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Overdamped Langevin dynamics
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Computing average properties

Aim: Sample target measure µ(dq) = Z−1
µ e−βV (q) dq on Q = Td

(assume Zµ = 1 in the remainder; configuration space = torus)

Main issue

Computation of high-dimensional integrals... Ergodic averages

Eµ(ϕ) = lim
t→+∞

ϕ̂t, ϕ̂t =
1

t

∫ t

0
ϕ(qs) ds

• One possible choice: overdamped Langevin dynamics
= Stochastic perturbation of gradient dynamics

dqt = −∇V (qt) dt+

√
2

β
dWt

• Other choices include Metropolis-like schemes
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Properties of the standard overdamped Langevin dynamics

Generator L = −∇V (q) · ∇q +
1

β
∆q

elliptic generator hence irreducibility and ergodicity
adjoints on L2(Q) versus L2(µ)∫

Q
(Lf) g =

∫
Q
f
(
L†g

)
,

∫
Q

(Lf) g dµ =

∫
Q
f (L?g) dµ

flat adjoint L†ϕ = divq

(
(∇V )ϕ+

1

β
∇qϕ

)
self-adjoint operator on L2(µ), hence reversibility

L = − 1

β
∇?q∇q = − 1

β

d∑
i=1

∂?qi∂qi = L?, ∂?qi = −∂qi + β∂qiV

Invariance of canonical measure encoded as L†µ or L?1 = 0

d

dt
[Eµ (ϕ(Xt))] =

d

dt

(∫
Q

etLϕdµ

)
=

∫
Q
L
(
etLϕ

)
dµ = 0
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Overdamped Langevin dynamics with multiplicative noise

Diffusion matrix D(q) ∈ Rd (symmetric positive, not necessarily definite)

dqt =

(
−D(qt)∇V (qt) +

1

β
divD(qt)

)
dt+

√
2

β
D1/2(qt) dWt

with divD the vector whose i-th component is the divergence of the i-th
column of the matrix D = [D1, . . . ,Dd]

Two possible motivations:

Compensate for anisotropic potential energy landscapes

Reduce metastability

Generator still self-adjoint, invariant probability measure µ

LD = − 1

β
∇?D∇ = − 1

β

d∑
i,j=1

∂?qjDi,j∂qi
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Behavior of overdamped Langevin dynamics for various D
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Convergence of overdamped Langevin dynamics

Various measures of convergence, for instance

asymptotic variance in central limit theorem

convergence of the law at time t to the stationary distribution

average exit time of a metastable well

Here: second option, in a L2(µ) framework

Law at time t written as ψ(t) = f(t)µ, so that f(t) = etLDf(0)

Eψ(0) (ϕ(Xt)) =

∫
Q
ϕf(t) dµ =

∫
Q

etLDϕf(0) dµ

Typical convergence result: exponential convergence rate for etLD

‖f(t)− 1‖L2(µ) =
∥∥etLD (f(0)− 1)

∥∥
L2(µ)

6 e−Λ(D)t/β‖f(0)− 1‖L2(µ)

Implies bounds on the asymptotic variance
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Obtaining an exponential rate of convergence

Spectral gap on H1
0 (µ) =

{
u ∈ H1(µ)

∣∣∣∣ ∫
Td
u(q)µ(q) dq = 0

}

Λ(D) = inf
u∈H1

0 (µ)\{0}

∫
Td
∇u(q)>D(q)∇u(q)µ(q) dq∫

Td
u(q)2µ(q) dq

Desired inequality follows from a Gronwall estimate and

d

dt

(
1

2

∥∥etLDϕ
∥∥2

L2(µ)

)
=
〈
etLDϕ,LD etLDϕ

〉
L2(µ)

6 −Λ(D)

β

∥∥etLDϕ
∥∥2

L2(µ)

Criterion to choose D
Maximize the spectral gap Λ(D)

Possible choices:

D =
(
∇2V

)−1
for strongly convex potentials [Girolami/Calderhead 2011]

D = eβV [Roberts/Stramer 2002, Ghimenti/van Wijland/... 2023]
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Characterization of the

optimal diffusion
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Need for normalization

Motivation: Λ(αD) = αΛ(D) and large D require smaller timesteps

L∞ bounds trivial (saturate the constraint)

Chosen normalization: LpV (Td,Ma,b) (note Q = Td), with associated
norm

‖D‖LpV =

(∫
Td
|D(q)|pF e−βpV (q) dq

)1/p

and requirement e−βVD ∈Ma,b with (for a, b > 0)

Ma,b =

{
M ∈ S+

d

∣∣∣∣ ∀ξ ∈ Rd, a|ξ|2 6 ξ>Mξ 6
1

b
|ξ|2
}

Matrix norm compatible with order on symmetric positive matrices

Maximization performed on

Da,b
p =

{
D ∈ L∞V (Td,Ma,b)

∣∣∣∣ ∫
Td
|D(q)|pF e−βpV (q) dq 6 1

}
Gabriel Stoltz (ENPC/INRIA) Birmingham, Oct. 2024 11 / 25



Well posedness of the maximization problem

Existence of maximizer for p ∈ [1,+∞): For any a ∈ [0, |Idd|−1
F ]

and b > 0 such that ab 6 1, there exists D?p ∈ Da,b
p such that

Λ(D?p) = sup
D∈Da,bp

Λ(D)

Moreover, for any open set Ω ⊂ Td, there exists q ∈ Ω such
that D?p(q) 6= 0.

