible RATTLE scheme
Define \UIK}/(C], p) = WAt(q, p)l{(q,p)EB} - (q,p)l{(mp)gg} where

B ={(d.p) € A Varla.p) € Aand (Var o War)(a:p) = (4.p)}

e Explicitly, for any (q,p) € T*M,
(i) check if (g, p) is in A; if not return (q, p);

(i) when (g, p) € A, compute the configuration (g', p*) obtained by one
step of the RATTLE scheme;

(iii) check if (qt, —p!) is in A; if not, return (g, p);

(iv) compute the configuration (g2, —p?) obtained by one step of the
RATTLE scheme starting from (q*, —p');

(v) if (6%, %) = (g, p), return (q*, —p); otherwise return (g, p).
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lllustrating the reverse projection check

Reverse projection check...
@ not successful for increments corresponding to 6 € (6, 63)

@ successful for small increments (corresponding to 6 < ) or for
sufficiently large ones (corresponding to 6 > 03)
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Properties of the reversible RATTLE integrator (1)

On the structure of the set B

Let C be a path connected component of AN W,1(A). If there is
(gq,p) € C such that (War o Var)(q,p) = (g, p), then

Y(g,p) € C,  (WaroVWar)(g,p) = (g,p).

As a corollary, the set B is the union of path connected components of the
open set AN \II;(A). In particular, it is an open set of T* M.

M=1Ve(q} )

g5 = Nq(Vae(go, po))
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Properties of the reversible RATTLE integrator (2)

Reversibility and measure preservation
The map WY : T*"M — T*M is globally well defined, and satisfies

rev rev
atoVar =1d

Moreover, both llif‘t’ : B — B and ere¥ : B¢ — B€ are
C!-diffeomorphisms which preserve the measure o 1+r(dg dp). As a
consequence, WY : T*M — T*M globally preserves the measure
o1+m(dq dp).
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Practical reversible RATTLE
dynamics
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Theorerical realization: implicit function theorem (1)
e Assume for simplicity {g € R9,||£(q)|| < a} compact for some o > 0

There exists an open subset Dj,;, of M x RY and an admissible Lagrange
multiplier function A : Djy,p, — R™ such that

o Gum(q,8) = [VE(q)]T M~1VE(G) € R™ ™ is invertible on Diyp;

= {(q, g) € M2, Gu(q,q) is invertible} C Dimp and A =0on &;

e For any (qo, §o) € Dimp. there is a neighborhood Vy of (qo, o) in
Dimp and ag > 0 such that

v(qa El) S V0> H/\(qv E/)H < ap and VA € R™ \ {/\(q7 ‘NJ)};
£G+MIVE(QA) =0 = [|A]| > ag

e A few comments...
@ points g and § in Diy,, are not required to be close (but § should still
be close to M)

o the Lagrange multiplier is the smallest solution in norm
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Theorerical realization: implicit function theorem (2)

e Introduce the sets
Aimp = {(q, p) € T"M, (q, g+ At Mt [p = Azi'LVV(q)D S Dimp}
By = {(9.P) € Aimp (1 W3} (Aimp). (Wac o Wad)(a.p) = (4 9)}

e Non empty for At sufficiently small (VX3 (q, p) = (g, p) for some p)

Local reversibility result

There exists 8 > 0 (independent of At > 0) such that, if (for
(q17 _pl) - wAt(qu p))

then (g, p) and (q', —p!) belong to Aimp and (Wa: o Wa:) (9, p) = (g, p)

HAtMl <p = A2tVV(q)>

'Atl\/l1 <—p1 — %V V(q1)> H < B,
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A more practical realization

e Use Newton iterations to bring the unconstrained move sufficiently close
to the submanifold, and rely then on the “theoretical” projection provided
by the implicit function theorem

Iterate on n =0, ..., Nnewt,
(1) If [VE(G+ M~1VE(q)0™)]T M—1VE(q) is not invertible then set (g, §) & Dnewt and exit
the loop;

(2) Otherwise, 071 = 97 — ([VE(G + M~1Ve(q)0m]T M—1VE(q) " € (3 + M~1VE(q)0")
If these iterations are successful, set § = § + M~1V¢(q)@Nnewt:

(3) 1f(q,8) & Dimp then set (g, §) € Dnewt and exit.

