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Outline

e Some elements of statistical physics

e Equilibrium Langevin dynamics
o Convergence results: a review
@ A focus on the approach by Dolbeault, Mouhot and Schmeiser

@ Various extensions/modifications

e Numerical approximation of Langevin dynamics
@ Splitting schemes

@ Numerical analysis: error estimates on invariant measures
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Some elements of statistical
physics
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General perspective (1)

e Aims of computational statistical physics:
@ numerical microscope

@ computation of average properties, static or dynamic

e Orders of magnitude
o distances ~1 A=10"1%m
@ energy per particle ~ kg T ~ 4 x 10721 J at room temperature
@ atomic masses ~ 10720 kg
e time ~ 10715 s
@ number of particles ~ Ny = 6.02 x 10?3
e “Standard” simulations
@ 10° particles [“world records”: around 10° particles]
@ integration time: (fraction of) ns [“world records”: (fraction of) us]
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General perspective (2)

What is the melting temperature of argon?
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(a) Solid argon (low temperature)
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(b) Liquid argon (high temperature)
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General perspective (3)

“Given the structure and the laws of interaction of the particles, what are

the macroscopic properties of the matter composed of these particles?”
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Equation of state (pressure/density diagram) for Argon at T = 300 K
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General perspective (4)

What is the structure of the protein? What are its typical conformations,
and what are the transition pathways from one conformation to another?

Gabriel Stoltz (ENPC/INRIA) MAPS5, June 2019  7/30



Microscopic description of physical systems: unknowns

e Microstate of a classical system of N particles:

(qap):(qlv"'>q/\/a P1>--'aPN)65

Positions g (configuration), momenta p (to be thought of as Mq)
e Here, periodic boundary conditions: £ = D x R3N with D = (LT)*N

e More complicated situations can be considered: molecular constraints
defining submanifolds of the phase space

e Hamiltonian H(q, p) = Exin(p) + V(q), where the kinetic energy is

mq Id3 0

0 my Id3
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Microscopic description: interaction laws

e All the physics is contained in V
@ ideally derived from quantum mechanical computations
@ in practice, empirical potentials for large scale calculations

e An example: Lennard-Jones pair interactions to describe noble gases

Via )= 3 vlg=al) ~

1<i<j<N

o
T

o
o

0-e[(2)- ()]

{a =3405x 107 m W
Argon: -

o
o

Potential energy

o
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Reduced interatomic distance
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Average properties

e Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,. .. )

(Pl =Eu(p) = /gso(q,p)u(dq dp)

N 2
1 <
P Pressure SD(q’ p) = — Z (pl - ql vq, V(q)>
3|D] = \'mi M
1 2
@ Kinetic temperature go(q, P) = 3Nk Z B
B mj

e Canonical ensemble = measure on (g, p) (average energy fixed)

_ _ 1
pnvr(dg dp) = Zgy e PHP) dg dp, p= ks T

Gabriel Stoltz (ENPC/INRIA) MAPS, June 2019

10/30



Aims of computational statistical physics

e “Numerical microscope”

@ gaining some insight into physical mechanisms at the atomic scale
@ From the press release for the Nobel prize in Chemistry 2013
(Karplus/Levitt/Warshel)

Today the computer is just as important a tool for chemists as
the test tube. Simulations are so realistic that they predict the
outcome of traditional experiments.

e Computation of average properties: high dimensional integrals
— ergodic averages

e Computation of dynamical quantities
@ reactive paths, transition kinetics

@ transport coefficients (nonequilibrium steady state simulations)
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Standard Langevin dynamics
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Langevin dynamics (1)
e Positions g € D = (LT)? or RY and momenta p € R
— phase-space £ =D x R¢

1
e Hamiltonian H(q,p) = V(q) + EpTM_lp

Stochastic perturbation of the Hamiltonian dynamics friction v > 0

dge = M~ 'p; dt

2
dpe = —VV(qr) dt—yMp, dt + | /% dwv,

.1/t
e Almost-sure convergence! of ergodic averages $; = t/ ©(gs, ps) ds
0

'Kliemann, Ann. Probab. 15(2), 690-707 (1987)
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Langevin dynamics (2)

e Evolution semigroup (emap) (g,p) =E [gp(qt, pt)

