







# Longtime convergence of evolution semigroups in molecular dynamics

#### Gabriel STOLTZ

#### (CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")

# Outline

- A quick introduction to molecular dynamics
- (Non)equilibrium Langevin dynamics
  - Various convergence results
  - The hypocoercive approach by Dolbeault, Mouhot and Schmeiser
  - Various extensions and modifications

#### • Feynmann–Kac dynamics

- Reformulation in terms of evolution semigroups
- Proof for compact position spaces
- Statement of the result in the general case
- Elements of proof

# A quick introduction to molecular dynamics

# Computational statistical physics (1)

- Predict macroscopic properties of matter from its microscopic description
- Microstate
  - positions  $q = (q_1, \dots, q_N)$  and momenta  $p = (p_1, \dots, p_N)$ • energy  $H(q, p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i}$
- Macrostate
  - described by a probability measure  $\mu$
  - constraints fixed exactly or in average (number of particles, volume, energy)
- Properties :

• static  $\langle \varphi \rangle = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp)$  (equation of state, heat capacity,...)

• dynamic (transport coefficient, transition pathway, etc)

# Computational statistical physics (2)

- Positions  $q \in \mathcal{D} = (L\mathbb{T})^d$  or  $\mathbb{R}^d$  and momenta  $p \in \mathbb{R}^d$  $\rightarrow$  phase-space  $\mathcal{E} = \mathcal{D} \times \mathbb{R}^d$
- The very high dimensional average  $\langle \varphi \rangle$  is computed using time averages of dynamics ergodic for  $\mu$ :

$$\langle \varphi \rangle = \lim_{T \to +\infty} \frac{1}{T} \int_0^T \varphi(q_t, p_t) dt$$

#### • Examples of dynamics:

- Deterministic dynamics (Hamiltonian, Nosé-Hoover and its variations)
- Stochastic differential equations
- Markov chains (Metropolis schemes, discretizations of SDEs)
- Piecewise deterministic Markov processes

Convergence results for evolution semigroups of Langevin dynamics

# Langevin dynamics (1)

• Friction  $\gamma > 0$  (could be a position-dependent matrix)

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t \end{cases}$$

- $\bullet$  As  $\gamma \rightarrow$  0, the Hamiltonian dynamics is recovered
- Overdamped limit  $\gamma \to +\infty$  or  $m \to 0$

$$q_{\gamma t}-q_0=-rac{1}{\gamma}\int_0^{\gamma t}
abla V(q_s)\,ds+\sqrt{rac{2}{\gammaeta}}W_{\gamma t}-rac{1}{\gamma}\left(p_{\gamma t}-p_0
ight)$$

which converges to the solution of  $dQ_t = -\nabla V(Q_t) dt + \sqrt{2\beta^{-1}} dW_t$ 

• In both cases, slow convergence to equilibrium

Gabriel Stoltz (ENPC/INRIA)

### Stochastic differential equations and their generators

• General SDE  $dx_t = b(x_t) dt + \sigma(x_t) dW_t$  on  $\mathcal{X}$ 

• Generator of the dynamics 
$$\frac{d}{dt} \left( \mathbb{E} \left[ \varphi(x_t) \left| x_0 = x \right] \right) \right|_{t=0} = (\mathcal{L}\varphi)(x)$$

• It holds 
$$\mathcal{L} = b^T \nabla + \frac{1}{2} \sigma \sigma^T : \nabla^2 = \sum_{i=1}^d b_i \partial_{x_i} + \sum_{i,j=1}^d \left( \sigma \sigma^T \right)_{ij} \partial^2_{x_i,x_j}$$

• Invariance of the probability measure  $\pi(dx)$  characterized by

$$orall arphi \in C^\infty_0(\mathcal{X}), \qquad \int_\mathcal{X} \mathcal{L} arphi \, d\pi = 0$$

- Evolution semigroup  $(e^{t\mathcal{L}}\varphi)(x) = \mathbb{E}\left[\varphi(x_t) \middle| x_0 = x\right]$
- The latter quantity is expected to converge to  $\int_{\mathcal{X}} \varphi \, d\pi$

• Dual viewpoint: convergence of the distribution rather than convergence of observables (Schrödinger vs. Heisenberg)

• Evolution of the law  $\psi(t,x)$  of the process at time  $t \ge 0$ 

$$rac{d}{dt}\left(\int_{\mathcal{X}}arphi\,\psi(t)
ight)=\int_{\mathcal{X}}(\mathcal{L}arphi)\,\psi(t)$$

