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Outline

e A quick introduction to molecular dynamics

e (Non)equilibrium Langevin dynamics
@ Various convergence results
@ The hypocoercive approach by Dolbeault, Mouhot and Schmeiser

@ Various extensions and modifications

¢ Feynmann—Kac dynamics
@ Reformulation in terms of evolution semigroups
@ Proof for compact position spaces
@ Statement of the result in the general case

@ Elements of proof
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A quick introduction to

molecular dynamics
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Computational statistical physics (1)
e Predict macroscopic properties of matter from its microscopic description

e Microstate

@ positions g = (¢g1,...,qn) and momenta p = (p1,...,pn)
N 2
p.
o energy H(q,p) = V(a) + Y 2
. 1

e Macrostate
@ described by a probability measure u

@ constraints fixed exactly or in average (number of particles, volume,
energy)

e Properties :

e static (p) = / ©(q, p) n(dg dp) (equation of state, heat capacity,...)
£
e dynamic (transport coefficient, transition pathway, etc)
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Computational statistical physics (2)

e Positions g € D = (LT)9 or R? and momenta p € RY
— phase-space £ = D x R

e The very high dimensional average () is computed using time averages
of dynamics ergodic for u:

T
So(qh Pt) dt

<90> T—I>r-n§—oo T 0

e Examples of dynamics:
@ Deterministic dynamics (Hamiltonian, Nosé-Hoover and its variations)
@ Stochastic differential equations

@ Markov chains (Metropolis schemes, discretizations of SDEs)

@ Piecewise deterministic Markov processes
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Convergence results for
evolution semigroups of

Langevin dynamics
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Langevin dynamics (1)
e Friction v > 0 (could be a position-dependent matrix)

Stochastic perturbation of the Hamiltonian dynamics

dge = M~ 'p, dt

2
dpe = —VV(qr) dt—yMp, dt + | /% dw,

e As v — 0, the Hamiltonian dynamics is recovered

e Overdamped limit vy — 400 or m — 0

L Vg ds+ (| 2w — L )
Ayt —qo = —— q — — — Pyt — PO
" v Jo ’ B

which converges to the solution of dQ; = —VV/(Q;) dt + \/28-1 dW,

e In both cases, slow convergence to equilibrium
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Stochastic differential equations and their generators

e General SDE dx; = b(x¢) dt + o(x¢) dW; on X

w =)

olt hoIdsEszV—I—%aaT Zbax,+ Z (aa ) K%

ij=1

= (Le)(x)

t=0

d
e Generator of the dynamics o (E [cp(xt)

e Invariance of the probability measure 7(dx) characterized by
Vo € G3O(X), /EcpdﬂzO
X

e Evolution semigroup (etﬁgo) (x)=E [SO(Xt)

X0 :x}

e The latter quantity is expected to converge to / pdm
x
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Fokker—Planck equations

e Dual viewpoint: convergence of the distribution rather than convergence

of observables (Schrodinger vs. Heisenberg)

e Evolution of the law (t, x) of the process at time t > 0

jt </Xso¢(t)> Z/X(ﬁgo)w(t)

e Fokker—Planck equation (with £ adjoint of £ on L?(X))
Oep = LTy

e It is expected that v (t, x) dx converges to m(dx)
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Langevin dynamics (2)

Generator of the Langevin dynamics £ = Lyam + YLrD
1

Lham=p M'Vq—VV'V,  Lip=-p MV, + 5

Ap

e Preserves the canonical measure
p(dq dp) = Z~e PH(9P) dg dp = v/(dq) r(dp)

e It is convenient to work in L?() with £(t) = ¢(t)/p
@ denote the adjoint of £ on L?(y) by L£*

L= _£ham + 'VEFD
o Fokker—Planck equation 0;f = L*f

e Convergence results for e“ on L?(y) are very similar to the ones for et~
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Ergodicity results (1)

.1/t
e Almost-sure convergence! of ergodic averages @y = t/ ©(gs, ps) ds
0

e Asymptotic variance of ergodic averages

ol = lim tE 3] :2/5(—51%@) Mopdu

t—>-+o0

where Moy = ¢ — E,(p)

e A central limit theorem holds? when the equation has a solution in L2(1)
Poisson equation in L2(u)

—LO® =Tlgp

e Well-posedness of such equations? Hypoelliptic operator

'Kliemann, Ann. Probab. 15(2), 690-707 (1987)
?Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185-201 (1982)
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Ergodicity results (2)

o Invertibility of £ on subsets of L3() = {gp € L%(p)

/godu—O}?

