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Outline

e Adaptive Langevin dynamics

@ Motivation: Bayesian inference for large data sets

e Convergence of Langevin type dynamics
@ A review of possible approaches

@ A focus on a "direct” hypocoercive technique

e Convergence of Adaptive Langevin dynamics
@ Heuristic demonstration of convergence rates
@ Sharp bounds through hypocoercive techniques

@ Central Limit Theorem and “Langevin” limit

B. Leimkuhler, M. Sachs and G. Stoltz, Hypocoercivity properties of adaptive Langevin
dynamics, arXiv preprint 1908.09363
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Adaptive Langevin dynamics
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Bayesian inference in the large data context

e Data {x;};=1..n to be explained by a statistical model
e Parametrization by ¢ € R": individual likelihoods P(x;i|q)
@ Prior p(q) on the parameters
e Sample g from v(dq) = e V{9 dg = Z;1p(q) H,N:1 P(xi|q) dg
e For usual MCMC methods, each step costs O(NN)

e Mini-batching: Stochastic gradient Langevin dynamics!

e Fundamental assumption: for 1 < N < N and Jy € {1,..., N}N,
N
V(inp)(a)+ 57 > V(nP(xla)) = —VV(9)+7, ¢~ N(0,%(q))
JEIN

@ Amounts to introducing an additional Brownian motion of unknown
magnitude — bias

@ Assume that ¥(q) is constant [Work of Inass Sekkat...]

"Welling/Teh, ICML (2011)
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Removing the mini-batching bias

e Phase-space extension: momenta p and variable friction ¢

Adaptive Langevin dynamics': unknown o (scalar, for simplicity)
dg: = M~ p; dt,

dpe = (=VV(qe) = M~ pe) dt + o dW,

1 _ _ _
d¢e = = (PtTM 2pr — BT Tr (M 1)) dt

e Invariant measure w with density proportional to

Tag—1 2\ 2
exp (—6 ["AZ”+V(q)+'§ (c—@’) D dg dp d¢

e The marginal of 7 in g is indeed v whatever ... Prove convergence, in
particular Central Limit Theorem for time averages?

LA. Jones and B. Leimkuhler, J. Chem. Phys. (2011); Ding et al., NIPS (2014);
B. Leimkuhler and X. Shang, SIAM J. Sci. Comput. (2015)
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Standard Langevin dynamics
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Langevin dynamics (1)

e Positions g € D = (LT)? or RY and momenta p € R
— phase-space £ =D x R¢

1
e Hamiltonian H(q,p) = V(q) + EpTM_lp

Stochastic perturbation of the Hamiltonian dynamics

dge = M~ 'p; dt

2
dpe = —VV(qr) dt—yM1p, dt + | /% dwv,

e Given (known) friction v > 0 (could be a position-dependent matrix)
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Langevin dynamics (2)

e Evolution semigroup (emap) (g,p) =E [gp(qt, pt)

(qo, po) = (g, P)}

e Generator of the dynamics £

% (E [@(Qt; pt)

(q0. P0) = (0.P)] ) = E [ (L) (. )

(90, Po) = (g, p)]

Generator of the Langevin dynamics £ = Lyam + YLD
L
B

e Existence and uniqueness of the invariant measure characterized by

Vo e G5(€), /E(pd,u:O
£

e Here, canonical measure

Lham =p MV, —~VV'V,  Lrp=-p MV, +2A,

p(dq dp) = Z~ e PH(9P) dg dp = v/(dq) r(dp)
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Fokker—Planck equations

e Evolution of the law ¥ (t, g, p) of the process at time t > 0

& (Lovn) = [@ow

e Fokker—Planck equation (with £ adjoint of £ on L2(£))
Oep = LTy

e It is convenient to work in L%(z) with f(t) = ¥(t)/u
e denote the adjoint of £ on L?(u) by £*

L= _Eham + 'VEFD
o Fokker—Planck equation 0;f = L*f

e Convergence results for et£ on L2 are very similar to the ones for et£”
g H y
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Hamiltonian and overdamped limits
e As v — 0, the Hamiltonian dynamics is recovered

e Overdamped limit v — 400 (or masses going to 0)

q go = 1 WtVV(q)ds—i— 2 w. 1(p po)
—qo=—— — - = — po
i v Jo ’ S R At

t
1
= _/ vv(q'ys) ds + v zﬁ_lBt - ; (pﬁ/t - PO)
0

which converges to the solution of dQ; = —VV/(Q;) dt + /231 dB;

e In both cases, slow convergence to equilibrium
e it takes time to change energy levels in the Hamiltonian limit?

o for fixed masses, time has to be rescaled by a factor ~y

?Hairer and Pavliotis, J. Stat. Phys., 131(1), 175-202 (2008)
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Ergodicity results (1)

.1t
e Almost-sure convergence® of ergodic averages @; = t/ ©(gs, ps) ds
0

e Asymptotic variance of ergodic averages

o2 = lim tE[3] =2 /g (=L o) Moy d

t—-+00

where Moy = ¢ — Eu(p)

e A central limit theorem holds* when the equation has a solution in L2(1)

Poisson equation in L2(u)

—LO =Tlgp

e Well-posedness of such equations?

