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A quick introduction to

molecular dynamics
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Computational statistical physics (1)

• Predict macroscopic properties of matter from its microscopic description

• Microstate

positions q = (q1, . . . , qN) and momenta p = (p1, . . . , pN)

energy H(q, p) = V (q) +
N∑
i=1

p2i
2mi

• Macrostate

described by a probability measure µ

constraints fixed exactly or in average (number of particles, volume,
energy)

• Properties :

static 〈ϕ〉 =

∫
E
ϕ(q, p)µ(dq dp) (equation of state, heat capacity,...)

dynamic (transport coefficient, transition pathway, etc)
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Computational statistical physics (2)

• Positions q ∈ D = (LT)d or Rd and momenta p ∈ Rd

→ phase-space E = D × Rd

• The very high dimensional average 〈ϕ〉 is computed using time averages
of dynamics ergodic for µ:

〈ϕ〉 = lim
T→+∞

1

T

∫ T

0
ϕ(qt , pt) dt

• Examples of dynamics:

Deterministic dynamics (Hamiltonian, Nosé–Hoover and its variations)

Stochastic differential equations

Markov chains (Metropolis schemes, discretizations of SDEs)

Piecewise deterministic Markov processes
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Convergence results for

evolution semigroups of

Langevin dynamics
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Langevin dynamics (1)

• Friction γ > 0 (could be a position-dependent matrix)

Stochastic perturbation of the Hamiltonian dynamics
dqt = M−1pt dt

dpt = −∇V (qt) dt−γM−1pt dt +

√
2γ

β
dWt

• As γ → 0, the Hamiltonian dynamics is recovered

• Overdamped limit γ → +∞ or m→ 0

qγt − q0 = −1

γ

∫ γt

0
∇V (qs) ds +

√
2

γβ
Wγt −

1

γ
(pγt − p0)

which converges to the solution of dQt = −∇V (Qt) dt +
√

2β−1 dWt

• In both cases, slow convergence to equilibrium
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Stochastic differential equations and their generators

• General SDE dxt = b(xt) dt + σ(xt) dWt on X

• Generator of the dynamics
d

dt

(
E
[
ϕ(xt)

∣∣∣x0 = x
])∣∣∣∣

t=0

= (Lϕ)(x)

• It holds L = bT∇+
1

2
σσT : ∇2 =

d∑
i=1

bi∂xi +
d∑

i ,j=1

(
σσT

)
ij
∂2xi ,xj

• Invariance of the probability measure π(dx) characterized by

∀ϕ ∈ C∞0 (X ),

∫
X
Lϕ dπ = 0

• Evolution semigroup
(
etLϕ

)
(x) = E

[
ϕ(xt)

∣∣∣x0 = x
]

• The latter quantity is expected to converge to

∫
X
ϕ dπ
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Fokker–Planck equations

• Dual viewpoint: convergence of the distribution rather than convergence
of observables (Schrödinger vs. Heisenberg)

• Evolution of the law ψ(t, x) of the process at time t > 0

d

dt

(∫
X
ϕψ(t)

)
=

∫
X

(Lϕ)ψ(t)

• Fokker–Planck equation (with L† adjoint of L on L2(X ))

∂tψ = L†ψ

• It is expected that ψ(t, x) dx converges to π(dx)
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Langevin dynamics (2)

Generator of the Langevin dynamics L = Lham + γLFD

Lham = pTM−1∇q −∇V T∇p, LFD = −pTM−1∇p +
1

β
∆p

• Preserves the canonical measure

µ(dq dp) = Z−1e−βH(q,p) dq dp = ν(dq)κ(dp)

• It is convenient to work in L2(µ) with f (t) = ψ(t)/µ

denote the adjoint of L on L2(µ) by L∗

L∗ = −Lham + γLFD

Fokker–Planck equation ∂t f = L∗f

• Convergence results for etL on L2(µ) are very similar to the ones for etL
∗
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Ergodicity results (1)

• Almost-sure convergence1 of ergodic averages ϕ̂t =
1

t

∫ t

0
ϕ(qs , ps) ds

• Asymptotic variance of ergodic averages

σ2ϕ = lim
t→+∞

tE
[
ϕ̂2
t

]
= 2

∫
E

(
−L−1Π0ϕ

)
Π0ϕ dµ

where Π0ϕ = ϕ− Eµ(ϕ)

• A central limit theorem holds2 when the equation has a solution in L2(µ)

Poisson equation in L2(µ)

−LΦ = Π0ϕ

• Well-posedness of such equations? Hypoelliptic operator

1Kliemann, Ann. Probab. 15(2), 690-707 (1987)
2Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185–201 (1982)
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Ergodicity results (2)

• Invertibility of L on subsets of L20(µ) =

{
ϕ ∈ L2(µ)

∣∣∣∣∫
E
ϕ dµ = 0

}
?

