

(Non)equilibrium Langevin dynamics: convergence and numerical approximation

Gabriel STOLTZ

gabriel.stoltz@enpc.fr

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")

Genève, Mars 2017

Outline

• A quick introduction to computational statistical physics

• Equilibrium Langevin dynamics

- Various convergence results
- A focus on the approach by Dolbeault, Mouhot and Schmeiser
- Discretization by a spectral Galerkin method
 - A priori error estimates for Poisson equations
 - Explicit convergence rates for a representative system
 - Numerical results
- Nonequilibrium Langevin dynamics (depending on time...)

A quick introduction to computational statistical physics

Computational statistical physics

- Predict macroscopic properties of matter from its microscopic description
- Microstate
 - positions $q = (q_1, \dots, q_N)$ and momenta $p = (p_1, \dots, p_N)$ • energy $V(q) + \sum_{i=1}^N \frac{p_i^2}{2m_i}$
- Macrostate
 - described by a probability measure μ
 - constraints fixed exactly or in average (number of particles, volume, energy)
- Properties :

• static $\langle A \rangle = \int_{\mathcal{E}} A(q, p) \, \mu(dq \, dp)$ (equation of state, heat capacity,...)

• dynamic (transport coefficient, transition pathway, etc)

Examples of molecular systems (1)

What is the melting temperature of Argon?

(a) Solid Argon (low temperature)

(b) Liquid Argon (high temperature)

Examples of molecular systems (2)

Equation of state of Argon: density as a function of pressure at fixed temperature T = 300 K

Examples of molecular systems (3)

Ubiquitin: what is its structure? What are its conformational changes?

Gabriel Stoltz (ENPC/INRIA)

Some orders of magnitude...

- Physical orders of magnitude
 - $\bullet~{\rm distances} \sim 1~{\rm \AA} = 10^{-10}~{\rm m}$
 - energy per particle $\sim k_{
 m B} T \sim 4 imes 10^{-21}$ J at 300 K
 - \bullet atomic masses $\sim 10^{-26}~{\rm kg}$
 - typical times $\sim 10^{-15}~{\rm s}$
 - number of particles $\sim \mathcal{N}_{A} = 6.02 \times 10^{23}$

• "Standards" simulations

- 10⁶ particles ["heroic": from 10⁹ particles on]
- total time: (fraction of) ns ["heroic": (fraction of) μs]
- Computation of high dimensional integrals...

$$ightarrow$$
 Ergodic methods $rac{1}{t}\int_{0}^{t} A(q_{s},p_{s})\,ds \xrightarrow[t
ightarrow +\infty]{} \langle A
angle$

Equilibrium Langevin dynamics

Langevin dynamics (1)

• Positions $q \in \mathcal{D} = (L\mathbb{T})^d$ or \mathbb{R}^d and momenta $p \in \mathbb{R}^d$ \rightarrow phase-space $\mathcal{E} = \mathcal{D} \times \mathbb{R}^d$

• Hamiltonian $H(q, p) = V(q) + \frac{1}{2}p^T M^{-1}p$ (more general kinetic energies U(p) can be considered¹)

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t \end{cases}$$

• Friction $\gamma > 0$ (could be a position-dependent matrix)

Gabriel Stoltz (ENPC/INRIA)

Geneve, Mars 2017 10 / 37

¹Redon, Stoltz, Trstanova, J. Stat. Phys. (2016)

Langevin dynamics (2)

- Evolution semigroup $\left(\mathrm{e}^{t\mathcal{L}}\varphi\right)(q,p) = \mathbb{E}\left[\varphi(q_t,p_t)\left|(q_0,p_0)=(q,p)\right]\right]$
- \bullet Generator of the dynamics ${\cal L}$

$$rac{d}{dt}\left(\mathbb{E}\left[arphi(q_t, p_t) \left| (q_0, p_0) = (q, p)
ight]
ight) = \mathbb{E}\left[(\mathcal{L}arphi)(q_t, p_t) \left| (q_0, p_0) = (q, p)
ight]
ight.$$