• Fokker–Planck equation (with  $\mathcal{L}^{\dagger}$  adjoint of  $\mathcal{L}$  on  $L^{2}(\mathcal{X})$ )

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

• It is expected that  $\psi(t, x) dx$  converges to  $\pi(dx)$ 

# Langevin dynamics (2)

Generator of the Langevin dynamics  $\mathcal{L} = \mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$ 

$$\mathcal{L}_{ham} = p^T M^{-1} \nabla_q - \nabla V^T \nabla_p, \qquad \mathcal{L}_{FD} = -p^T M^{-1} \nabla_p + \frac{1}{\beta} \Delta_p$$

• Preserves the canonical measure

$$\mu( extsf{dq} extsf{dp}) = Z^{-1} extsf{e}^{-eta extsf{H}( extsf{q}, extsf{p})} extsf{dq} extsf{dp} = 
u( extsf{dq}) \, \kappa( extsf{dp})$$

- It is convenient to work in  $L^2(\mu)$  with  $f(t) = \psi(t)/\mu$ 
  - denote the adjoint of  ${\mathcal L}$  on  $L^2(\mu)$  by  ${\mathcal L}^*$

$$\mathcal{L}^* = -\mathcal{L}_{ ext{ham}} + \gamma \mathcal{L}_{ ext{FD}}$$

- Fokker–Planck equation  $\partial_t f = \mathcal{L}^* f$
- Convergence results for  $\mathrm{e}^{t\mathcal{L}}$  on  $L^2(\mu)$  are very similar to the ones for  $\mathrm{e}^{t\mathcal{L}^*}$

# Ergodicity results (1)

- Almost-sure convergence<sup>1</sup> of ergodic averages  $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$
- Asymptotic variance of ergodic averages

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E} \left[ \widehat{\varphi}_{t}^{2} \right] = 2 \int_{\mathcal{E}} \left( -\mathcal{L}^{-1} \Pi_{0} \varphi \right) \Pi_{0} \varphi \, d\mu$$

where  $\Pi_0 \varphi = \varphi - \mathbb{E}_\mu(\varphi)$ 

• A central limit theorem holds<sup>2</sup> when the equation has a solution in  $L^2(\mu)$ 

Poisson equation in  $L^2(\mu)$ 

$$-\mathcal{L}\Phi = \Pi_0 \varphi$$

• Well-posedness of such equations? Hypoelliptic operator

<sup>1</sup>Kliemann, Ann. Probab. **15**(2), 690-707 (1987) <sup>2</sup>Bhattacharya, Z. Wahrsch. Verw. Gebiete **60**, 185–201 (1982) Gabriel Stoltz (ENPC/INRIA)

# Ergodicity results (2)

• Invertibility of  $\mathcal{L}$  on subsets of  $L_0^2(\mu) = \left\{ \varphi \in L^2(\mu) \mid \int_{\mathcal{E}} \varphi \, d\mu = 0 \right\}$ ?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} \mathrm{e}^{t\mathcal{L}} \, dt$$

- $\bullet$  Prove exponential convergence of the semigroup  $\mathrm{e}^{t\mathcal{L}}$ 
  - various Banach spaces  $E \cap L^2_0(\mu)$
  - Lyapunov techniques<sup>3,4,5</sup>  $L_W^{\infty}(\mathcal{E}) = \left\{ \varphi \text{ measurable}, \left\| \frac{\varphi}{W} \right\|_{L^{\infty}} < +\infty \right\}$
  - standard hypocoercive<sup>6</sup> setup  $H^1(\mu)$
  - $E = L^2(\mu)$  after hypoelliptic regularization<sup>7</sup> from  $H^1(\mu)$
  - coupling arguments<sup>8</sup>

<sup>3</sup>L. Rey-Bellet, *Lecture Notes in Mathematics* (2006)

- <sup>4</sup>Hairer and Mattingly, Progr. Probab. 63 (2011)
- <sup>5</sup>Mattingly, Stuart and Higham, Stoch. Proc. Appl. (2002)
- <sup>6</sup>Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
- <sup>7</sup>F. Hérau, J. Funct. Anal. **244**(1), 95-118 (2007)
- <sup>8</sup>A. Eberle, A. Guillin and R. Zimmer, *arXiv preprint* **1703.01617** (2017)