(qo, po) = (g, P)}

e Generator of the dynamics £

% (E [@(Qt; pt)

(q0. P0) = (0.P)] ) = E [ (L) (. )

(90, Po) = (g, p)]

Generator of the Langevin dynamics £ = Lyam + YLD
L
B

e Existence and uniqueness of the invariant measure characterized by

Vo e G5(€), /E(pd,u:O
£

e Here, canonical measure

Lham =p MV, —~VV'V,  Lrp=-p MV, +2A,

p(dq dp) = Z~ e PH(9P) dg dp = v/(dq) r(dp)
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Fokker—Planck equations

e Evolution of the law ¥ (t, g, p) of the process at time t > 0

& (Lovn) = [@ow

e Fokker—Planck equation (with £ adjoint of £ on L2(£))
Oep = LTy

e It is convenient to work in L%(z) with f(t) = ¥(t)/u
e denote the adjoint of £ on L?(u) by £*

L= _Eham + 'VEFD
o Fokker—Planck equation 0;f = L*f

e Convergence results for et£ on L2 are very similar to the ones for et£”
g H y
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Hamiltonian and overdamped limits
e As v — 0, the Hamiltonian dynamics is recovered

e Overdamped limit v — 400 (or masses going to 0)

q go = 1 WtVV(q)ds—i— 2 w. 1(p po)
—qo=—— — - = — po
i v Jo ’ S R At

t
1
= _/ vv(q'ys) ds + v zﬁ_lBt - ; (pﬁ/t - PO)
0

which converges to the solution of dQ; = —VV/(Q;) dt + /231 dB;

e In both cases, slow convergence to equilibrium
e it takes time to change energy levels in the Hamiltonian limit?

o for fixed masses, time has to be rescaled by a factor ~y

?Hairer and Pavliotis, J. Stat. Phys., 131(1), 175-202 (2008)
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Ergodicity results (1)

.1t
e Almost-sure convergence® of ergodic averages @; = t/ ©(gs, ps) ds
0

e Asymptotic variance of ergodic averages

o2 = lim tE[3] =2 /g (=L o) Moy d

t—-+00

where Moy = ¢ — Eu(p)

e A central limit theorem holds* when the equation has a solution in L2(1)

Poisson equation in L2(u)

—LO =Tlgp

e Well-posedness of such equations?

3Kliemann, Ann. Probab. 15(2), 690-707 (1987)
*Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185-201 (1982)
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Ergodicity results (2)

o Invertibility of £ on subsets of L3() = {gp € L%(p)

/godu—O}?

&
—+o00

—L£1 :/ etf dt ’
0

L

e Prove exponential convergence of the semigroup e*
e various Banach spaces E N L3(1)

@ Lyapunov techniques® L{y(€) = {gomeasumble7

] )
— <
‘ Wl e e
e standard hypocoercive® setup H*(u)
o E = L2(u) after hypoelliptic regularization” from H(u)
e coupling arguments®

®L. Wu, Stoch. Proc. Appl. (2001); Mattingly, Stuart and Higham, Stoch. Proc.
Appl. (2002); L. Rey-Bellet, Lect. Notes Math. (2006); Hairer and Mattingly, Progr.
Probab. (2011)

®Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)

"F. Hérau, J. Funct. Anal. 244(1), 95-118 (2007)

8A. Eberle, A. Guillin and R. Zimmer, arXiv preprint 1703.01617 (2017)
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Direct L?(11) approach: lack of coercivity

e The generator, considered on L?(y), is the sum of...
1
@ a degenerate symmetric part Lgp = —pTMflvp + A,

@ an antisymmetric part Lpam = pTl\/l_IVq - VVTVP

e Standard strategy for coercive generators: consider ¢ with average 0
with respect to p and compute

d 2
= (Hew‘pum(u)) _ <etﬁw’£etL>L2(“) _ <et£s0,£f~pew>L2(#)