3Kliemann, Ann. Probab. 15(2), 690-707 (1987)
*Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185-201 (1982)
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Ergodicity results (2)

o Invertibility of £ on subsets of L3() = {gp € L%(p)

/godu—O}?

&
—+o00

—L£1 :/ etf dt ’
0

e Prove exponential convergence of the semigroup et?
e various Banach spaces E N L3(1)

Lyapunov techniques® LSy (€) = igomeasumble7 %H < +oo}
standard hypocoercive® setup H* (1) o

E = L?(u) after hypoelliptic regularization” from H* (1)

Directly E = L?(u) (recently® Poincaré using 9; — Lyam)
coupling arguments®

®Wu ('01); Mattingly/Stuart/Higham ('02); Rey-Bellet ('06); Hairer/Mattingly ('11)
®Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
7F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)

8 Armstrong/Mourrat (2019)

°A. Eberle, A. Guillin and R. Zimmer, Ann. Probab. 47(4), 1982-2010 (2019)
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Direct L?(11) approach: lack of coercivity

e The generator, considered on L?(y), is the sum of...
1
@ a degenerate symmetric part Lgp = —pTMflvp + A,

@ an antisymmetric part Lpam = pTl\/l_IVq - VVTVP

e Standard strategy for coercive generators: consider ¢ with average 0
with respect to p and compute

d 2
= (Hew‘pum(u)) _ <etﬁw’£etL>L2(“) _ <et£s0,£f~pew>L2(#)

1 L 2
= 3 [V e’ 90HL2(M) <0,
but no control of ||¢[2(,) by [|[Vpd|l12(y for a Gronwall estimate...

e Change of scalar product in order to use the antisymmetric part
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Almost direct L2(u1) approach: convergence result

e Assume that the potential V is smooth and%:11
@ the marginal measure v satisfies a Poincaré inequality

1
IMopllZ2(,,) < 6||Vq</?||f2(u)
@ there exist ¢c; > 0, ¢ € [0,1) and c3 > 0 such that V satisfies
AV <+ %|VV|2, IV2V| < e (1+ [VV))
There exist C > 0 and A, > 0 such that, for any ¢ € L3(u),

Ve 0, [l p0, < Ce l0llig)-

with convergence rate of order min(~y,y~1): there exists A > 0 such that

)\’Y = Xmin(’% 7_1)'

Dolbeault, Mouhot and Schmeiser, C. R. Math. Acad. Sci. Paris (2009)
"Dolbeault, Mouhot and Schmeiser, Trans. AMS, 367, 3807-3828 (2015)
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Sketch of proof

1
e Modified square norm H[p] = EH(P”2 —e(Ap,p) fore € (=1,1) and
* -1 *
A= (14 (LhamMp) (Lramp) ) (Lnamlp)" ﬂpwz/Dgod/i
R

e A=T1,A(1 —Mp) and LyamA are bounded so that H ~ || - HL2 ()

Coercivity in the scalar product ((-,-)) induced by H J

o] == (Lo, ) = Myl

e Idea: control of ||(1 — M,)p||? by (—Lrpep, @) (Poincaré); for ||Mypl|?,

P<10H27 hence Aﬁhamnp > )\hamnp

DC,
||£hamnp<)0||2 > IBITIII

2>\7
1+5H[ ]
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Direct L? hypocoercivity for modified Langevin (1)

e General kinetic energy function U(p) in the Langevin dynamics
@ The generator £ may not be hypoelliptic (U constant on open sets)

e Convergence using Lyapunov!? or hypocoercivel? techniques

e Nonequilibrium Langevin dynamics
@ Invariant measure not known...

@ Perturbative results,'* with some uniformity on the range of
perturbations!®

o Temperature accelerated molecular dynamics'®

125 Redon, G. Stoltz and Z. Trstanova, J. Stat. Phys. (2016)

13G. Stoltz and Z. Trstanova, SIAM MMS (2018)

*E. Bouin, F. Hoffmann, and C. Mouhot, SIAM J. Math. Anal. (2017)

3A. lacobucci, S. Olla and G. Stoltz, Ann. Math. Quebec (2019)

18G. Stoltz and E. Vanden-Eijnden, Nonlinearity (2018)
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Direct L? hypocoercivity for modified Langevin (2)

e Spectral discretization of generator of Langevin dynamics

@ Goal: approximate solutions of Poisson equation to build a control
variatel”

@ Bounds on convergence rates as a function of the basis size'®

e Current lines of work:
@ An even more direct approach avoiding the change of scalar product?
(with Antoine Levitt, Inria/CERMICS)

@ Quantitative bounds for atom chains (Very long term goal...)