Gabriel Stoltz (ENPC/INRIA)

IHP, March 2019 12 / 26

# Direct $L^2(\mu)$ approach

- Assume that the potential V is smooth and  $^{9,10}$ 
  - the marginal measure  $\nu$  satisfies a Poincaré inequality

$$\|\Pi_0\varphi\|_{L^2(\nu)}^2 \leqslant \frac{1}{C_{\nu}} \|\nabla_q\varphi\|_{L^2(\nu)}^2.$$

 $\bullet$  there exist  $c_1>$  0,  $c_2\in[0,1)$  and  $c_3>$  0 such that V satisfies

$$\Delta V \leqslant c_1 + rac{c_2}{2} |
abla V|^2, \quad |
abla^2 V| \leqslant c_3 \left(1 + |
abla V|\right).$$

There exist C > 0 and  $\lambda_{\gamma} > 0$  such that, for any  $\varphi \in L_0^2(\mu)$ ,  $\forall t \ge 0, \qquad \left\| e^{t\mathcal{L}} \varphi \right\|_{L^2(\mu)} \leqslant C e^{-\lambda_{\gamma} t} \|\varphi\|_{L^2(\mu)}.$ 

with convergence rate of order min $(\gamma, \gamma^{-1})$ : there exists  $\overline{\lambda} > 0$  such that  $\lambda_{\gamma} \ge \overline{\lambda} \min(\gamma, \gamma^{-1}).$ 

<sup>9</sup>Dolbeault, Mouhot and Schmeiser, *C. R. Math. Acad. Sci. Paris* (2009) <sup>10</sup>Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015) Gabriel Stoltz (ENPC/INRIA)

# Sketch of proof

• Modified square norm  $\mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|^2 - \varepsilon \langle A\varphi, \varphi \rangle$  for  $\varepsilon \in (-1, 1)$  and

$$A = \left(1 + (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^* (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})\right)^{-1} (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^*, \qquad \Pi_{\rho} \varphi = \int_{\mathbb{R}^D} \varphi \, d\kappa$$

•  $A = \prod_p A(1 - \prod_p)$  and  $\mathcal{L}_{ham}A$  are bounded so that  $\mathcal{H} \sim \| \cdot \|_{L^2(\mu)}^2$ 

Coercivity in the scalar product  $\langle \langle \cdot, \cdot \rangle \rangle$  induced by  $\mathcal{H}$ 

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \widetilde{\lambda}_{\gamma} \|\varphi\|^2,$$

• Idea: control of  $||(1 - \Pi_p)\varphi||^2$  by  $\langle -\mathcal{L}_{FD}\varphi, \varphi \rangle$  (Poincaré); for  $||\Pi_p\varphi||^2$ ,

$$\|\mathcal{L}_{\mathrm{ham}}\Pi_{\rho}\varphi\|^{2} \geqslant rac{DC_{\nu}}{eta m}\|\Pi_{\rho}\varphi\|^{2}, \qquad \mathrm{hence} \ \mathcal{A}\mathcal{L}_{\mathrm{ham}}\Pi_{\rho} \geqslant \lambda_{\mathrm{ham}}\Pi_{
ho}$$

• Gronwall inequality  $\frac{d}{dt} \left( \mathcal{H}\left[ e^{t\mathcal{L}} \varphi \right] \right) = -\mathscr{D}\left[ e^{t\mathcal{L}} \varphi \right] \leqslant -\frac{2\lambda_{\gamma}}{1+\varepsilon} \mathcal{H}\left[ e^{t\mathcal{L}} \varphi \right]$ 

# Extensions/modifications/variations

- General kinetic energy function U(p) in the Langevin dynamics<sup>11</sup>
  - heavy/light tails
  - $\nabla U$  vanishes on open sets (generator not hypoelliptic)
- Galerkin discretization and variance reduction<sup>12</sup>
- $\bullet$  Convergence of certain nonequilibrium methods for computing free energy differences  $^{13}$
- One more precise result: nonequilibrium Langevin dynamics with external forcing

<sup>&</sup>lt;sup>11</sup>G. Stoltz and Z. Trstanova, accepted in *Multiscale Model. Sim.* (2018)