Main arguments/properties:

Λ is bounded (Poincaré inequality)

Λ is concave (sup of linear functions in D)

Λ is upper semicontinuous for the weak-* L∞V topology (b > 0)

the set Da,b
p is compact for the weak-* L∞V topology
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Characterization of positive optimal diffusions (1/2)

Uniformly positive optimal diffusions D?p lead to degenerate eigenvalues

Precise statement:

Frobenius norm |·|F, Lebesgue exponent p ∈ (1,+∞) and a = 0

assume that there exists a maximizer D?p of Λ on Da,b
p ,

with D?(q) e−V (q) 6 1
b+

Idd for b+ > b

additionally D?p ∈ C0(T,R+) when d = 1

If D?p > cIdd, then Λ(D?p) is a degenerate eigenvalue of −βLD?p .

Idea of proof: Proceed by contradiction and assume that the eigenvalue is simple.
From the Euler–Lagrange equation (regular perturbation theory)∫

Td
δD(q) :

(
∇uD?p ⊗∇uD?p

)
µ(q) dq = pγ

∫
Td

∣∣D?p(q)∣∣p−2

F
D?p(q) : δD(q) e−βpV (q) dq,

so that D?p = αp
∣∣D?p∣∣2−pF

eβ(p−1)V∇uD?p ⊗∇uD?p , contradicting D?p(q) > cIdd
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Characterization of positive optimal diffusions (2/2)

Difficulty: Cannot directly rely on Euler–Lagrange equation

Strategy: max
D∈Da,bp

fα = regularize using softmax and pass to the limit1

fα(D) =
TrL2(µ)(LDeαLD)

TrL2(µ)(e
αLD)− 1

=

N2λ2 +
∑
i>3

Niλie
α(λi−λ2)

N2 +
∑
i>3

Nie
α(λi−λ2)

−−−−−→
α→+∞

λ2

Can write Euler–Lagrange condition for fα using spectral calculus

D?p,α = γp,α
∣∣D?p,α∣∣2−pF

eβ(p−1)V
∑
k>2

[
Gα(1 + αλk,α)− αHα

G2
α

eαλk,α
]
∇ek,α ⊗∇ek,α

with Gα =
∑
j>2

Nje
αλj,α , Hα =

∑
j>2

Njλje
αλj,α ; limit depends on lim

α→+∞
α(λj,α − λ2,α)

Typical example: d = 1, degeneracy of order 2 of first non zero eigenvalue

D?p,∞(q) = γ̃p,∞eβV (q)

(∣∣e′2,∞(q)
∣∣2 + eη(1 + eη + η)

1 + eη − ηeη
∣∣e′3,∞(q)

∣∣2)1/(p−1)

Second term vanishes for a value η? ≈ 1.27
1Thank you Danny Perez for suggesting this!!
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Approximation by homogenization theory

Diffusive time rescaling εqt/ε2 ⇒ D
1/2
Bt for effective diffusion D

Homogenized limit: for fixed D,

decrease the period: D#,k(q) = D(kq) and V#,k(q) = V (kq)

associated spectral gap

Λ#,k(D) = min
u∈H1(Td)\{0}


∫
Td
∇u>D#,k∇u e−βV#,k∫

Td
u2 e−βV#,k

∣∣∣∣∣∣∣∣
∫
Td
u e−βV#,k = 0


converges to Λhom(D), spectral gap of −LD on L2(Td) with (1D case)

D =

∫
Td
D(q)

(
1− w′D(q)2

)
µ(q) dq,

[
e−βVD(1 + w′D)

]′
= 0

Commutation optimization/homogenization: maximize Λhom(D)

D?hom(q) = eβV (q)
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Numerical results
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Numerical discretization

Maximization of the spectral gap

D piecewise constant, on uniform mesh

finite element approximation of test functions/eigenfunctions

Sequential Least Squares Quadratic Programming algorithm for
nonlinear eigenvalue problem with constraints

A(D)UD = λ(D)BUD, U>DBUD = Id

Discretization of the SDE

use Metropolis acceptance/rejection to ensure unbiased sampling

rejection probability O(
√

∆t) for proposals based on naive
Euler–Maruyama discretization

lowered to O(∆t3/2) with dedicated (implicit) HMC algorithms2

2Noble/De Bortoli/Durmus (2022), Lelièvre/Santet/Stoltz (2023)
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Optimal diffusion / case η ∈ (0, η?)

Potential V (q) = cos(2πq) η ≈ 0.51

Spectral gaps: 30.47 (constant), 32.43 (homogenized), 36.75 (optimal)
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Optimal diffusion / case η = η?

Potential V (q) = sin(4πq)(2 + sin(2πq))

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)
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Influence of the lower bound

Spectral gap for various lower bounds a

Lower bound a 0.0 0.2 0.4 0.6 0.8 1.0

Spectral gap 11.227 11.226 11.208 11.145 10.983 10.572
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Approximation by homogenized limit

Positive diffusion when periodizing

Fast convergence to the homogenized limit
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Simulation of overdamped Langevin dynamics

Spectral gaps: 0.81 (constant), 10.6 (homogenized), 11.2 (optimal)
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Metropolis rejection probabilities

Potential V (q) = sin(4πq)(2 + sin(2πq))

Rejection probabilities for constant diffusion mostly where V maximal

Rejection probabilities for optimized diffusion mostly where V minimal
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Conclusion and perspectives
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Extensions

Normalization: numerical criterion (e.g. Metropolis rejection probability)

Scaling with dimension:3 diffusion depending only on some metastable
degrees of freedom, e.g.

D(q) = P⊥ξ (q) + a(ξ(q))Pξ(q), Pξ =
∇ξ ⊗∇ξ
‖∇ξ‖2

where ξ : Rd → Rk (with k � d) is a collective variable

Underdamped Langevin dynamics:

no variational framework

optimization of constant diffusion4

3Lelièvre/Santet/Stoltz (2024)
4Chak/Kantas/Pavliotis/Lelièvre (2021)
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