Generator of the Langevin dynamics $\mathcal{L} = \mathcal{L}_{\rm ham} + \gamma \mathcal{L}_{\rm FD}$

$$\mathcal{L}_{ ext{ham}} = \boldsymbol{p}^{\mathsf{T}} \boldsymbol{M}^{-1} \nabla_{\boldsymbol{q}} - \nabla \boldsymbol{V}^{\mathsf{T}} \nabla_{\boldsymbol{p}}, \qquad \mathcal{L}_{ ext{FD}} = - \boldsymbol{p}^{\mathsf{T}} \boldsymbol{M}^{-1} \nabla_{\boldsymbol{p}} + rac{1}{eta} \Delta_{\boldsymbol{p}}.$$

• Existence and uniqueness of the invariant measure characterized by

$$orall arphi \in C_0^\infty(\mathcal{E}), \qquad \int_\mathcal{E} \mathcal{L} arphi \, d\mu = 0$$

• Here, canonical measure

$$\mu(dq \, dp) = Z^{-1} \mathrm{e}^{-eta \mathsf{H}(q,p)} \, dq \, dp =
u(dq) \, \kappa(dp)$$

Gabriel Stoltz (ENPC/INRIA)

Fokker–Planck equations

• Evolution of the law $\psi(t,q,p)$ of the process at time $t \ge 0$

$$\frac{d}{dt}\left(\int_{\mathcal{E}}\varphi\,\psi(t)\right) = \int_{\mathcal{E}}(\mathcal{L}\varphi)\,\psi(t)$$

• Fokker–Planck equation (with \mathcal{L}^{\dagger} adjoint of \mathcal{L} on $L^{2}(\mathcal{E})$)

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

• It is convenient to work in $L^2(\mu)$ with $f(t) = \psi(t)/\mu$

• denote the adjoint of ${\mathcal L}$ on $L^2(\mu)$ by ${\mathcal L}^*$

$$\mathcal{L}^* = -\mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$$

- Fokker–Planck equation $\partial_t f = \mathcal{L}^* f$
- \bullet Convergence results for ${\rm e}^{t{\cal L}}$ on $L^2(\mu)$ are very similar to the ones for ${\rm e}^{t{\cal L}^*}$

Hamiltonian and overdamped limits

- As $\gamma \rightarrow$ 0, the Hamiltonian dynamics is recovered
- Overdamped limit $\gamma \to +\infty$ or $m \to 0$

$$q_t - q_0 = -rac{1}{\gamma}\int_0^t
abla V(q_s)\,ds + \sqrt{rac{2}{\gammaeta}}W_t - rac{1}{\gamma}\left(p_t - p_0
ight)$$

which converges to the solution of $dQ_t = -\nabla V(Q_t) \, dt + \sqrt{rac{2}{eta}} \, dW_t$

- In both cases, slow convergence to equilibrium
 - it takes time to change energy levels in the Hamiltonian limit²
 - \bullet for m fixed, time has to be rescaled by a factor γ

²Hairer and Pavliotis, *J. Stat. Phys.*, **131**(1), 175-202 (2008) Gabriel Stoltz (ENPC/INRIA)

Ergodicity results (1)

- Almost-sure convergence³ of ergodic averages $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$
- Asymptotic variance of ergodic averages

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E} \left[\widehat{\varphi}_{t}^{2} \right] = 2 \int_{\mathcal{E}} \left(-\mathcal{L}^{-1} \Pi_{0} \varphi \right) \Pi_{0} \varphi \, d\mu$$

where $\Pi_0 \varphi = \varphi - \mathbb{E}_\mu(\varphi)$

• A central limit theorem holds⁴ when the equation has a solution in $L^2(\mu)$

Poisson equation in $L^2(\mu)$

$$-\mathcal{L}\Phi = \Pi_0 \varphi$$

• Well-posedness of such equations? Hypoelliptic operator

³Kliemann, *Ann. Probab.* **15**(2), 690-707 (1987) ⁴Bhattacharya, *Z. Wahrsch. Verw. Gebiete* **60**, 185–201 (1982) Gabriel Stoltz (ENPC/INRIA)