<sup>&</sup>lt;sup>12</sup>J. Roussel and G. Stoltz, *M2AN*, 2018

<sup>&</sup>lt;sup>13</sup>G. Stoltz and E. Vanden-Eijnden, *Nonlinearity*, 2018

# Rates of convergence for nonequilibrium Langevin dynamics

• Compact position space  $\mathcal{D}=(2\pi\mathbb{T})^d$ , constant force  $|\mathsf{F}|=1$ 

Langevin dynamics perturbed by a constant force term

$$\begin{cases} dq_t = \frac{p_t}{m} dt, \\ dp_t = (-\nabla V(q_t) + \tau F) dt - \gamma \frac{p_t}{m} dt + \sqrt{\frac{2\gamma}{\beta}} dW_t, \end{cases}$$

- Non-zero velocity in the direction F is expected in the steady-state
- F does not derive from the gradient of a periodic function
  of course, F = -∇W<sub>F</sub>(q) with W<sub>F</sub>(q) = -F<sup>T</sup>q
  - ...but W<sub>F</sub> is not periodic!

# Rates of convergence for nonequilibrium Langevin dynamics

- Lyapunov approaches are non-perturbative but also non-quantitative
- Suboptimal results by the standard hypocoercive approach in  $H^1(\mu)$  $\rightarrow$  nonequilibrium perturbation<sup>14</sup> of direct  $L^2(\mu)$  strategy
- Invariant measure  $\psi_\eta = h_\tau \mu$  with  $h_\tau \in L^2(\mu)$  for  $|\tau|$  small

#### Uniform rates for nonequilibrium perturbations

There exist  $C, \delta_* > 0$  such that, for any  $\delta \in [0, \delta^*]$ , there is  $\overline{\lambda}_{\delta} > 0$  for which, for all  $\gamma \in (0, +\infty)$  and all  $\tau \in [-\delta \min(\gamma, 1), \delta \min(\gamma, 1)]$ ,

$$\left\| \mathrm{e}^{t\mathcal{L}^*_{\gamma,\tau}} f - h_\tau \right\|_{L^2(\mu)} \leqslant C \mathrm{e}^{-\overline{\lambda}_\delta \min(\gamma,\gamma^{-1})t} \|f - h_\tau\|_{L^2(\mu)}$$

• As a corollary: lower bounds on the spectral gap of order min $(\gamma, \gamma^{-1})$  $\rightarrow$  can be checked numerically <sup>15</sup>

<sup>14</sup>E. Bouin, F. Hoffmann, and C. Mouhot, *arXiv preprint* 1605.04121
 <sup>15</sup>A. Iacobucci, S. Olla and G. Stoltz, to appear in *Ann. Math. Quebec* (2017)
 Gabriel Stoltz (ENPC/INRIA)

17 / 26

# Convergence of Feynmann–Kac dynamics

# Feynmann–Kac averages

- Diffusion process  $X_t$ , weighted with an exponential factor  $\int_0^t f(X_s) ds$
- Evolution of probability measures as

$$\Theta_t(\mu)(\varphi) = \frac{\mathbb{E}\left[\varphi(X_t) \operatorname{e}^{\int_0^t f(X_s) \, ds} \mid x_0 \sim \mu\right]}{\mathbb{E}\left[\operatorname{e}^{\int_0^t f(X_s) \, ds} \mid x_0 \sim \mu\right]},$$

#### Convergence of $\Theta_t(\mu)$ ?

Show that there exists a unique probability measure  $\mu_f^*$  such that  $\Theta_t(\mu)(\varphi) \to \mu_f^*(\varphi)$  as  $t \to +\infty$ , and quantify the rate of convergence.

• Applications in Diffusion Monte Carlo and computation of large deviations estimates

# Analytical reformulation

- Evolution semigroup  $(P_t^f \varphi)(x) = \mathbb{E}^x \left( \varphi(X_t) e^{\int_0^t f(X_s) ds} \right)$
- In fact,  $P_t^f = e^{t(\mathcal{L}+f)}$  where  $\mathcal{L}$  is the generator of  $X_t$ , so that

$$\Theta_t(\mu)(\varphi) = \frac{\int_{\mathcal{X}} \mathrm{e}^{t(\mathcal{L}+f)} \varphi \, d\mu}{\int_{\mathcal{X}} \mathrm{e}^{t(\mathcal{L}+f)} \mathbf{1} \, d\mu}.$$

- One expects that  $\Theta_t(\mu)$  converges to some probability measure
- Convergence rate related to some spectral gap
- Simple analysis for compact spaces  $\mathcal{X} = \mathbb{T}^d$  or for self-adjoint generators

