

Convergence and approximation of Langevin-like dynamics

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

In collaboration with A. Iacobucci, B. Leimkuhler, A. Levitt, C. Matthews, S. Olla, S. Redon, J. Roussel, M. Sachs, I. Sekkat, Z. Trstanova, E. Vanden-Eijnden

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")

Outline

- Some elements of statistical physics
- Equilibrium Langevin dynamics
 - Convergence results: a review
 - A focus on the approach by Dolbeault, Mouhot and Schmeiser
 - Various extensions/modifications

- Numerical approximation of Langevin dynamics
 - Splitting schemes
 - Numerical analysis: error estimates on invariant measures

Some elements of statistical physics

General perspective (1)

- Aims of computational statistical physics:
 - numerical microscope
 - computation of average properties, static or dynamic
- Orders of magnitude
 - $\bullet~{\rm distances} \sim 1~{\rm \AA} = 10^{-10}~{\rm m}$
 - ullet energy per particle $\sim k_{\rm B} \, T \sim 4 \times 10^{-21}$ J at room temperature
 - \bullet atomic masses $\sim 10^{-26}~{\rm kg}$
 - time $\sim 10^{-15}$ s
 - number of particles $\sim \mathcal{N}_{A} = 6.02 \times 10^{23}$
- "Standard" simulations
 - 10⁶ particles ["world records": around 10⁹ particles]
 - ullet integration time: (fraction of) ns ["world records": (fraction of) $\mu s]$

General perspective (2)

What is the melting temperature of argon?

MAP5, June 2019 5 / 30

General perspective (3)

"Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?"

Equation of state (pressure/density diagram) for Argon at T = 300 K

General perspective (4)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?

Microscopic description of physical systems: unknowns

• Microstate of a classical system of N particles:

$$(q,p)=(q_1,\ldots,q_N,\ p_1,\ldots,p_N)\in\mathcal{E}$$

Positions q (configuration), momenta p (to be thought of as $M\dot{q}$)

- Here, periodic boundary conditions: $\mathcal{E} = \mathcal{D} \times \mathbb{R}^{3N}$ with $\mathcal{D} = (L\mathbb{T})^{3N}$
- More complicated situations can be considered: molecular constraints defining submanifolds of the phase space
- Hamiltonian $H(q,p) = E_{kin}(p) + V(q)$, where the kinetic energy is

$$E_{\mathrm{kin}}(p) = \frac{1}{2} p^{\mathsf{T}} M^{-1} p, \qquad M = \begin{pmatrix} m_1 \operatorname{Id}_3 & 0 \\ & \ddots & \\ 0 & & m_N \operatorname{Id}_3 \end{pmatrix}$$

Microscopic description: interaction laws

- All the physics is contained in \boldsymbol{V}
 - ideally derived from quantum mechanical computations
 - in practice, empirical potentials for large scale calculations
- An example: Lennard-Jones pair interactions to describe noble gases

$$V(q_1, \dots, q_N) = \sum_{1 \le i < j \le N} v(|q_j - q_i|)$$

$$v(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

$$\operatorname{Argon:} \begin{cases} \sigma = 3.405 \times 10^{-10} \text{ m} \\ \varepsilon/k_{\mathrm{B}} = 119.8 \text{ K} \end{cases}$$

$$\overset{\text{obs}}{\overset{\text{obs}}}{\overset{\text{obs}}{\overset{\text{obs}}{\overset{\text{obs}}}{\overset{\text{obs}}{\overset{\text{obs}}}{\overset{\text{obs}}{\overset{\text{obs}}}}{\overset{\text{obs}}}{\overset{\text{obs}}}{\overset{\text{obs}}}{\overset{\text{obs}}}{\overset{\text{obs}}}{\overset{\text{obs}}}{\overset{\text{obs}}}}}}}}}}}}}}}}}}}}}$$

Average properties

• Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,...)