Ergodicity results (2)

• Invertibility of \mathcal{L} on subsets of $L_0^2(\mu) = \left\{ \varphi \in L^2(\mu) \mid \int_{\mathcal{L}} \varphi \, d\mu = 0 \right\}$?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} \mathrm{e}^{t\mathcal{L}} \, dt$$

- Prove exponential convergence of the semigroup $e^{t\mathcal{L}}$
 - various Banach spaces $E \cap L^2_0(\mu)$
 - Lyapunov techniques^{5,6} $L_W^{\infty}(\mathcal{E}) = \left\{ \varphi \text{ measurable}, \left\| \frac{\varphi}{W} \right\|_{L^{\infty}} < +\infty \right\}$
 - standard hypocoercive⁷ setup $H^1(\mu)$
 - $E = L^2(\mu)$ after hypoelliptic regularization⁸ from $H^1(\mu)$

⁵L. Rey-Bellet, *Lecture Notes in Mathematics* (2006) ⁶Hairer and Mattingly, *Progr. Probab.* **63** (2011) ⁷Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004) ⁸F. Hérau, *J. Funct. Anal.* **244**(1), 95-118 (2007) Gabriel Stoltz (ENPC/INRIA) Geneve, Mars 2017 15 / 37

Direct $L^2(\mu)$ approach

- Assume that the potential V is smooth and 9,10
 - the marginal measure ν satisfies a Poincaré inequality

$$\|\Pi_0\varphi\|_{L^2(\nu)}^2 \leqslant \frac{1}{C_{\nu}} \|\nabla_q\varphi\|_{L^2(\nu)}^2.$$

 \bullet there exist $c_1>$ 0, $c_2\in[0,1)$ and $c_3>$ 0 such that V satisfies

$$\Delta V \leqslant c_1 + rac{c_2}{2} |
abla V|^2, \quad |
abla^2 V| \leqslant c_3 \left(1 + |
abla V|\right).$$

There exist C > 0 and $\lambda_{\gamma} > 0$ such that, for any $\varphi \in L_0^2(\mu)$, $\forall t \ge 0, \qquad \left\| e^{t\mathcal{L}} \varphi \right\|_{L^2(\mu)} \leqslant C e^{-\lambda_{\gamma} t} \|\varphi\|_{L^2(\mu)}.$

with convergence rate of order min (γ, γ^{-1}) : there exists $\overline{\lambda} > 0$ such that $\lambda_{\gamma} \ge \overline{\lambda} \min(\gamma, \gamma^{-1}).$

⁹Dolbeault, Mouhot and Schmeiser, *C. R. Math. Acad. Sci. Paris* (2009) ¹⁰Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015) Gabriel Stoltz (ENPC/INRIA)

Sketch of proof

- Entropy functional $\mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|^2 \varepsilon \langle A\varphi, \varphi \rangle$ for $\varepsilon \in (-1, 1)$ and $A = \left(1 + (\mathcal{L}_{ham}\Pi_p)^* (\mathcal{L}_{ham}\Pi_p)\right)^{-1} (\mathcal{L}_{ham}\Pi_p)^*, \qquad \Pi_p \varphi = \int_{\mathbb{R}^D} \varphi \, d\kappa$
- $A = \prod_p A(1 \prod_p)$ and $\mathcal{L}_{ham}A$ are bounded so that $\mathcal{H} \sim \| \cdot \|_{L^2(\mu)}^2$

Coercivity in the scalar product $\langle \langle \cdot, \cdot \rangle \rangle$ induced by \mathcal{H}

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \widetilde{\lambda}_{\gamma} \|\varphi\|^2,$$

• Idea: control of $||(1 - \Pi_p)\varphi||^2$ by $\langle -\mathcal{L}_{FD}\varphi, \varphi \rangle$ (Poincaré); for $||\Pi_p\varphi||^2$,

$$\|\mathcal{L}_{\mathrm{ham}}\Pi_{\rho}\varphi\|^{2} \geqslant rac{DC_{\nu}}{eta m}\|\Pi_{\rho}\varphi\|^{2}, \qquad \mathrm{hence} \ \mathcal{A}\mathcal{L}_{\mathrm{ham}}\Pi_{\rho} \geqslant \lambda_{\mathrm{ham}}\Pi_{
ho}$$

