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Excited states of N-body Hamiltonians (1)
e Nuclei at positions Ry with charges zi: vext(r) := Z = Rk
Electronic problem with N-electrons
N
Find ¥ € Hy := /\7—[1 (with Hy = L*(R®,C)) such that ||¥| 2 gsny =1 and

N
HyU := ——ZAr7+ > __rj|+;vcxt(ri) U =FEU(ry,...TxN)

1<Z<]<N

M
e HVZ theorm: if N < Z := Y z, then o(Hy) is as follows:
k=1

eigenvalues embedded in gegs

e Assumptions: EY; is a simple eigenvalue of Hy and 2E% < E?\,+1 +E% (stability
of the N-particle system)
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Excited states of N-body Hamiltonians (2)

o Compute electronic excitation energies: quantities of the form

EY — E]li;_,rl (gain of an electron) and EY —EY | (loss of an electron).

e Inverse photoemission spectroscopy (IPES)
%)

System with N particles

E% TN

(HVZ theorem)

electronic excitation

n : HN-#—)

System with NV — 1 particles EY _(EYy_ 1 YN
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A short review of methods and results

e Computation of excitation energies F% — Eﬁ,H or EY — E%_,

Density functional theory (DFT) inadequate: only deals with ground state properties
Quantum Monte Carlo methods: idem
Wavefunction methods: scales from N (CISD) to Ny! (full Cl)
Time-dependent DFT (TDDFT): does not work well for extended systems
Green's function method: in this talk, GW.

©

¢ ¢ ¢ ¢

e Electronic excitations energies — band gap of perfect crystals as N — oo

M. van Schilfgaarde, T. Kotani and S. Faleev, Phys. Rev. Let. 96 (2006)
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Definition of Green’s functions,

self-energies, etc
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The Particle Green's function in the time domain
—+oo

N
e Fock space IF := EB Hy with Ho = C, H1 = L*(R3,C) and Hn = /\7—[1

N=0

o Annihilation and creation operators a'(¢) = (a(¢))* for ¢ € H1
YUN € Hn, (a()¥n)(r1, - ,rN-1) = v'N » W\I!N(r,rl7 <o ry_1)dr.
e Formal definition of the one-body particle Green's function (in the time domain)
VT € R, V(f.9) € HaxHa, (gIGo(r)If) = —10(r) (¥ |alg)e N0 TRl ()| W)
e Annihilation and creation operators (bis)

A€ B(Ma, Hnia) : £ al ()W), Ay = (AL)" € B(Hns1,H1)

One-body particle Green's function (in the time domain) J

Vr€R, Gp(r) = —iO(r)Ape THEN+1-ER) 4%

e Note that G, € L™ (R, B(#H1)) and Gp(7) =0 for 7 < 0
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The Particle Green's function in the frequency domain (1)

e Normalization convention for the time-Fourier transform

Vf e L'(R,,X), X Banach space, [Frf](w)= A(w) _ /+°O F(7) €7 dr.

— 00

e Fourier representation of the one-body particle Green's function

Go(w) = (FrGy) (), Gp € H'(Ru, B(H1)).

Key point

The support of the distribution Im (é;) is contained in the (particle) electronic

excitation set Sy, := o(Hn+1 — EY).

e Particle excited state energies recovered from G|, which is however highly irregular

e Analytic continuation through a Laplace transform on U := {z € C, Im(z) > 0}

VfeL®R,,X), VzeU, f(z):= /°° F(r)e=dr
0

Gabriel Stoltz (ENPC/INRIA) SIAM MMS 2016 7 /22



The Particle Green's function in the frequency domain (2)

e Complex frequency domain: analytical continuation @; of é;, on U, extended to C\ S,

—_— 1 *
VeC\Sy G = (s ) A
N

analytic continuation

/ Tm T oigw T 1
I

0
/ ERH—l - E?\; Oess(HN11 — EQ)
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Hole Green's function

e Annihilation/creation operator A_ € B(H1,Hn-1) : f — a(f)|T%)

e Time domain: Gyn(1) = i@(—T)AfeiT(HN_l*E?V)A,

e Recover the one-body ground-state density matrix as 78 = —iGL(07) = A* A_
Key point

Support of Im (C/?;) contained in (hole) electronic excitation set Sy, := o(EY% — Hy_1)