1 L 2
= 3 [V e’ 90HL2(M) <0,
but no control of ||¢[2(,) by [|[Vpd|l12(y for a Gronwall estimate...

e Change of scalar product in order to use the antisymmetric part
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Almost direct L2(u1) approach: convergence result

e Assume that the potential V is smooth and?1°
@ the marginal measure v satisfies a Poincaré inequality

1
IMopllZ2(,,) < 6||Vq</?||f2(u)
@ there exist ¢c; > 0, ¢ € [0,1) and c3 > 0 such that V satisfies
AV <+ %|VV|2, IV2V| < e (1+ [VV))
There exist C > 0 and A, > 0 such that, for any ¢ € L3(u),

Ve 0, [l p0, < Ce l0llig)-

with convergence rate of order min(~y,y~1): there exists A > 0 such that

)\’Y = Xmin(’% 7_1)'

°Dolbeault, Mouhot and Schmeiser, C. R. Math. Acad. Sci. Paris (2009)
°Dolbeault, Mouhot and Schmeiser, Trans. AMS, 367, 3807-3828 (2015)
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Sketch of proof

1
e Modified square norm H[p] = EH(P”2 —e(Ap,p) fore € (=1,1) and
* -1 *
A= (14 (LhamMp) (Lramp) ) (Lnamlp)" ﬂpwz/Dgod/i
R

e A=T1,A(1 —Mp) and LyamA are bounded so that H ~ || - HL2 ()

Coercivity in the scalar product ((-,-)) induced by H J

o] == (Lo, ) = Myl

e Idea: control of ||(1 — M,)p||? by (—Lrpep, @) (Poincaré); for ||Mypl|?,

P<10H27 hence Aﬁhamnp > )\hamnp

DC,
||£hamnp<)0||2 > IBITIII

2>\7
1+5H[ ]
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Extensions and modifications

e General kinetic energy function U(p) in the Langevin dynamics
@ The generator £ may not be hypoelliptic... (even jump processes)
e Convergence using Lyapunov!! or hypocoercivel? techniques

e Nonequilibrium Langevin dynamics
@ Invariant measure not known...
@ Perturbative results,'3 with some uniformity on the range of

perturbations!#

o Temperature accelerated molecular dynamics'®

S Redon, G. Stoltz and Z. Trstanova, J. Stat. Phys. (2016)

2G. Stoltz and Z. Trstanova, SIAM MMS (2018)

13E. Bouin, F. Hoffmann, and C. Mouhot, SIAM J. Math. Anal. (2017)

A, lacobucci, S. Olla and G. Stoltz, Ann. Math. Quebec (2019)

13G. Stoltz and E. Vanden-Eijnden, Nonlinearity (2018)
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Direct L? hypocoercivity for modified Langevin (2)

e Spectral discretization of generator of Langevin dynamics
@ Approximate solutions of Poisson equation for control variates'®

@ Bounds on convergence rates as a function of the basis sizel”

e Adaptive Langevin dynamics'® for mini-batching in large scale Bayesian
inference

e Current lines of work:

@ An even more direct approach avoiding the change of scalar product?
(with Antoine Levitt, Inria/CERMICS)

@ Quantitative bounds for atom chains (Very long term goal...)

@ Non-perturbative approach for nonequilibrium dynamics

16). Roussel and G. Stoltz, SIAM MMS (2019)

7J. Roussel and G. Stoltz, M2AN (2018)

18Upcoming work with B. Leimkuhler and M. Sachs; currently |. Sekkat
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Numerical approximation of
Langevin dynamics
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Practical computation of average properties

e Numerical scheme = Markov chain characterized by evolution operator

Paeo(q, p) = E(s@ (", p") )(q”, p") = (a, p))

e Discretization of the Langevin dynamics: splitting strategy
A=M1p.v,, B=-VV(q)-V,, C=-M1p.V,+

e First order splitting schemes: PZ1X = eAtZeAtY (AX ~ oALL
e Example: PAB’tA’“’C corresponds to (with aa; = exp(—yM~1At))