• Gronwall inequality $\frac{d}{dt} \left(\mathcal{H} \left[e^{t\mathcal{L}} \varphi \right] \right) = -\mathscr{D} \left[e^{t\mathcal{L}} \varphi \right] \leqslant -\frac{2\lambda_{\gamma}}{1+\varepsilon} \mathcal{H} \left[e^{t\mathcal{L}} \varphi \right]$

Gabriel Stoltz (ENPC/INRIA)

Discretization by a spectral Galerkin method

Motivation: control variate method

• The computation of transport coefficients by nonequilibrium steady-state techniques involves the computations of quantities of the form

$$rac{\mathbb{E}_{ au}(R)}{ au}, \qquad | au| \ll 1$$

 \rightarrow Magnification of the statistical error

• Typical cases:
$$\mathcal{L}_{\eta} = \mathcal{L}_{0} + \eta \widetilde{\mathcal{L}}$$

- nonequilibrium perturbation (later on)
- coupling parameter between otherwise independent systems
- anharmonic part in an otherwise linear dynamics
- Control variate idea
 - note that $\mathbb{E}_{ au}(R-\mathcal{L}_{ au}\Phi)=\mathbb{E}_{ au}(R)$ for all Φ
 - ...but it may happen that $\operatorname{Var}_{\tau}(R \mathcal{L}_{\tau} \Phi) \ll \operatorname{Var}_{\tau}(R)$
 - Optimal choice $\Phi = \mathcal{L}_{ au}^{-1}(R \mathbb{E}_{ au}(R))$ unknown
 - approximate it by $\mathcal{L}_0^{-1}(R \mathbb{E}_0(R))$

Principle of Galerkin approximation

- Reference Poisson equation $-\mathcal{L}\Phi = \Pi_0 R$
- Galerkin space V_M : conformal ($V_M \subset L^2_0(\mu)$) or non-conformal

Variational formulation

$$\begin{cases} \mathsf{Find} \ \Phi_M \in V_M \cap L^2_0(\mu) \text{ such that} \\ \forall \psi \in V_M, \ -\langle \psi, \mathcal{L} \Phi_M \rangle = \langle \psi, \Pi_0 R \rangle \,. \end{cases}$$

- In fact, $-\Pi_M \mathcal{L} \Pi_M \Phi_M = \Pi_M R$
- Error = (related to) consistency error + approximation error

$$\Phi_M - \Phi = (\Phi_M - \Pi_M \Phi) - (1 - \Pi_M) \Phi$$

- Well-posedness? Cannot apply Lax–Milgram¹¹...
- Approximation error: for specific models

¹¹Abdulle, Pavliotis, Vaes, *arXiv preprint* **1609.05097** (2016) Gabriel Stoltz (ENPC/INRIA)

Well posedness of the Galerkin procedure (conformal case)

• Conformal space and
$$||(A + A^*)(1 - \Pi_M)\mathcal{L}\Pi_M|| \xrightarrow[M \to \infty]{} 0$$

Invertibility of $-\prod_M \mathcal{L} \prod_M$

There exist $C \ge 1$ (independent of M, γ) and $M_0 \in \mathbb{N}$ such that, for any $M \ge M_0$, there is $\lambda_{\gamma,M} > 0$ for which

$$\forall \varphi \in V_M, \quad \forall t \ge 0, \qquad \left\| \mathrm{e}^{t \Pi_M \mathcal{L} \Pi_M} \varphi \right\| \leqslant C \mathrm{e}^{-\lambda_{\gamma,M} t} \|\varphi\|.$$

Moreover, $\lambda_{\gamma,M} \xrightarrow[M \to \infty]{} \lambda_{\gamma}$ where $\lambda_{\gamma} > 0$.