−L−1 =

∫ +∞

0
etL dt

• Prove exponential convergence of the semigroup etL

various Banach spaces E ∩ L20(µ)

Lyapunov techniques3,4,5 L∞W (E) =
{
ϕmeasurable,

∥∥∥ ϕ
W

∥∥∥
L∞
< +∞

}
standard hypocoercive6 setup H1(µ)
E = L2(µ) after hypoelliptic regularization7 from H1(µ)
coupling arguments8

3L. Rey-Bellet, Lecture Notes in Mathematics (2006)
4Hairer and Mattingly, Progr. Probab. 63 (2011)
5Mattingly, Stuart and Higham, Stoch. Proc. Appl. (2002)
6Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
7F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)
8A. Eberle, A. Guillin and R. Zimmer, arXiv preprint 1703.01617 (2017)
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Direct L2(µ) approach

• Assume that the potential V is smooth and9,10

the marginal measure ν satisfies a Poincaré inequality

‖Π0ϕ‖2L2(ν) 6
1

Cν
‖∇qϕ‖2L2(ν).

there exist c1 > 0, c2 ∈ [0, 1) and c3 > 0 such that V satisfies

∆V 6 c1 +
c2
2
|∇V |2, |∇2V | 6 c3 (1 + |∇V |) .

There exist C > 0 and λγ > 0 such that, for any ϕ ∈ L20(µ),

∀t > 0,
∥∥etLϕ∥∥

L2(µ)
6 Ce−λγt‖ϕ‖L2(µ).

with convergence rate of order min(γ, γ−1): there exists λ > 0 such that

λγ > λmin(γ, γ−1).

9Dolbeault, Mouhot and Schmeiser, C. R. Math. Acad. Sci. Paris (2009)
10Dolbeault, Mouhot and Schmeiser, Trans. AMS, 367, 3807–3828 (2015)
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Sketch of proof

• Modified square norm H[ϕ] =
1

2
‖ϕ‖2 − ε 〈Aϕ,ϕ〉 for ε ∈ (−1, 1) and

A =
(

1 + (LhamΠp)∗(LhamΠp)
)−1

(LhamΠp)∗, Πpϕ =

∫
RD

ϕ dκ

• A = ΠpA(1− Πp) and LhamA are bounded so that H ∼ ‖ · ‖2L2(µ)

Coercivity in the scalar product 〈〈·, ·〉〉 induced by H

D [ϕ] := 〈〈−Lϕ,ϕ〉〉 > λ̃γ‖ϕ‖2,

• Idea: control of ‖(1− Πp)ϕ‖2 by 〈−LFDϕ,ϕ〉 (Poincaré); for ‖Πpϕ‖2,

‖LhamΠpϕ‖2 >
DCν
βm
‖Πpϕ‖2, hence ALhamΠp > λhamΠp

• Gronwall inequality
d

dt

(
H
[
etLϕ

])
= −D

[
etLϕ

]
6 − 2λ̃γ

1 + ε
H
[
etLϕ

]
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Extensions/modifications/variations

• General kinetic energy function U(p) in the Langevin dynamics11

heavy/light tails

∇U vanishes on open sets (generator not hypoelliptic)

• Galerkin discretization and variance reduction12

• Convergence of certain nonequilibrium methods for computing free
energy differences13

• One more precise result: nonequilibrium Langevin dynamics with
external forcing

11G. Stoltz and Z. Trstanova, accepted in Multiscale Model. Sim. (2018)
12J. Roussel and G. Stoltz, M2AN, 2018
13G. Stoltz and E. Vanden-Eijnden, Nonlinearity, 2018
Gabriel Stoltz (ENPC/INRIA) IHP, March 2019 15 / 26