(4) Otherwise, set (q,§) € Dnewt and Anewt(q,d) = A(q,9q)

The function Apewt defines an admissible Lagrange multiplier function on
the open set Dy owt
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Generalized HMC schemes

Gabriel Stoltz (ENPC/INRIA) CIMS, October 2018 29 / 36



Constrained Gibbs measures (2)

e Phase space Liouville measure o1+ ((dg dp) = o, (dq) O'T* ., (dp) with
JM(dq) Riemannian measure on M induced by scalar product (-,-)m on
R (similarly for O’T* L (dp))

Target measure to sample (independent of M)
u(dq dp) = Z; e 9P) o1 pi(dg dp) = v(dq) rg(dp),
with rq Gaussian and v(dq) = Z; 1 eV () oM (dg)

e Coarea (conditioning): ¢ dq) = (det M)~1/2 |det Gy(g —1/25M dq
¢(q) M
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Sampling the constrained Gibbs measure

e Algorithm: Starting from (g", p") € T*M,
(i) Evolve the momenta according to the mid-point Euler scheme

n At — n n n ny\n
prit=pt =Sy M 1<p +p+1/4>+v2vAtG + VE(qm) AT,
[Vf( )] M~ 1 n+l/4 —-0.

(i) Evolve with reversible RATTLE: (§"+1, p3/4) = Wity (g", p™+1/4)
(iii) Draw a random variable U" with uniform law on (0, 1):

o if U™ < exp(—H(g"t, p"t3/*) 4+ H(q", p"*'/*)), accept the proposal
o else reject the proposal: (g"*1, p”+3/4) (q", pHi/4).

(iv) Reverse momenta p"t1 = —pn+3/4,

e Preserves ;1 by construction
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A simple numerical example
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Three-dimensional system, one-dimensional constraint

2
eqg=(x,y,z) €R3and £(q) = (R—\/X2+y2> N

e GHMC, analytical integration of momenta (with o = e~ 74%)

n o ) VE(q) @ VE(q)
Pl o+ VIZ ] ) =10 VDL

e Potential V(q) = k|q|?/2

e Partial reverse check: Wa; o Wa¢ is well defined but do not check
whether Wa; 0o Wai(q,p) = (g, p)
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The need for reversibility checks

0.3

reference
A full reverse check
0.25 L\ partial reverse check

full reverse check
partial reverse check

probability
probability

0 /2 T 3n/2 2n
angle ¢

Histograms of the sampled angles ¢ with the GHMC scheme, with full or
partial reverse projection check, for At = 1. Left: kK = 0. Right: k =1.
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Analysis of the rejection rate

Method Total Newton  Newton rev. non-rev.  Metropolis
MRW At =1 0.675 0.562 3.02-10° ¢ 0.0742 0.0385
MALA At =1 0.675 0.509 5.83-10~* 0.149 0.0167
GHMC At=1, a=0.1 0.675 0.509 5.83-10* 0.149 0.0167
GHMC At=1, =05 0.675 0.509 5.83.10* 0.149 0.0167
GHMC At=1, =09 0.675 0.509 5.83.10* 0.149 0.0167
MRW At =0.3 0.158 0.0803 1.06-10—% 0.0127 0.0652
MALA At = 0.3 0.107 0.0763 1.22-107* 0.0138 0.0168
GHMC At =0.3, a =0.1 0.107 0.0763 1.22-107* 0.0138 0.0168
GHMC At=0.3,a =05 0.107 0.0763 1.22-107* 0.0138 0.0168
GHMC At =0.3, a =0.9 0.107 0.0763 1.22-107* 0.0138 0.0168
MRW At =0.1 0.0259 5.10~7 0 7-10°8 0.0259
MALA At =0.1 6.73-107% 5.10°7 10-° 5.1078 6.73.-10~*
GHMC At=0.1, =01 6.72-10* 5.10~7 10—9 6-107% 6.72-107*
GHMC At=0.1,«a =05 6.73-10* 5-10~7 2.107° 8.107% 6.72-107*
GHMC At=0.1,a =09 6.74-10* 5-10~7 0 7-107% 6.73-107*
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Metastability analysis for a double-well potential
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Left: mean residence duration as a function of the timestep. Right:
non-reversibility rejection rate

Maximal (and non negligible) non reversibility rejection rate at the optimal
timestep!
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