$$\langle \varphi \rangle_{\mu} = \mathbb{E}_{\mu}(\varphi) = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp)$$

• Examples of observables:

• Pressure
$$\varphi(q, p) = \frac{1}{3|\mathcal{D}|} \sum_{i=1}^{N} \left(\frac{p_i^2}{m_i} - q_i \cdot \nabla_{q_i} V(q) \right)$$

• Kinetic temperature $\varphi(q, p) = \frac{1}{3Nk_{\rm B}} \sum_{i=1}^{N} \frac{p_i^2}{m_i}$

• Canonical ensemble = measure on (q, p) (average energy fixed)

$$\mu_{\mathrm{NVT}}(dq\,dp) = Z_{\mathrm{NVT}}^{-1} \,\mathrm{e}^{-eta H(q,p)} \,dq\,dp, \qquad eta = rac{1}{k_{\mathrm{B}}T}$$

Aims of computational statistical physics

• "Numerical microscope"

- gaining some insight into physical mechanisms at the atomic scale
- From the press release for the Nobel prize in Chemistry 2013 (Karplus/Levitt/Warshel)

Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments.

• Computation of average properties: high dimensional integrals \rightarrow ergodic averages

• Computation of dynamical quantities

- reactive paths, transition kinetics
- transport coefficients (nonequilibrium steady state simulations)

Standard Langevin dynamics

Langevin dynamics (1)

• Positions $q \in \mathcal{D} = (L\mathbb{T})^d$ or \mathbb{R}^d and momenta $p \in \mathbb{R}^d$ \rightarrow phase-space $\mathcal{E} = \mathcal{D} \times \mathbb{R}^d$

• Hamiltonian
$$H(q,p) = V(q) + \frac{1}{2}p^T M^{-1}p$$

Stochastic perturbation of the Hamiltonian dynamics friction $\gamma > 0$

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t \end{cases}$$

• Almost-sure convergence¹ of ergodic averages $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$

¹Kliemann, Ann. Probab. **15**(2), 690-707 (1987)

Langevin dynamics (2)

- Evolution semigroup $\left(\mathrm{e}^{t\mathcal{L}}\varphi\right)(q,p) = \mathbb{E}\left[\varphi(q_t,p_t)\left|(q_0,p_0)=(q,p)\right]\right]$
- \bullet Generator of the dynamics ${\cal L}$

$$rac{d}{dt}\left(\mathbb{E}\left[arphi(q_t, p_t) \left| (q_0, p_0) = (q, p)
ight]
ight) = \mathbb{E}\left[(\mathcal{L}arphi)(q_t, p_t) \left| (q_0, p_0) = (q, p)
ight]
ight.$$

Generator of the Langevin dynamics $\mathcal{L} = \mathcal{L}_{\rm ham} + \gamma \mathcal{L}_{\rm FD}$

$$\mathcal{L}_{ ext{ham}} = \boldsymbol{p}^{\mathsf{T}} \boldsymbol{M}^{-1} \nabla_{\boldsymbol{q}} - \nabla \boldsymbol{V}^{\mathsf{T}} \nabla_{\boldsymbol{p}}, \qquad \mathcal{L}_{ ext{FD}} = - \boldsymbol{p}^{\mathsf{T}} \boldsymbol{M}^{-1} \nabla_{\boldsymbol{p}} + rac{1}{eta} \Delta_{\boldsymbol{p}}.$$

• Existence and uniqueness of the invariant measure characterized by

$$orall arphi \in C_0^\infty(\mathcal{E}), \qquad \int_\mathcal{E} \mathcal{L} arphi \, d\mu = 0$$

• Here, canonical measure

$$\mu(dq \, dp) = Z^{-1} \mathrm{e}^{-eta \mathsf{H}(q,p)} \, dq \, dp =
u(dq) \, \kappa(dp)$$