&
400

—L£1 :/ otf dt J
0

e Prove exponential convergence of the semigroup et*
e various Banach spaces E N L3(u)

@ Lyapunov techniques®*5 L5 (€) = {gp measurable,

; H }
— <
s o0
e standard hypocoercive® setup H*(u)

e E = [2(u) after hypoelliptic regularization” from H (1)

e coupling arguments®

3. Rey-Bellet, Lecture Notes in Mathematics (2006)

*Hairer and Mattingly, Progr. Probab. 63 (2011)

®Mattingly, Stuart and Higham, Stoch. Proc. Appl. (2002)

®Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
"F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)

8A. Eberle, A. Guillin and R. Zimmer, arXiv preprint 1703.01617 (2017)
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Direct L?(11) approach

e Assume that the potential V is smooth and?1°
@ the marginal measure v satisfies a Poincaré inequality

1
IMopllZ2(,,) < E|Wq<ﬁ|ﬁ2(u)-
@ there exist ¢c; > 0, ¢ € [0,1) and c3 > 0 such that V satisfies

AV <c+ %|VV|2, IV2V| < e (1+ [V V).
There exist C > 0 and A, > 0 such that, for any ¢ € L3(u),
V20, el gy < CoT Il

with convergence rate of order min(y,y™1): there exists A > 0 such that

>\'Y 2 Xmm(’% ’yil)'

°Dolbeault, Mouhot and Schmeiser, C. R. Math. Acad. Sci. Paris (2009)
Dolbeault, Mouhot and Schmeiser, Trans. AMS, 367, 3807-3828 (2015)
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Sketch of proof

1
e Modified square norm H[p] = EH(P”2 —e(Ap,p) fore € (=1,1) and
* -1 *
A= (14 (LhamMp) (Lramp) ) (Lnamlp)" ﬂpwz/Dgod/i
R

e A=T1,A(1 —Mp) and LyamA are bounded so that H ~ || - HL2 ()

Coercivity in the scalar product ((-,-)) induced by H
91l = (~Lo,0) > Myllol, J

e Idea: control of ||(1 — M,)p||? by (—Lrpep, @) (Poincaré); for ||Mypl|?,

P<10H27 hence Aﬁhamnp > )\hamnp

DC,
||£hamnp<)0||2 > IBITIII

2>\7
1+5H[ ]
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Extensions/modifications/variations

e General kinetic energy function U(p) in the Langevin dynamics'!
@ heavy/light tails

@ VU vanishes on open sets (generator not hypoelliptic)

e Galerkin discretization and variance reduction!?

e Convergence of certain nonequilibrium methods for computing free
energy differences'3

e One more precise result: nonequilibrium Langevin dynamics with
external forcing

G, Stoltz and Z. Trstanova, accepted in Multiscale Model. Sim. (2018)

12J Roussel and G. Stoltz, M2AN, 2018

13G. Stoltz and E. Vanden-Eijnden, Nonlinearity, 2018

Gabriel Stoltz (ENPC/INRIA) IHP, March 2019

15 /26



Rates of convergence for nonequilibrium Langevin dynamics

e Compact position space D = (27T)9, constant force |F| =1

Langevin dynamics perturbed by a constant force term

dge = Ptat,
m

[2
dpe = (—=VV(qe) + 7F)dt — V%dt + %dwt,

e Non-zero velocity in the direction F is expected in the steady-state

e F does not derive from the gradient of a periodic function
e of course, F = —VWg(q) with Wr(q) = —FTq
@ ...but WE is not periodic!
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Rates of convergence for nonequilibrium Langevin dynamics

e Lyapunov approaches are non-perturbative but also non-quantitative

e Suboptimal results by the standard hypocoercive approach in H(u)
— nonequilibrium perturbation'# of direct L?(y) strategy

e Invariant measure v, = h,p with h, € L2(u) for |7| small

Uniform rates for nonequilibrium perturbations

There exist C,d, > 0 such that, for any § € [0, 6*], there is A; > 0 for
which, for all v € (0, +00) and all 7 € [-d min(~, 1),d min(~, 1)],

e As a corollary: lower bounds on the spectral gap of order min(~y, 7y~ 1)
— can be checked numerically °

G f —h || < Ce MmO bl a0

L2(p)

E. Bouin, F. Hoffmann, and C. Mouhot, arXiv preprint 1605.04121

®A. lacobucci, S. Olla and G. Stoltz, to appear in Ann. Math. Quebec (2017)
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Convergence of

Feynmann—Kac dynamics
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Feynmann—Kac averages

t
e Diffusion process X;, weighted with an exponential factor / f(Xs)ds
0
e Evolution of probability measures as

3yl
E [efof (Xs) ds

X0 ~ M]
Or(1)(p) =

)

o]

Convergence of ©¢(u)?