Rates of convergence for nonequilibrium Langevin dynamics

• Compact position space D = (2πT)d , constant force |F | = 1

Langevin dynamics perturbed by a constant force term
dqt =

pt
m
dt,

dpt = (−∇V (qt) + τF )dt − γ pt
m
dt +

√
2γ

β
dWt ,

• Non-zero velocity in the direction F is expected in the steady-state

• F does not derive from the gradient of a periodic function

of course, F = −∇WF (q) with WF (q) = −FTq

...but WF is not periodic!
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Rates of convergence for nonequilibrium Langevin dynamics

• Lyapunov approaches are non-perturbative but also non-quantitative

• Suboptimal results by the standard hypocoercive approach in H1(µ)
→ nonequilibrium perturbation14 of direct L2(µ) strategy

• Invariant measure ψη = hτµ with hτ ∈ L2(µ) for |τ | small

Uniform rates for nonequilibrium perturbations

There exist C , δ∗ > 0 such that, for any δ ∈ [0, δ∗], there is λδ > 0 for
which, for all γ ∈ (0,+∞) and all τ ∈ [−δmin(γ, 1), δmin(γ, 1)],∥∥∥etL∗γ,τ f − hτ

∥∥∥
L2(µ)

6 Ce−λδ min(γ,γ−1)t‖f − hτ‖L2(µ).

• As a corollary: lower bounds on the spectral gap of order min(γ, γ−1)
→ can be checked numerically 15

14E. Bouin, F. Hoffmann, and C. Mouhot, arXiv preprint 1605.04121
15A. Iacobucci, S. Olla and G. Stoltz, to appear in Ann. Math. Quebec (2017)
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Convergence of

Feynmann–Kac dynamics
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Feynmann–Kac averages

• Diffusion process Xt , weighted with an exponential factor

∫ t

0
f (Xs) ds

• Evolution of probability measures as

Θt(µ)(ϕ) =
E
[
ϕ(Xt) e

∫ t
0 f (Xs) ds

∣∣∣ x0 ∼ µ]
E
[
e
∫ t
0 f (Xs) ds

∣∣∣ x0 ∼ µ] ,

Convergence of Θt(µ)?

Show that there exists a unique probability measure µ∗f such that
Θt(µ)(ϕ)→ µ∗f (ϕ) as t → +∞, and quantify the rate of convergence.

• Applications in Diffusion Monte Carlo and computation of large
deviations estimates
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Analytical reformulation

• Evolution semigroup
(
P f
t ϕ
)

(x) = Ex
(
ϕ(Xt) e

∫ t
0 f (Xs) ds

)
• In fact, P f

t = et(L+f ) where L is the generator of Xt , so that

Θt(µ)(ϕ) =

∫
X
et(L+f )ϕ dµ∫

X
et(L+f )1 dµ

.

• One expects that Θt(µ) converges to some probability measure

• Convergence rate related to some spectral gap

• Simple analysis for compact spaces X = Td or for self-adjoint generators
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A simple case: additive noise, compact space D (1)

• Dynamics dXt = b(Xt) dt +
√

2 dWt

Invariant probability measure ν(dx) (unknown expression)

Generator L = bT∇+ ∆, considered on L2(ν), discrete spectrum

First eigenvectors of L and L∗: positive, unique up to normalization

(L+ f )ĥf = λf ĥf , (L∗ + f )hf = λf hf ,

∫
D
hf dν =

∫
D
ĥf dν = 1

• Then et(L+f−λf )g converges exponentially fast to
〈g , hf 〉L2(ν)
〈hf , ĥf 〉L2(ν)

hf

• This allows to identify the limiting probability measure µ∗f ∝ hf dν
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Convergence in the general case (1)

• Unstructured dynamics: Lyapunov approach

Assumption 1 (Lyapunov conditions)

There is a C 2(X ) function W : X → [1,+∞) going to infinity at infinity
such that

W−1(L+ f )W −−−−−→
|x |→+∞

−∞.

In addition, there exist a C 2(X ) function W : X → [1,+∞) and a
constant c > 0 such that

ε(x) :=
W (x)

W (x)
−−−−−→
|x |→+∞

0, W −1(L+ f )W 6 c .