Fokker–Planck equations

• Evolution of the law $\psi(t,q,p)$ of the process at time $t \ge 0$

$$\frac{d}{dt}\left(\int_{\mathcal{E}}\varphi\,\psi(t)\right) = \int_{\mathcal{E}}(\mathcal{L}\varphi)\,\psi(t)$$

• Fokker–Planck equation (with \mathcal{L}^{\dagger} adjoint of \mathcal{L} on $L^{2}(\mathcal{E})$)

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

• It is convenient to work in $L^2(\mu)$ with $f(t) = \psi(t)/\mu$

• denote the adjoint of ${\mathcal L}$ on $L^2(\mu)$ by ${\mathcal L}^*$

$$\mathcal{L}^* = -\mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$$

- Fokker–Planck equation $\partial_t f = \mathcal{L}^* f$
- Convergence results for $\mathrm{e}^{t\mathcal{L}}$ on $L^2(\mu)$ are very similar to the ones for $\mathrm{e}^{t\mathcal{L}^*}$

Hamiltonian and overdamped limits

- As $\gamma \rightarrow$ 0, the Hamiltonian dynamics is recovered
- Overdamped limit $\gamma \to +\infty$ (or masses going to 0)

$$\begin{aligned} q_{\gamma t} - q_0 &= -\frac{1}{\gamma} \int_0^{\gamma t} \nabla V(q_s) \, ds + \sqrt{\frac{2}{\gamma \beta}} W_{\gamma t} - \frac{1}{\gamma} \left(p_{\gamma t} - p_0 \right) \\ &= -\int_0^t \nabla V(q_{\gamma s}) \, ds + \sqrt{2\beta^{-1}} B_t - \frac{1}{\gamma} \left(p_{\gamma t} - p_0 \right) \end{aligned}$$

which converges to the solution of $dQ_t = -\nabla V(Q_t) dt + \sqrt{2\beta^{-1}} dB_t$

- In both cases, slow convergence to equilibrium
 - it takes time to change energy levels in the Hamiltonian limit²
 - for fixed masses, time has to be rescaled by a factor γ

²Hairer and Pavliotis, *J. Stat. Phys.*, **131**(1), 175-202 (2008) Gabriel Stoltz (ENPC/INRIA)

Ergodicity results (1)

- Almost-sure convergence³ of ergodic averages $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$
- Asymptotic variance of ergodic averages

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E} \left[\widehat{\varphi}_{t}^{2} \right] = 2 \int_{\mathcal{E}} \left(-\mathcal{L}^{-1} \Pi_{0} \varphi \right) \Pi_{0} \varphi \, d\mu$$

where $\Pi_0 \varphi = \varphi - \mathbb{E}_\mu(\varphi)$

• A central limit theorem holds⁴ when the equation has a solution in $L^2(\mu)$

Poisson equation in $L^2(\mu)$

$$-\mathcal{L}\Phi = \Pi_0\varphi$$

• Well-posedness of such equations?

³Kliemann, *Ann. Probab.* **15**(2), 690-707 (1987) ⁴Bhattacharya, *Z. Wahrsch. Verw. Gebiete* **60**, 185–201 (1982) Gabriel Stoltz (ENPC/INRIA)

Ergodicity results (2)

• Invertibility of \mathcal{L} on subsets of $L_0^2(\mu) = \left\{ \varphi \in L^2(\mu) \mid \int_{\mathcal{E}} \varphi \, d\mu = 0 \right\}$?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} \mathrm{e}^{t\mathcal{L}} \, dt$$

- Prove exponential convergence of the semigroup $e^{t\mathcal{L}}$
 - various Banach spaces $E \cap L^2_0(\mu)$
 - Lyapunov techniques⁵ $L^{\infty}_{W}(\mathcal{E}) = \left\{ \varphi \text{ measurable}, \left\| \frac{\varphi}{W} \right\|_{L^{\infty}} < +\infty \right\}$
 - standard hypocoercive⁶ setup $H^1(\mu)$
 - $E = L^2(\mu)$ after hypoelliptic regularization⁷ from $H^1(\mu)$
 - coupling arguments⁸