• If \mathcal{L}_{FD} stabilizes V_M (i.e. $\Pi_M \mathcal{L}_{FD} = \mathcal{L}_{FD} \Pi_M$), uniform lower bound

$$\forall \gamma > 0, \qquad \lambda_{\gamma,M} \geqslant \overline{\lambda}_M \min(\gamma, \gamma^{-1}),$$

• Key inequality for the proof: $\mathscr{D}_{M}[\varphi] = -\langle\langle \varphi, \Pi_{M}\mathcal{L}\Pi_{M}\varphi \rangle\rangle$ such that $\mathscr{D}_{M}[\varphi] = \mathscr{D}[\varphi] + \varepsilon \langle A(1 - \Pi_{M})\mathcal{L}\varphi, \varphi \rangle + \varepsilon \langle \varphi, A^{*}(1 - \Pi_{M})\mathcal{L}\varphi \rangle$

Well posedness in the non-conformal case

• Work on $V_{M,0} = V_M \cap L^2_0(\mu)$

• Projector
$$\Pi_M = \Pi_{M,0} + \Pi_{u_M}$$
 with $u_M = \frac{\Pi_M \mathbf{1}}{\|\Pi_M \mathbf{1}\|} \in V_M$

• Invertibility of $-\Pi_{M,0}\mathcal{L}\Pi_{M,0}$ under the additional condition

$$\|\mathcal{L}^* u_M\| \xrightarrow[M \to \infty]{} 0$$

Saddle-point formulation

For any $R \in L^2(\mu)$, there exist a unique $\Phi_M \in V_M$ and a unique $\alpha_M \in \mathbb{R}$ such that

$$\begin{cases} -\Pi_M \mathcal{L} \Pi_M \Phi_M + \alpha_M u_M = \Pi_M R, \\ \langle \Phi_M, u_M \rangle = 0. \end{cases}$$

Consistency error

- Poisson equation implies $-\Pi_{M,0}\mathcal{L}\Pi_{M,0}\Phi = \Pi_{M,0}R + \Pi_{M,0}\mathcal{L}(1 \Pi_{M,0})\Phi$
- Subtracting the equation for Φ_M ,

$$\Pi_{M,0}\mathcal{L}\Pi_{M,0}(\Phi_M - \Pi_{M,0}\Phi) = \Pi_{M,0}\mathcal{L}(1 - \Pi_{M,0})\Phi$$

Consistency error

$$\|\Phi_M - \Pi_{M,0}\Phi\|_{L^2(\mu)} \leqslant \frac{C}{\widehat{\lambda}_{\gamma,M}} \left(\|\Pi_M \mathcal{L}(1 - \Pi_M)\Phi\|_{L^2(\mu)} + \|\mathcal{L}u_M\|\|\Phi\|\right)$$

• Explicit estimates/rates for specific models... Typically,

$$\|\Pi_M \mathcal{L}(1-\Pi_M) \Phi\|_{L^2(\mu)} \leqslant \|\Pi_M \mathcal{L}(1-\Pi_M)\|_{\mathcal{B}(L^2(\mu))} \left\| (1-\Pi_M) \Phi \right\|_{L^2(\mu)}$$

provided the second term is not too large and the last one is small

Spectral basis for Langevin operators

• Weighted Fourier modes in position

$$G_{2k}(q) = \sqrt{\frac{Z_{\beta,\nu}}{\pi}} \cos(kq) e^{\beta V(q)/2}, \qquad G_{2k-1}(q) = \sqrt{\frac{Z_{\beta,\nu}}{\pi}} \sin(kq) e^{\beta V(q)/2}$$

- Hermite functions H_ℓ for momenta (eigenfunctions of $\mathcal{L}_{\mathrm{FD}}$)
- Tensor basis of 2K 1 Fourier and L Hermite modes: projector Π_{KL}