# A simple case: additive noise, compact space $\mathcal{D}$ (1)

• Dynamics 
$$dX_t = b(X_t) dt + \sqrt{2} dW_t$$

- Invariant probability measure  $\nu(dx)$  (unknown expression)
- Generator  $\mathcal{L} = b^T \nabla + \Delta$ , considered on  $L^2(\nu)$ , discrete spectrum
- First eigenvectors of  $\mathcal{L}$  and  $\mathcal{L}^*$ : positive, unique up to normalization

$$(\mathcal{L}+f)\widehat{h}_f = \lambda_f \widehat{h}_f, \quad (\mathcal{L}^*+f)h_f = \lambda_f h_f, \quad \int_{\mathcal{D}} h_f \, d\nu = \int_{\mathcal{D}} \widehat{h}_f \, d\nu = 1$$

• Then 
$$e^{t(\mathcal{L}+f-\lambda_f)}g$$
 converges exponentially fast to  $\frac{\langle g, h_f \rangle_{L^2(\nu)}}{\langle h_f, \hat{h}_f \rangle_{L^2(\nu)}}h_f$ 

ullet This allows to identify the limiting probability measure  $\mu_f^*\propto h_f\,d\nu$ 

# Convergence in the general case (1)

• Unstructured dynamics: Lyapunov approach

Assumption 1 (Lyapunov conditions)

There is a  $C^2(\mathcal{X})$  function  $W : \mathcal{X} \to [1, +\infty)$  going to infinity at infinity such that

$$W^{-1}(\mathcal{L}+f)W \xrightarrow[|x| \to +\infty]{} -\infty.$$

In addition, there exist a  $C^2(\mathcal{X})$  function  $\mathscr{W}: \mathcal{X} \to [1, +\infty)$  and a constant  $c \ge 0$  such that

$$arepsilon(x):=rac{\mathscr{W}(x)}{W(x)} \xrightarrow[|x| o +\infty]{} 0, \qquad \mathscr{W}^{-1}(\mathcal{L}+f)\mathscr{W}\leqslant c.$$

- Typical choice:  $W(x) = e^{\alpha V(x)}$  and  $\mathscr{W}(x) = e^{\alpha' V(x)}$  with  $\alpha' \leqslant \alpha$
- Example:  $\sigma(x) = \sqrt{2}$ ,  $b(x) = -\nabla V(x)$ , with, for some  $a \in (1/2, 1)$ ,

$$\lim_{|x|\to+\infty} \left( -\beta(1-a)|\nabla V|^2 + a\Delta V + f \right) = -\infty$$

Gabriel Stoltz (ENPC/INRIA)

# Convergence in the general case (2)

#### Assumption 2 (Regularity and positivity of the transition kernel)

The functions f and  $\sigma$  are continuous and, for any t > 0, the transition kernel  $P_t^f$  has a continuous positive density with respect to the Lebesgue measure:  $P_t^f(x, dy) = p_t^f(x, y) dy$  with  $p_t^f(x, y) > 0$  for all  $x, y \in \mathcal{X}$ .

• Introduce 
$$B_W^{\infty}(\mathcal{X}) = \left\{ \varphi \text{ measurable}, \sup_{x \in \mathcal{X}} \left| \frac{\varphi(x)}{W(x)} \right| < +\infty \right\}$$

#### Theorem (Ferré/Rousset/Stoltz, 2018)

There exist a unique invariant measure  $\mu_f^*$  and  $\kappa > 0$  such that, for any initial measure  $\mu \in \mathcal{P}(\mathcal{X})$  with  $\mu(W) < +\infty$ , there is  $C_{\mu} > 0$  for which

$$\forall \varphi \in B^\infty_W(\mathcal{X}), \quad \forall t > 0, \quad \left| \Theta_t(\mu)(\varphi) - \mu^*_f(\varphi) \right| \leqslant C_\mu \, \mathrm{e}^{-\kappa t} \|\varphi\|_{B^\infty_W}.$$

Moreover, the invariant measure satisfies  $\mu_f^*(W) < +\infty$ .