⁵L. Wu, *Stoch. Proc. Appl.* (2001); Mattingly, Stuart and Higham, *Stoch. Proc. Appl.* (2002); L. Rey-Bellet, *Lect. Notes Math.* (2006); Hairer and Mattingly, *Progr. Probab.* (2011)

⁶Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
 ⁷F. Hérau, *J. Funct. Anal.* **244**(1), 95-118 (2007)

⁸A. Eberle, A. Guillin and R. Zimmer, arXiv preprint **1703.01617** (2017)

Gabriel Stoltz (ENPC/INRIA)

MAP5, June 2019 18 / 30

Direct $L^2(\mu)$ approach: lack of coercivity

- The generator, considered on $L^2(\mu)$, is the sum of...
 - a degenerate symmetric part $\mathcal{L}_{\mathrm{FD}} = -\rho^{T} M^{-1} \nabla_{\rho} + \frac{1}{\beta} \Delta_{\rho}$
 - an antisymmetric part $\mathcal{L}_{ham} = p^T M^{-1} \nabla_q \nabla V^T \nabla_p$
- \bullet Standard strategy for coercive generators: consider φ with average 0 with respect to μ and compute

$$\begin{split} \frac{d}{dt} \left(\left\| \mathrm{e}^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \right) &= \left\langle \mathrm{e}^{t\mathcal{L}} \varphi, \mathcal{L} \mathrm{e}^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)} = \left\langle \mathrm{e}^{t\mathcal{L}} \varphi, \mathcal{L}_{\mathrm{FD}} \mathrm{e}^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)} \\ &= -\frac{1}{\beta} \left\| \nabla_{\rho} \mathrm{e}^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \leqslant 0, \end{split}$$

but no control of $\|\phi\|_{L^2(\mu)}$ by $\|\nabla_p \phi\|_{L^2(\mu)}$ for a Gronwall estimate...

• Change of scalar product in order to use the antisymmetric part

Almost direct $L^2(\mu)$ approach: convergence result

- Assume that the potential V is smooth and 9,10
 - the marginal measure ν satisfies a Poincaré inequality

$$\|\Pi_0\varphi\|_{L^2(\nu)}^2 \leqslant \frac{1}{C_{\nu}} \|\nabla_q\varphi\|_{L^2(\nu)}^2$$

• there exist $c_1 > 0$, $c_2 \in [0, 1)$ and $c_3 > 0$ such that V satisfies $\Delta V \leqslant c_1 + \frac{c_2}{2} |\nabla V|^2$, $|\nabla^2 V| \leqslant c_3 (1 + |\nabla V|)$

There exist C>0 and $\lambda_\gamma>0$ such that, for any $arphi\in L^2_0(\mu)$,

$$\forall t \ge 0, \qquad \left\| \mathrm{e}^{t\mathcal{L}} \varphi \right\|_{L^2(\mu)} \leqslant C \mathrm{e}^{-\lambda_\gamma t} \| \varphi \|_{L^2(\mu)}.$$

with convergence rate of order min (γ, γ^{-1}) : there exists $\overline{\lambda} > 0$ such that

 $\lambda_{\gamma} \geq \overline{\lambda} \min(\gamma, \gamma^{-1}).$

⁹Dolbeault, Mouhot and Schmeiser, *C. R. Math. Acad. Sci. Paris* (2009) ¹⁰Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015) Gabriel Stoltz (ENPC/INRIA) MAP5, June

Sketch of proof

• Modified square norm $\mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|^2 - \varepsilon \langle A\varphi, \varphi \rangle$ for $\varepsilon \in (-1, 1)$ and

$$A = \left(1 + (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^* (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})\right)^{-1} (\mathcal{L}_{\mathrm{ham}} \Pi_{\rho})^*, \qquad \Pi_{\rho} \varphi = \int_{\mathbb{R}^D} \varphi \, d\kappa$$