. — . 1
e Complex frequency domain: Vz € C\ Su, Gu(z) = A~ (z - HNA)) A

- 0 _ 110
wHGh(w)EN En- /
-

T |
Lry oy Y

analytic continuation
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The one-body total Green's function

e Chemical potential y: well defined by the stability condition

EY — EX_1 <p< Exy — EY

One-body total Green's function in the complex frequency domain

Vz€C\ (SuUS,), G(2) =Gn(2)+ Gp(2).
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Green's function for non-interacting systems

e System of non-interacting electrons subjected to an effective potential V'

N
1 1
H07N:2(2A”+V(I‘¢)) on Hy, h1:7§A+V0n Hi.
i—

e Assumptions

@ hj has at least NV negative eigenvalues €1 < &3 < --- <en

@ Stability condition eny < en41
— Chemical potential of the non-interacting system en < po < en+1

N
e Ground state @Y = ¢1 A -+~ A ¢y and gy = (oo, (1) = Z |s) (i

=1

Green's function of the non-interaction system

Hole and particle Green's function
Gon(z) =10n(z=h)™",  Gop(z) = (1 =0 w)(z = M)~

Total Green's function .
Go(2) = (z—h1)™"
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Dynamical Hamiltonian and self-energy
e Non-interacting system: @B(z) =(z—h1)""
e Interacting system: in analogy with non-interacting systems, G(z) = (z — H(z)) "

Dynamical Hamiltoninan H(z)

Forall z € C\ (SwUSp), H(z) = 2 — G(2) ! is a well-defined closed operator on H,
with dense domain D(z) such that D(z) C H?(R?).

@ Eigenvalues = quasi-energies

@ Eigenfunctions = quasi-particles

e Assume that chemical potentials of interacting/non-interacting systems equal

1= Ho
Definition of the self-energy

Vz € UULU(p—a, pu+b), 3(z) = H(z)—h1 = Go(z) ' —=G(z)~" (Dyson equation)
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Some GW methods
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The GW road map

e Basis: Dyson equation on the imaginary axis p + iR

1

Yw € Ry, S(p+iw) = Golp+iw) ™" — Gp +iw)~

e Road map

@ Construct a good non-interacting model for CTo(u + iw)

o Hartree Hamiltonian (in the original paper)
o Kohn-Sham Hamiltonian (DFT)

@ Use an approximation of the self-energy ¥ & NCGW on the axis w4+ iR,

o Define G/C\*VV(;H— iw) from the Dyson equation with iav/v(p +iw) as

—1

Gp + iw) = (C%(,u—&—iw)_l — i(u—i—iw))_l = (u+iw —h1 — fl(,u—t—iw))

e Choice of the approximations (Z/lavv, Gfév")'?

— Hedin's equations?

L. Hedin. Phys. Rev., 139, 1965
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Hedin's equations?®

e Kernel of a space-time operator A
A(12) = A(ry, tisra, t2) = [A(t — t2)] (r1,12)

1

o Coulomb operator v.(r,r’) = P

Hedin's equations
@ Dyson equation GV (12) = Go(12) + / d(34)Go(13)2(34) GV (42)
& Self-energy X6V (12) = iGSW (12)W W (21+)
@ Screened interaction WY (12) = v.(12) + /d(34)vc(13)PGW(34)WGW(42)

o Irreducible polarization PSW (12) = —iGSWV (12)GSW (21)

2As written by physicists... as horrible this may be!
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Hedin's equation: self-consistent solutions

e Find (WY, G%W) such that
o Dyson equation GSV (12) = Go(12) + / d(34)Go(13)5(34) GV (42)
o Self-energy X6V (12) = iGSW (12)W W (211)
@ Screened interaction WV (12) = v.(12) + / d(34)ve(13) PV (34) WV (42)

o Irreducible polarization P¢W (12) = —iGW (12)G%W (21)

e Flow chart of the self-consistent GW scheme

G*="=Go
Gy —————— G*°

Initialization
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/\

Go Gk Iteration k, step 1

\Ek/
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Hedin's equation: the GW? method

e Mathematical difficulties in the study of the fully self-consistent GW method

e Simplification: fix the screened interaction to W°

The GW" method
Find (EGWU,GGW") such that

o Dyson equation GV’ (12) = Go(12) + / d(34)Go(13)5(34) GV’ (42)