Show that there exists a unique probability measure i} such that
O+(p)(p) = i(p) as t = +oo, and quantify the rate of convergence.

e Applications in Diffusion Monte Carlo and computation of large
deviations estimates

Gabriel Stoltz (ENPC/INRIA) IHP, March 2019 19/26



Analytical reformulation

e Evolution semigroup (P{¢) (x) = EX (@(Xt) elo f(Xs)dS)
e In fact, Pf = et(“*f) where L is the generator of X;, so that

O:(1)(p) = /"etww
/

et(£+f)1 dM
X

e One expects that ©:(u) converges to some probability measure
e Convergence rate related to some spectral gap

e Simple analysis for compact spaces X = T or for self-adjoint generators
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A simple case: additive noise, compact space D (1)

e Dynamics dX; = b(X;) dt + /2 dW,
@ Invariant probability measure v(dx) (unknown expression)
@ Generator £L = b"V + A, considered on LZ(V), discrete spectrum

@ First eigenvectors of £ and L*: positive, unique up to normalization

(L + F)he = Arhe,  (L*+ f)hs = Arhy, / he dv = / hedy =1
D D

,h
e Then et(£+ =) g converges exponentially fast to th

hf) hf>L2(1/)

e This allows to identify the limiting probability measure uf oc he dv
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Convergence in the general case (1)

e Unstructured dynamics: Lyapunov approach
Assumption 1 (Lyapunov conditions)

There is a C?(X) function W : X — [1, +00) going to infinity at infinity
such that
WL+ )W ——— —co.
[x] =400
In addition, there exist a C2(X) function # : X — [1,+00) and a
constant ¢ > 0 such that

W (x) =il
= IR AW <c.
W(x) e 0, W (L)W <c

g(x) :

e Typical choice: W(x) = eV and #/(x) = e® V) with o/ < o
e Example: o(x) = /2, b(x) = =V V/(x), with, for some a € (1/2,1),
lim ( ~B(1—a)|VV[2+aAV + f) S

[x]—~4o00
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Convergence in the general case (2)

Assumption 2 (Regularity and positivity of the transition kernel)

The functions f and o are continuous and, for any t > 0, the transition
kernel P has a continuous positive density with respect to the Lebesgue
measure: Pf(x, dy) = pf(x,y)dy with pf(x,y) > 0 for all x,y € X.

e Introduce By (X) = {gp measurable, sup ’
xeX

< +oo}

Theorem (Ferré/Rousset/Stoltz, 2018)

There exist a unique invariant measure pz and x > 0 such that, for any
initial measure p € P(X) with p(W) < 400, there is C, > 0 for which

Vo€ Bp(X), Vt>0, [O:(u)(p) - pi(0)| < CGue " llollsg-

Moreover, the invariant measure satisfies p5(W) < +o0.
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Sketch of proof (1)

e Reduction to time-discrete case: Qf = e®(£+f) for some fixed to >0
Key result

The operator Qf considered on Byy(X) has a zero essential spectral
radius, admits its spectral radius A > 0 as a largest eigenvalue (in
modulus), and has an associated eigenfunction h € By (X'), normalized so
that ||h[|gx = 1, and which satisfies 0 < h(x) < +oo for all x € X.

e It is then possible to consider the Markov kernel Qn¢ = A~1h=1Qf (h¢)

e |t suffices to understand the convergence of @} since

k(p—1
Oty (1)) = Mih((h(?gh)(: hf)))

e Denoting by pup the invariant measure for Qp,

Y )
,uf(cp) - Lih (h_l)
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Sketch of proof (2)

e Convergence of Qj: standard convergence results for Markov operators'®

Lyapunov condition

There exist a function K : X — [1,+00) and constants C > 0, v € (0,1)
such that QK < yK + C.

The Lyapunov function for Qp, is Wh™! : X — [1, 4+-00).

Minorization

There exist a € (0,1) and n € P(X) such that inﬁj Q(x,-) = an(-), where
S

C={xeX|W(x) <R+ 1} for some R >2C/(1 —~).

Then, @ has a unique invariant measure ji,, which is such that
px(W) < +00. Moreover, there exist K > 0 and @ € (0, 1) such that,

Vo € BR(X), Vk=0, [Q 0 — plp)llag < Ka o — ma()lBgs-

®Hairer and Mattingly, Progr. Probab. 63 (2011)
Gabriel Stoltz (ENPC/INRIA) IHP, March 2019 25/26



Elements of proof of the key result

e The essential spectral radius 6 of Qf is zero: rely on the decomposition
(@)’ = (IkQ 1K)’ Q"+ 1k Q" (1 Q")*+ Q 1k (Q")’ + Q"1 Q 1k Qf

with (15 Q71x)? compact (using some continuity property and Ascoli)
while 1< Qf tends to 0 as K increases

e The spectral radius A of Qf (considered as an operator on B (X) is
positive [rely on minorization conditions]

e Krein—Rutman theorem on the cone Ky = {u € Byy(X) | v > 0}:
e the cone is total (the norm closure of Ky — Ky is Byy(X))
o The positiveness of Q € ByS(X) shows that QTKyy C Ky
e <A

This shows that A is an eigenvalue of Q with an eigenvector in Kyy.
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