• $A = \prod_p A(1 - \prod_p)$ and $\mathcal{L}_{ham}A$ are bounded so that $\mathcal{H} \sim \| \cdot \|_{L^2(\mu)}^2$

Coercivity in the scalar product $\langle \langle \cdot, \cdot \rangle \rangle$ induced by \mathcal{H}

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \widetilde{\lambda}_{\gamma} \|\varphi\|^2$$

• Idea: control of $||(1 - \Pi_p)\varphi||^2$ by $\langle -\mathcal{L}_{FD}\varphi, \varphi \rangle$ (Poincaré); for $||\Pi_p\varphi||^2$,

$$\|\mathcal{L}_{\mathrm{ham}}\Pi_{\rho}\varphi\|^{2} \geqslant rac{DC_{\nu}}{eta m}\|\Pi_{\rho}\varphi\|^{2}, \qquad \mathrm{hence} \ \mathcal{A}\mathcal{L}_{\mathrm{ham}}\Pi_{\rho} \geqslant \lambda_{\mathrm{ham}}\Pi_{
ho}$$

• Gronwall inequality $\frac{d}{dt} \left(\mathcal{H}\left[e^{t\mathcal{L}} \varphi \right] \right) = -\mathscr{D}\left[e^{t\mathcal{L}} \varphi \right] \leqslant -\frac{2\lambda_{\gamma}}{1+\varepsilon} \mathcal{H}\left[e^{t\mathcal{L}} \varphi \right]$

Extensions and modifications

- General kinetic energy function U(p) in the Langevin dynamics
 - The generator \mathcal{L} may not be hypoelliptic... (even jump processes)
 - Convergence using Lyapunov¹¹ or hypocoercive¹² techniques
- Nonequilibrium Langevin dynamics
 - Invariant measure not known...
 - Perturbative results,¹³ with some uniformity on the range of perturbations¹⁴
 - Temperature accelerated molecular dynamics¹⁵

- ¹⁴A. Iacobucci, S. Olla and G. Stoltz, Ann. Math. Quebec (2019)
- ¹⁵G. Stoltz and E. Vanden-Eijnden, *Nonlinearity* (2018)

¹¹S. Redon, G. Stoltz and Z. Trstanova, J. Stat. Phys. (2016)

¹²G. Stoltz and Z. Trstanova, *SIAM MMS* (2018)

¹³E. Bouin, F. Hoffmann, and C. Mouhot, *SIAM J. Math. Anal.* (2017)

Direct L^2 hypocoercivity for modified Langevin (2)

- Spectral discretization of generator of Langevin dynamics
 - Approximate solutions of Poisson equation for control variates¹⁶
 - Bounds on convergence rates as a function of the basis size¹⁷
- Adaptive Langevin dynamics¹⁸ for mini-batching in large scale Bayesian inference

• Current lines of work:

- An even more direct approach avoiding the change of scalar product? (with Antoine Levitt, Inria/CERMICS)
- Quantitative bounds for atom chains (Very long term goal...)
- Non-perturbative approach for nonequilibrium dynamics

¹⁶J. Roussel and G. Stoltz, *SIAM MMS* (2019)

¹⁷J. Roussel and G. Stoltz, *M2AN* (2018)

¹⁸Upcoming work with B. Leimkuhler and M. Sachs; currently I. Sekkat

Numerical approximation of Langevin dynamics

Practical computation of average properties

• Numerical scheme = Markov chain characterized by evolution operator

$$\mathsf{P}_{\Delta t} arphi(q,p) = \mathbb{E}\Big(arphi\left(q^{n+1},p^{n+1}
ight) \left| (q^n,p^n) = (q,p)
ight)$$

• Discretization of the Langevin dynamics: splitting strategy

$$A = M^{-1}p \cdot \nabla_q, \qquad B = -\nabla V(q) \cdot \nabla_p, \qquad C = -M^{-1}p \cdot \nabla_p + \frac{1}{\beta}\Delta_p$$