— start with chains of length 2 (Generalized Langevin models)!?

@ Non-perturbative approach for nonequilibrium dynamics

7). Roussel and G. Stoltz, SIAM MMS (2019)

'8J. Roussel and G. Stoltz, M2AN (2018)

¥Current work with G. Pavliotis and U. Vaes
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Convergence of

Adaptive Langevin dynamics
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Structure of Adaptive Langevin dynamics (1)

e Normalization of the dynamics, for the invariant measure to be
independent of m (take M = Id to simplify)

dq: = pt dt,
dp: = (=VV(qt) — Ctpt) dt + o dW,

d¢r = % <|Pt‘2 - g) dt

eSete=y/mand (=7 +§ with v = 802/2 (unknown)

Normalized Adaptive Langevin dynamics

dq: = py dt,

[2
dpr = <—VV(qt) - %pr = 'th> dt + %th,

d& = é <‘Pt’2 - g) dt
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Structure of Adaptive Langevin dynamics (2)

2 2
e Invariant measure 7 with density Z ! exp (—5 [“32‘ + V(q) + i})

e Generator Laqr, = Lpam + YLrD + e 1Lnm with (adjoints on L2(7))

£ham = 6 (V v v V Za* qi 8* pl

1_. 1

Lxg = <|P| _5> 9 —€pTV, 5 (( —0)VpVp + A0 — Apag)

e Antisymmetric parts Lyam, £x5g and symmetric one Lgp

e Proof of exponential decay using Lyapunov techniques®®

D. Herzog, Commun. Math. Sci. (2018)
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Expected scalings

e Generator ~ superposition of Lyam +vLrp and e 1 Lyu + 7LD
e Exponential rate of decay ~ min(v,y~ 1) for the Langevin part

o Nosé—Hoover-like part rewritten as e~ *(Lxu + veLrD)
— suggests rate of decay ~ ¢~ min(ve, (y¢) 1)

Exponential convergence of the semigroup

There exist C, A such that, for any &, > 0, there is A., > 0 for which

etﬁAdLgp—/godW go—/godﬂ

= 1 1
with the lower bound A, > Amin (7,7 — 2). As a consequence,
"y e

< Ce Aen
L2(m)

Yt >0, Vo € [2(m),

L2(m)

x (v, v ety e ).

C
LodL = —/0 offadL dt, HEAdLHB(B S X
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Sharpness of the scaling and elements of proof

e Scaling of resolvent norm sharp for ~,y~ 1, v&?: for instance,

2 p’'vv 2 p'vv 1
LadL <’Y€€ + |/32| ) _ &l TR A (pTV2VP - |VV\2> ;
v € e

which shows that HLAdLHB(LQ(ﬂ)) > cye? by choosing v > ¢ > 1
0

e Proof: construction of regularization operator with correct scaling
e total antisymmetric part & = Lpam + € LNH

e distinguish € < 1 (Langevin limits convergence) or ¢ > 1

-1
Az ;= —min (1, 1> [min <1, 12) — I_I%ZI'I} M,
€ €
_ 1 , 1 2n _, 1_, -1
= — Mmin (1,€> [mln <1,€2> +|'|<(56)2850§+6qu(,> I_I] an{s

@ technical estimates to control all terms uniformly in
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Central Limit Theorem

1 t
e Consider ¢ € L%(7) and @, := t/ ©(s, ps,&s) ds
0

Central Limit Theorem
~ law 2
\/E((,Ot EWSO) m N(O7 Us,’y((p))7
with the asymptotic variance (with Moy = ¢ — E(¢))

2
2 _ -l n MNow d <2CH90HL2(W) -1 2 -1_.-2
o2 (¢) =2 [ (—Lzg.Now) Mo dr < ——=—"max(v,y +,7e*,7 e ?)

e Suggests taking y=1and ¢ ~ 1

e Langevin type limit ¢ — o0 for a function ¢(q, p) (independent of &)

K
2(9) = o () <

Proof: asymptotic analysis and fine estimates?! of Liang = Lham + YLFD

#Talay, Markov Proc. Rel. Fields (2002); Kopec, BIT (2015)
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Some numerical results
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Spectral gap computed with a Galerkin method for V quadratic
A: Scaling min(e2,£72) for = fixed.
B: Scaling min(y,y~1) for ¢ fixed.
C: Scaling min(a3,a73) fora = vy =¢.
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