# Sketch of proof (1)

• Reduction to time-discrete case:  $Q^f = e^{t_0(\mathcal{L}+f)}$  for some fixed  $t_0 > 0$ 

#### Key result

The operator  $Q^f$  considered on  $B^{\infty}_W(\mathcal{X})$  has a zero essential spectral radius, admits its spectral radius  $\Lambda > 0$  as a largest eigenvalue (in modulus), and has an associated eigenfunction  $h \in B^{\infty}_W(\mathcal{X})$ , normalized so that  $\|h\|_{B^{\infty}_W} = 1$ , and which satisfies  $0 < h(x) < +\infty$  for all  $x \in \mathcal{X}$ .

- It is then possible to consider the Markov kernel  $Q_h\phi = \Lambda^{-1}h^{-1}Q^f(h\phi)$
- It suffices to understand the convergence of  $Q_h$  since

$$\Theta_{kt_0}(\mu)(\varphi) = \frac{\mu(h(Q_h)^k(h^{-1}\varphi))}{\mu(h(Q_h)^k h^{-1})}$$

• Denoting by  $\mu_h$  the invariant measure for  $Q_h$ ,

$$\mu_f^*(\varphi) = \frac{\mu_h\left(h^{-1}\varphi\right)}{\mu_h\left(h^{-1}\right)}$$

# Sketch of proof (2)

• Convergence of  $Q_h$ : standard convergence results for Markov operators<sup>16</sup>

#### Lyapunov condition

There exist a function  $\mathcal{K} : \mathcal{X} \to [1, +\infty)$  and constants  $C \ge 0$ ,  $\gamma \in (0, 1)$  such that  $Q\mathcal{K} \le \gamma \mathcal{K} + C$ .

The Lyapunov function for  $Q_h$  is  $Wh^{-1} : \mathcal{X} \to [1, +\infty)$ .

#### Minorization

There exist  $\alpha \in (0,1)$  and  $\eta \in \mathcal{P}(\mathcal{X})$  such that  $\inf_{x \in \mathcal{C}} Q(x, \cdot) \ge \alpha \eta(\cdot)$ , where  $\mathcal{C} = \{x \in \mathcal{X} \mid \mathcal{W}(x) \le R+1\}$  for some  $R > 2\mathcal{C}/(1-\gamma)$ .

Then, Q has a unique invariant measure  $\mu_*$ , which is such that  $\mu_*(\mathcal{W}) < +\infty$ . Moreover, there exist K > 0 and  $\bar{\alpha} \in (0,1)$  such that,  $\forall \varphi \in B^{\infty}_{\mathcal{W}}(\mathcal{X}), \quad \forall k \ge 0, \quad \|Q^k \varphi - \mu_*(\varphi)\|_{B^{\infty}_{\mathcal{W}}} \le K \bar{\alpha}^k \|\varphi - \mu_*(\varphi)\|_{B^{\infty}_{\mathcal{W}}}.$ 

Gabriel Stoltz (ENPC/INRIA)

<sup>&</sup>lt;sup>16</sup>Hairer and Mattingly, *Progr. Probab.* **63** (2011)

# Elements of proof of the key result

• The essential spectral radius  $\theta$  of  $Q^f$  is zero: rely on the decomposition

 $(Q^f)^3 = (\mathbf{1}_K Q^f \mathbf{1}_K)^2 Q^f + \mathbf{1}_{K^c} Q^f (\mathbf{1}_K Q^f)^2 + Q^f \mathbf{1}_{K^c} (Q^f)^2 + Q^f \mathbf{1}_K Q^f \mathbf{1}_{K^c} Q^f$ 

with  $(\mathbf{1}_{K}Q^{f}\mathbf{1}_{K})^{2}$  compact (using some continuity property and Ascoli) while  $\mathbf{1}_{K^{c}}Q^{f}$  tends to 0 as K increases

- The spectral radius  $\Lambda$  of  $Q^f$  (considered as an operator on  $B^{\infty}_W(\mathcal{X})$  is positive [rely on minorization conditions]
- Krein–Rutman theorem on the cone  $\mathbb{K}_W = \{ u \in B^{\infty}_W(\mathcal{X}) \mid u \ge 0 \}$ :
  - the cone is total (the norm closure of  $\mathbb{K}_W \mathbb{K}_W$  is  $B^{\infty}_W(\mathcal{X})$ )
  - The positiveness of  $Q^f \in B^{\infty}_W(\mathcal{X})$  shows that  $Q^f \mathbb{K}_W \subset \mathbb{K}_W$ .
  - $\theta < \Lambda$

This shows that  $\Lambda$  is an eigenvalue of  $Q^f$  with an eigenvector in  $\mathbb{K}_W$ .