• Typical choice: W (x) = eαV (x) and W (x) = eα
′V (x) with α′ 6 α

• Example: σ(x) =
√

2, b(x) = −∇V (x), with, for some a ∈ (1/2, 1),

lim
|x |→+∞

(
− β(1− a)|∇V |2 + a∆V + f

)
= −∞
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Convergence in the general case (2)

Assumption 2 (Regularity and positivity of the transition kernel)

The functions f and σ are continuous and, for any t > 0, the transition
kernel P f

t has a continuous positive density with respect to the Lebesgue
measure: P f

t (x , dy) = pft (x , y) dy with pft (x , y) > 0 for all x , y ∈ X .

• Introduce B∞W (X ) =

{
ϕ measurable, sup

x∈X

∣∣∣∣ ϕ(x)

W (x)

∣∣∣∣ < +∞
}

Theorem (Ferré/Rousset/Stoltz, 2018)

There exist a unique invariant measure µ∗f and κ > 0 such that, for any
initial measure µ ∈ P(X ) with µ(W ) < +∞, there is Cµ > 0 for which

∀ϕ ∈ B∞W (X ), ∀ t > 0,
∣∣Θt(µ)(ϕ)− µ∗f (ϕ)

∣∣ 6 Cµ e
−κt‖ϕ‖B∞W .

Moreover, the invariant measure satisfies µ∗f (W ) < +∞.
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Sketch of proof (1)

• Reduction to time-discrete case: Q f = et0(L+f ) for some fixed t0 > 0

Key result

The operator Q f considered on B∞W (X ) has a zero essential spectral
radius, admits its spectral radius Λ > 0 as a largest eigenvalue (in
modulus), and has an associated eigenfunction h ∈ B∞W (X ), normalized so
that ‖h‖B∞W = 1, and which satisfies 0 < h(x) < +∞ for all x ∈ X .

• It is then possible to consider the Markov kernel Qhφ = Λ−1h−1Q f (hφ)

• It suffices to understand the convergence of Qh since

Θkt0(µ)(ϕ) =
µ
(
h(Qh)k(h−1ϕ)

)
µ
(
h(Qh)kh−1

)
• Denoting by µh the invariant measure for Qh,

µ∗f (ϕ) =
µh
(
h−1ϕ

)
µh (h−1)
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Sketch of proof (2)

• Convergence of Qh: standard convergence results for Markov operators16

Lyapunov condition

There exist a function K : X → [1,+∞) and constants C > 0, γ ∈ (0, 1)
such that QK 6 γK + C .

The Lyapunov function for Qh is Wh−1 : X → [1,+∞).

Minorization

There exist α ∈ (0, 1) and η ∈ P(X ) such that inf
x∈C

Q(x , ·) > αη(·), where

C = {x ∈ X |W(x) 6 R + 1} for some R > 2C/(1− γ).

Then, Q has a unique invariant measure µ∗, which is such that
µ∗(W) < +∞. Moreover, there exist K > 0 and ᾱ ∈ (0, 1) such that,

∀ϕ ∈ B∞W (X ), ∀ k > 0, ‖Qkϕ− µ∗(ϕ)‖B∞W 6 K ᾱk‖ϕ− µ∗(ϕ)‖B∞W .

16Hairer and Mattingly, Progr. Probab. 63 (2011)
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Elements of proof of the key result

• The essential spectral radius θ of Q f is zero: rely on the decomposition

(Q f )3 = (1KQ
f 1K )2Q f +1K cQ f (1KQ

f )2+Q f 1K c (Q f )2+Q f 1KQ
f 1K cQ f

with (1KQ
f 1K )2 compact (using some continuity property and Ascoli)

while 1K cQ f tends to 0 as K increases

• The spectral radius Λ of Q f (considered as an operator on B∞W (X ) is
positive [rely on minorization conditions]

• Krein–Rutman theorem on the cone KW =
{
u ∈ B∞W (X )

∣∣ u > 0
}

:

the cone is total (the norm closure of KW −KW is B∞W (X ))

The positiveness of Q f ∈ B∞W (X ) shows that Q fKW ⊂ KW .

θ < Λ

This shows that Λ is an eigenvalue of Q f with an eigenvector in KW .
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