Approximation error

For any $s \in \mathbb{N}$, there exists $A_s \in \mathbb{R}_+$ such that, for all $\varphi \in H^s(\mu)$,

$$\forall K \ge 1, \ L \ge s, \qquad \|\varphi - \Pi_{KL}\varphi\|_{L^2(\mu)} \leqslant A_s\left(\frac{1}{K^s} + \frac{1}{L^{s/2}}\right)\|\varphi\|_{H^s(\mu)}$$

• Consistency error for $V(q) = 1 - \cos(q)$: bounds

$$\|\Pi_{KL}\mathcal{L}(1-\Pi_{KL})\|_{\mathcal{B}(L^{2}(\mu))} = O(K\sqrt{L})$$

Numerical results

Observable $R = \sum_{k \in \mathbb{N}, \ell \in \mathbb{N}} \max(1, k)^{-5/2} \max(1, \ell)^{-3/2} G_k H_\ell$ (almost $H^2(\mu)$)

Left: approximation error $\sim K^{-3}$, consistency error $\sim K^{-7/2}$ Right: approximation error $\sim L^{-2}$, consistency error $\sim L^{-3}$ \rightarrow "full" regularization by \mathcal{L}^{-1} !

Estimation of the self-diffusion (1)

Definition
$$D(\gamma) = \int_0^{+\infty} \mathbb{E}(p_t p_0) dt = \langle -\mathcal{L}^{-1} p, p \rangle_{L^2(\mu)}$$

Exponential rate of convergence

Gabriel Stoltz (ENPC/INRIA)

Estimation of the self-diffusion (2)

Scaling $D(\gamma) \sim \gamma^{-1}$ both for small and large frictions¹²

¹²M. Hairer and G. Pavliotis, *J. Stat. Phys.* (2008) Gabriel Stoltz (ENPC/INRIA) Also exponential decay of the error on the spectral gap

Left: Spectral gap as a function of the friction γ Right: Relative error on the spectral gap for several couples K, L. Note that it depends only on K in the overdamped regime

Nonequilibrium Langevin dynamics

Nonequilibrium perturbation of equilibrium dynamics

• Compact position space $\mathcal{D}=(2\pi\mathbb{T})^d$, constant force $|\mathsf{F}|=1$

Langevin dynamics perturbed by a constant force term

$$\left\{ egin{aligned} dq_t &= rac{p_t}{m} dt, \ dp_t &= (-
abla V(q_t) + au F) dt - \gamma rac{p_t}{m} dt + \sqrt{rac{2 \gamma}{eta}} dW_t, \end{aligned}
ight.$$

- Non-zero velocity in the direction F is expected in the steady-state
- *F* does not derive from the gradient of a periodic function
 of course, *F* = −∇*W_F*(*q*) with *W_F*(*q*) = −*F^Tq*
 - ... but W_F is not periodic!

Existence and uniqueness of the steady state

- Generator $\mathcal{L}_{\gamma,\tau} = \mathcal{L}_{ham} + \gamma \mathcal{L}_{FD} + \tau \mathcal{L}_{pert}$ with $\mathcal{L}_{pert} = F \cdot \nabla_{p}$
- Lyapunov functions¹³ $\mathcal{K}_n(q,p) = 1 + |p|^n$ for $n \ge 2$

Exponential convergence to equilibrium

Consider $\tau_* > 0$ and fix $\gamma > 0$. For any $\tau \in [-\tau_*, \tau_*]$, there is a unique invariant probability measure which admits a C^{∞} density $\psi_{\tau}(q, p)$. Moreover, for any $n \ge 2$, there exist $C_n, \lambda_n > 0$ (depending on τ_*) such that, for any $\tau \in [-\tau_*, \tau_*]$ and for any $\varphi \in L^{\infty}_{\mathcal{K}_n}(\mathcal{E})$,

$$\forall t \ge 0, \qquad \left\| \mathrm{e}^{t\mathcal{L}_{\tau}} \varphi - \int_{\mathcal{E}} \varphi \, \psi_{\tau} \right\|_{L^{\infty}_{\mathcal{K}_{n}}} \leqslant C_{n} \mathrm{e}^{-\lambda_{n} t} \, \|\varphi\|_{L^{\infty}_{\mathcal{K}_{n}}}.$$

Non-perturbative result (also non-quantitative unfortunately...)