5n+1 — pn _ AtVV(q"),
qn+1 — qn+AtM715n+1’

2
pn+1 — aAtﬁnJrl + / 1 _ﬁaAt M Gn,

where G" are i.i.d. standard Gaussian random variables
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Practical computation of average properties (2)
e Second order splitting PZYXYZ = eAtZ/2eAtY 2eAtX oALY 260t /2

'yCBAB,'yC (

e Example: P, Verlet in the middle)

1-— an
P2 = apgpop” + | —

B
. At
n+1/2 _ p +1/2 VV( )

MG",

p
qn+1 _ qn—l-AtM lpn+1/2

5n+1 _ pn+1/2 VV( n+1)

pn+1 _ aAt/25n+1 + /1 —506At M Gn+1/2,

e Other category: Geometric Langevin algorithms, e.g. PZ?’A’B’A
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Error estimates on the computation of average properties

e The ergodicity of numerical schemes can be proved (bounded position

domain): N
1ter

> e(q"p") ——— /w(q, p) diiy,a¢(q, P)

Niter‘>+oo
n=1

1
Niter

e Statistical errors vs. systematic errors (bias)!®

Systematic error estimates: « order of the splitting scheme

/gw(q,p)u%m(dqdp)z/gw(q,p)u(dqdp)
+Ata/g@(qvp)fa,’y(qvp)ﬂ(dqdp)+O(Ata+1)

e Correction function f, - solution of an appropriate Poisson equation
Loy = &

where g, depends on the numerical scheme (adjoints taken on L2(p))

19B. Leimkuhler, Ch. Matthews and G. Stoltz, IMA J. Numer. Anal. (2016)
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Proof for the first-order scheme PXf’B’A (1)

e By definition of the invariant measure, / Patd dpy, ar = / ¢ dpiy Aty SO
£ £

Idg — Pa
JLC5 ) o] oo =

e In view of the BCH formula e2tAseltAzoAtAr — (ALA yith

At
A=A1+A2+A3+7<[A3,A1+A2]+[A2,A1]) + ...,

At?
it holds PS8 = 1dy + AtL + — (L£2+51) + ARy ar with

1 1
S =[C,A+B]+[B,A, Riac= 2/ (1= 0)*Rya: 6,
0
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Proof for the first-order scheme PXf’B’A (2)

e The correction function f; - is chosen so that

/ Idg — PRSP 5
p At

This requirement can be rewritten as
1 1 * *
£ £

1
which suggests to choose L*f; , = —ESf (well posed equation)

(1+ Atfi,) du = O(AL?)

vC,B,A
Idg — Pp;

e Replace ¢ by < At

-1

) ©? No control on the derivatives...

e Rely on the “nice” properties of the continuous dynamics, i.e. functional
estimates®® on £7! to use pseudo-inverses

1 At
Qiat=—L L b3

2D, Talay, Stoch. Proc. Appl. (2002); M. Kopec, arxiv 1310.2599 (2013)
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Some start-up references

e Computational Statistical Physics

@ D. Frenkel and B. Smit, Understanding Molecular Simulation, From Algorithms to
Applications (Academic Press, 2002)

@ M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford,
2010)

@ M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University
Press, 1987)

@ D. C. Rapaport, The Art of Molecular Dynamics Simulations (Cambridge
University Press, 1995)

e Sampling the canonical measure

@ L. Rey-Bellet, Ergodic properties of Markov processes, Lecture Notes in
Mathematics, 1881 1-39 (2006)

@ T. Lelievre, M. Rousset and G. Stoltz, Free Energy Computations: A
Mathematical Perspective (Imperial College Press, 2010)

@ B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and
Stochastic Numerical Methods (Springer, 2015).

@ T. Lelievre and G. Stoltz, Partial differential equations and stochastic methods in
molecular dynamics, Acta Numerica 25, 681-8380 (2016)
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