@ Self-energy 2V (12) = iV (12)W°(211)

e Flow chart of the self-consistent GW° scheme

PO
o= _ / \
0 WO

Go ——————— GF=0

Initialization

e Mathematical analysis?
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/
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The dynamically screened operator W

e In the vacuum, a time-dependent charge dp(r,t) creates a potential
SV 1) = / L Sp(e,t)dr, or 6V = 6o(t)ve(dp)
g3 [r— 1|

e In a molecule, a time-dependent charge dp(r,t) creates a potential
¢
SV (r',t) :/ / W (rt,v't)sp(r,t") dr dt’
R3 J —o0

t
= do(t)ve (6p) + / / We(rt, 't )op(r,t') drdt’
R3 J —o00

Screening effect

SRR

Dynamically screened operator W calculated from Hartree Hamiltonian (RPA):
WO(r) = do(T)ve + W2(7)
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The GW? approximation of the self-energy

e Formally ¥°PP(12) = iG*PP(12)IW°(217)
S¥PP(r s 7) = 00 (T)GPP (r, v’ 07 e (r, v') +1G*PP(r, 1 W2, r;—7)
app
v 5T) (r,r )50(7') +iG*PP(r, I";T)Wg(r/7 r;—T).

v — /|

Fock term

e Definition of C = A ® B by the kernel product C(r,r’) = A(r,r')B(r',r)?
icle) = [ Twoag)da’ ~ [ (r, 1) g(c ) B(x', ) drdr’
R3 xR3 R3><[R3
= TI"H1 (AQB?)

Kernel-product (infinite dimensional Hadamard product)

For A € B(H1) and B € B(H1), the operator A ® B defined by the quadratic form

(f,9) = (flA© Blg) := Trw, (AgBY)

0 /
e In practice, Z*PP (1) = K,00(7) +iG*P (1) © W2 (—7) with K, (r,r') := _don(rr)

v — x|
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Reformulation by an analytical continuation

e The equation Z*PP(7) := K,60(7) +iG*P (1) © W2 (—7) is formally equivalent to
— 1 [T — —
22PP (pg + iw) = Ky — o G#PP (po +i(w +w')) © W2(iw") dw'’
T J oo

The GW' equations on the imaginary frequency axis

Find GV’ € 1> (Rw, B(#H1)) solution to the system

— “+oo
BEWO (1o +iw) = K, — 1
27T —00

(GW?)

1
GV (o + iw) = {uo + iw — (h1 + BEWO (1o + iw)>]

GV (o +i(w+w')) ® W?(iw') dw’,

e For all Garp € L>(Ry, B(H1)) and all w € R,,, the operator

—+o0

52\*’?’(#0 +iw) = L 5;;?’(/10 +i(w+w)) Wg(iw') dw’

2 J_ o

is a well-defined bounded operator on H1
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The GW? approximation in a perturbative regime

e Problem: for é;);(,uo +1) close to Go(uo + i) in L= (R, B(H1)), is the operator

o + iw — (h1 + E/I;P/P(uo + iw))

invertible? Replace v. by Ave...

oo —
W (o + iw) = Ky — %/ G (o +i(w + ) © WO(iw') o,
(GW?) M

—1
GO (po + iw) = {,uo +iw — (h1 + AZCWR (1o + iw))]

Theorem (Gontier, Cancs, Stoltz)

There exists A\« > 0 such that, for all 0< A < A, there is a unique solution GSMS to
the problem (GWY) in the vicinity of Gy.

Moreover, the self-consistent procedure starting from Ch converges geometrically fast
toward GSWR in L= (R, B(H1)).
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Conclusion and perspectives
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Conclusion and perspectives

e Current results

@ The fundamental objects (G, Go, X, W) involved in GW? formalism are
mathematically well-defined

@ Some of their properties have been rigorously proved

@ The GW? equations are well-posed in a perturbative regime

e Work in progress

@ Analysis of the fully self-consistent GW method for periodic crystals

E. Cances, D. Gontier and G. Stoltz, A mathematical analysis of the GWO0 method for computing
electronic excited state energies of molecules, arXiv preprint 1506.01737 (2015)
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