Gabriel Stoltz (ENPC/INRIA)

¹³M. Hairer and J. Mattingly, *Progr. Probab.* (2011); Meyn and Tweedie (2009); Rey–Bellet (2006)

Perturbative expansion of the steady state

• Perturbative framework: operators considered on $L^2(\mu)$

$$\psi_{ au}=h_{ au}\mu, \qquad h_{ au}\in L^2(\mu)$$
• Fokker–Planck equation $\mathcal{L}^*_{\gamma, au}h_{ au}=0$ with $\int_{\mathcal{E}}h_{ au}\,d\mu=1$

Power expansion of the invariant measure

For
$$| au| < r^{-1}$$
, it holds $h_ au \in L^2(\mu)$ and

$$h_{\tau} = \left(1 + \tau \left(\mathcal{L}_{\text{pert}} \mathcal{L}_{\gamma,0}^{-1}\right)^*\right)^{-1} \mathbf{1} = \left(1 + \sum_{n=1}^{+\infty} (-\tau)^n \left[\left(\mathcal{L}_{\text{pert}} \mathcal{L}_{\gamma,0}^{-1}\right)^*\right]^n\right) \mathbf{1}.$$

• Spectral radius $r = \lim_{n \to +\infty} \left\| \left[\left(\mathcal{L}_{pert} \mathcal{L}_{\gamma,0}^{-1} \right)^* \right]^n \right\|_{\mathcal{B}(\mathcal{L}_0^2(\mu))}^{1/n}$. In fact,

$$\frac{1}{r} \ge \frac{\min(1,\gamma)}{\sqrt{\beta K}}$$

Provides magnitude of admissible perturbations for $L^2(\mu)$ convergence

Gabriel Stoltz (ENPC/INRIA)

Convergence rates

• Suboptimal results by the standard hypocoercive approach in $H^1(\mu)$ \rightarrow nonequilibrium perturbation¹⁴ of direct $L^2(\mu)$ strategy

Uniform rates for nonequilibrium perturbations

There exist $C, \delta_* > 0$ such that, for any $\delta \in [0, \delta^*]$, there is $\overline{\lambda}_{\delta} > 0$ for which, for all $\gamma \in (0, +\infty)$ and all $\tau \in [-\delta \min(\gamma, 1), \delta \min(\gamma, 1)]$,

$$\left\| \mathrm{e}^{t\mathcal{L}^*_{\gamma,\tau}}f - h_\tau \right\|_{L^2(\mu)} \leqslant C \mathrm{e}^{-\overline{\lambda}_\delta \min(\gamma,\gamma^{-1})t} \|f - h_\tau\|_{L^2(\mu)}.$$

Moreover, $\overline{\lambda}_{\delta} = \overline{\lambda}_0 + O(\delta)$.

- As a corollary: lower bounds on the spectral gap of order min (γ, γ^{-1})
- Some elements on hypocoercive entropy estimates

¹⁴E. Bouin, F. Hoffmann, and C. Mouhot, *arXiv preprint* **1605.04121** Gabriel Stoltz (ENPC/INRIA) Geneve,

Numerical results (1)

Predicted spectral gap as a function of the friction γ when V = 0, $\beta = 1$ and m = 1 (solid line) vs. theoretical prediction¹⁵

¹⁵S. M. Kozlov, *Math. Notes* **45**, 360-368 (1989)

Gabriel Stoltz (ENPC/INRIA)

Numerical results (2)

Spectral gap as a function of γ for $\tau = 0, 0.1, 1$ when $V(q) = 1 - \cos(q)$

References

- J. Roussel and G. Stoltz, Spectral methods for the Langevin dynamics and associated error estimates, *arXiv preprint* **1702.04718**
- A. lacobucci, S. Olla and G. Stoltz, Convergence rates for nonequilibrium Langevin dynamics, *arXiv preprint* **1702.03685**
- T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, *Acta Numerica* **25**, 681–880 (2016)