- First order splitting schemes: $P_{\Delta t}^{ZYX} = e^{\Delta t Z} e^{\Delta t Y} e^{\Delta t X} \simeq e^{\Delta t \mathcal{L}}$
- Example: $P_{\Delta t}^{B,A,\gamma C}$ corresponds to (with $\alpha_{\Delta t} = \exp(-\gamma M^{-1} \Delta t))$

$$\begin{cases} \widetilde{p}^{n+1} = p^n - \Delta t \,\nabla V(q^n), \\ q^{n+1} = q^n + \Delta t \,M^{-1} \widetilde{p}^{n+1}, \\ p^{n+1} = \alpha_{\Delta t} \widetilde{p}^{n+1} + \sqrt{\frac{1 - \alpha_{\Delta t}^2}{\beta}} M \,G^n, \end{cases}$$
(1)

where G^n are i.i.d. standard Gaussian random variables

Practical computation of average properties (2)

- Second order splitting $P_{\Delta t}^{ZYXYZ} = e^{\Delta t Z/2} e^{\Delta t Y/2} e^{\Delta t X} e^{\Delta t Y/2} e^{\Delta t Z/2}$
- Example: $P_{\Delta t}^{\gamma C,B,A,B,\gamma C}$ (Verlet in the middle)

$$\begin{cases} \widetilde{p}^{n+1/2} = \alpha_{\Delta t/2} p^n + \sqrt{\frac{1 - \alpha_{\Delta t}}{\beta}} M G^n, \\ p^{n+1/2} = \widetilde{p}^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^n), \\ q^{n+1} = q^n + \Delta t M^{-1} p^{n+1/2}, \\ \widetilde{p}^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}), \\ p^{n+1} = \alpha_{\Delta t/2} \widetilde{p}^{n+1} + \sqrt{\frac{1 - \alpha_{\Delta t}}{\beta}} M G^{n+1/2}, \end{cases}$$

• Other category: Geometric Langevin algorithms, e.g. $P_{\Delta t}^{\gamma C,A,B,A}$

Error estimates on the computation of average properties

• The ergodicity of numerical schemes can be proved (bounded position domain):

$$\frac{1}{N_{\text{iter}}} \sum_{n=1}^{N_{\text{iter}}} \varphi(q^n, p^n) \xrightarrow[N_{\text{iter}} \to +\infty]{} \int \varphi(q, p) \, d\mu_{\gamma, \Delta t}(q, p)$$

• Statistical errors vs. systematic errors (bias)¹⁹

Systematic error estimates: $\boldsymbol{\alpha}$ order of the splitting scheme

$$\int_{\mathcal{E}} \varphi(q, p) \, \mu_{\gamma, \Delta t}(dq \, dp) = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp) \\ + \, \Delta t^{\alpha} \int_{\mathcal{E}} \varphi(q, p) f_{\alpha, \gamma}(q, p) \, \mu(dq \, dp) + \mathrm{O}(\Delta t^{\alpha+1})$$

• Correction function $f_{\alpha,\gamma}$ solution of an appropriate Poisson equation

$$\mathcal{L}^* f_{\alpha,\gamma} = g_{\gamma}$$

27 / 30

where g_{γ} depends on the numerical scheme (adjoints taken on $L^2(\mu)$)

¹⁹B. Leimkuhler, Ch. Matthews and G. Stoltz, *IMA J. Numer. Anal.* (2016) Gabriel Stoltz (ENPC/INRIA) MAP5, June 2019 Proof for the first-order scheme $P_{\Delta t}^{\gamma C,B,A}(1)$

• By definition of the invariant measure, $\int_{\mathcal{E}} P_{\Delta t} \phi \, d\mu_{\gamma,\Delta t} = \int_{\mathcal{E}} \phi \, d\mu_{\gamma,\Delta t}$, so

$$\int_{\mathcal{E}} \left[\left(\frac{\mathrm{Id}_d - P_{\Delta t}}{\Delta t} \right) \phi \right] d\mu_{\gamma, \Delta t} = 0$$

• In view of the BCH formula $e^{\Delta t A_3} e^{\Delta t A_2} e^{\Delta t A_1} = e^{\Delta t A}$ with

$$\mathcal{A} = A_1 + A_2 + A_3 + \frac{\Delta t}{2} ([A_3, A_1 + A_2] + [A_2, A_1]) + \dots,$$

it holds
$$P_{\Delta t}^{\gamma C,B,A} = \mathrm{Id}_d + \Delta t \mathcal{L} + \frac{\Delta t^2}{2} \left(\mathcal{L}^2 + S_1 \right) + \Delta t^3 R_{1,\Delta t}$$
 with

$$S_1 = [C,A+B] + [B,A], \qquad R_{1,\Delta t} = rac{1}{2} \int_0^1 (1- heta)^2 \mathcal{R}_{ heta\Delta t} \, d heta,$$

Proof for the first-order scheme $P_{\Delta t}^{\gamma C,B,A}$ (2)

• The correction function $f_{1,\gamma}$ is chosen so that $\int_{\mathcal{E}} \left[\left(\frac{\mathrm{Id}_d - P_{\Delta t}^{\gamma C, B, A}}{\Delta t} \right) \phi \right] (1 + \Delta t f_{1,\gamma}) \, d\mu = \mathrm{O}(\Delta t^2)$

This requirement can be rewritten as

$$0 = \int_{\mathcal{E}} \left(\frac{1}{2} S_1 \phi + (\mathcal{L}\phi) f_{1,\gamma} \right) d\mu = \int_{\mathcal{E}} \varphi \left[\frac{1}{2} S_1^* \mathbf{1} + \mathcal{L}^* f_{1,\gamma} \right] d\mu,$$

which suggests to choose $\mathcal{L}^* f_{1,\gamma} = -\frac{1}{2} S_1^* \mathbf{1}$ (well posed equation)

- Replace ϕ by $\left(\frac{\mathrm{Id}_d P_{\Delta t}^{\gamma C, B, A}}{\Delta t}\right)^{-1} \varphi$? No control on the derivatives...
- Rely on the "nice" properties of the continuous dynamics, *i.e.* functional estimates²⁰ on \mathcal{L}^{-1} to use pseudo-inverses

$$Q_{1,\Delta t} = -\mathcal{L}^{-1} + \frac{\Delta t}{2} (\mathrm{Id}_d + \mathcal{L}^{-1} S_1 \mathcal{L}^{-1})$$

29 / 30

²⁰D. Talay, Stoch. Proc. Appl. (2002); M. Kopec, arxiv 1310.2599 (2013) Gabriel Stoltz (ENPC/INRIA) MAP5, June 2019

Some start-up references

- Computational Statistical Physics
 - D. Frenkel and B. Smit, Understanding Molecular Simulation, From Algorithms to Applications (Academic Press, 2002)
 - M. Tuckerman, *Statistical Mechanics: Theory and Molecular Simulation* (Oxford, 2010)
 - M. P. Allen and D. J. Tildesley, *Computer Simulation of Liquids* (Oxford University Press, 1987)
 - D. C. Rapaport, *The Art of Molecular Dynamics Simulations* (Cambridge University Press, 1995)
- Sampling the canonical measure
 - L. Rey-Bellet, Ergodic properties of Markov processes, *Lecture Notes in Mathematics*, **1881** 1–39 (2006)
 - T. Lelièvre, M. Rousset and G. Stoltz, *Free Energy Computations: A Mathematical Perspective* (Imperial College Press, 2010)
 - B. Leimkuhler and C. Matthews, *Molecular Dynamics: With Deterministic and Stochastic Numerical Methods* (Springer, 2015).
 - T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, *Acta Numerica* **25**, 681-880 (2016)