

Error estimates for transport coefficients in molecular dynamics

Gabriel STOLTZ

gabriel.stoltz@enpc.fr

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Rocquencourt)

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")

SIAM MMS, Philadelphia, May 2016

Outline

- Transport coefficients: "steady-state" dynamical information
 - mobility
 - shear viscosity
 - thermal conductivity
- Bias for Green-Kubo formulas when using Metropolis schemes
- Variance reduction for linear response approaches

Linear response and Green–Kubo formula
$$\lim_{\eta \to 0} \frac{\mathbb{E}_{\eta}(R)}{\eta} = \int_{0}^{+\infty} \mathbb{E}_{0}(R(x_{t})S(x_{0}))dt$$

T. Lelièvre and G. Stoltz, PDEs and stochastic methods in molecular dynamics, *Acta Numerica* (2016)

Bias for Green-Kubo formulas when using Metropolis schemes

Motivation

- Computation of integrated correlation functions
 - transport coefficients in molecular dynamics
 - variance of time averages for SDEs $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s) \, ds$
- Assume that...
 - the SDE q_t has a unique invariant measure π
 - φ has average 0 with respect to π
 - time discretization with timestep $\Delta t > 0 \rightarrow$ invariant measure $\pi_{\Delta t}$

What is the numerical error arising from $\Delta t > 0$?

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E}\left(\widehat{\varphi}_{t}^{2}\right) = 2 \int_{0}^{+\infty} \mathbb{E}\left(\varphi(q_{t})\varphi(q_{0})\right) dt$$

• Can be extended to the estimation of $\int_{0}^{+\infty} \mathbb{E}\Big(\varphi(x_t) \psi(x_0) \Big) dt$

Metropolize the discretization of the dynamics...?

• Pros

- Removes the bias on the invariant measure
- Stabilizes the discretization for non-globally Lipschitz drifts

• Cons

- Scaling of the rejection rate with the dimension
- Cannot be used for non-reversible dynamics...
- ... or worse: nonequilibrium systems for which the invariant measure is unknown!
- An early reference in the physics literature... "SmartMC" = MALA!

P. J. Rossky, J. D. Doll, and H. L. Friedman, Brownian dynamics as smart Monte Carlo simulation, *J. Chem. Phys.* (1978)

Error estimates for MALA (1)

- Potential energy function V, invariant measure $\nu(dq) = Z^{-1} e^{-\beta V(q)} dq$ Proposal move (recall $\nabla V = (\partial_{q_1} V, \dots, \partial_{q_d} V)$, dimension d) $\widetilde{q}^{n+1} = \Phi_{\Delta t}(q^n, G^n) = q^n - \beta \Delta t \nabla V(q^n) + \sqrt{2\Delta t} G^n$
- Acceptance rate: Metropolis-Hastings criterion

$$\begin{split} A_{\Delta t}\left(q^{n},\widetilde{q}^{n+1}\right) &= \min\left(\frac{\mathrm{e}^{-\beta V(\widetilde{q}^{n+1})}T_{\Delta t}(\widetilde{q}^{n+1},q^{n})}{\mathrm{e}^{-\beta V(q^{n})}T_{\Delta t}(q^{n},\widetilde{q}^{n+1})},1\right),\\ \text{where } T_{\Delta t}(q,q') &= \left(\frac{1}{4\pi\Delta t}\right)^{d/2}\exp\left(-\frac{|q'-q+\beta\Delta t\,\nabla V(q)|^{2}}{4\Delta t}\right) \end{split}$$

Markov chain encoded by a transition function

$$q^{n+1} = \Psi_{\Delta t}(q^n, G^n, U^n) = q^n + \mathbf{1}_{U^n \leqslant A_{\Delta t}(q^n, \Phi_{\Delta t}(q^n, G^n))} \Big(\Phi_{\Delta t}\left(q^n, G^n\right) - q^n \Big)$$

Error estimates for MALA (2)

• Numerical scheme = Markov chain characterized by transition operator

$$P_{\Delta t}\varphi(q) = \mathbb{E}\Big(\varphi\left(q^{n+1}
ight) \mid q^n = q\Big)$$

- Reference continuous dynamics $dq_t = -\beta
 abla V(q_t) \, dt + \sqrt{2} \, dW_t$
 - leaves v invariant

• generator
$$\mathcal{L} = -\beta \nabla V(q)^T \nabla + \Delta$$
 (where $\Delta = \partial_{q_1}^2 + ... \partial_{q_N}^2$)
• recall that $\frac{d}{dt} \mathbb{E}(\varphi(q_t)) = \mathbb{E}(\mathcal{L}\varphi(q_t))$

 Δt -expansion of the evolution operator

$$\mathcal{P}_{\Delta t}\varphi = \varphi + \Delta t \,\mathcal{A}_{1}\varphi + \Delta t^{2}\mathcal{A}_{2}\varphi + \dots + \Delta t^{p+1}\mathcal{A}_{p+1}\varphi + \Delta t^{p+2}r_{\varphi,\Delta t}$$

• Weak order p when $\sup_{0 \le n \le T/\Delta t} \left| \mathbb{E} \left[\varphi \left(x^n \right) \right] - \mathbb{E} \left[\varphi \left(x_{n\Delta t} \right) \right] \right| \le C \Delta t^p$

• Satisfied if
$$\mathcal{A}_k = \frac{\mathcal{L}^k}{k!}$$
 for all $1 \leq k \leq p$

Example: Euler-Maruyama, weak order 1 (dimension 1)

- Scheme $q^{n+1} = \Phi_{\Delta t}(q^n, G^n) = q^n \beta \Delta t \ V'(q^n) + \sqrt{2\Delta t} \ G^n$
- Note that $P_{\Delta t} \varphi(q) = \mathbb{E}_{G} \left[\varphi (\Phi_{\Delta t}(q,G)) \right]$
- Technical tool: Taylor expansion

$$\varphi(q+\delta) = \varphi(q) + \delta \varphi'(q) + \frac{1}{2} \delta^2 \varphi''(q) + \frac{\delta^3}{6} \varphi^{(3)}(q) + \dots$$

- Replace δ with $\sqrt{2\Delta t} G \beta \Delta t V'(q)$ and gather in powers of Δt $\varphi(\Phi_{\Delta t}(q, G)) = \varphi(q) + \sqrt{2\Delta t} G\varphi'(q)$ $+ \Delta t \Big(G^2 \varphi(q)'' - \beta V'(q) \varphi'(q) \Big) + \dots$
- Taking expectations w.r.t. G leads to

$$P_{\Delta t} \varphi(q) = \varphi(q) + \Delta t \underbrace{\left(\varphi''(q) - \beta V'(q) \varphi'(q) \right)}_{= \mathcal{L} \varphi(q)} + O(\Delta t^2)$$

Error estimates for MALA (3)

• For MALA, it can be shown that

$$P_{\Delta t}\varphi = \varphi + \Delta t \,\mathcal{L}\varphi + \Delta t^2 \mathcal{T}\varphi + \Delta t^{5/2} r_{\varphi,\Delta t}$$

(Fractional power of Δt is a signature of Metropolis...)

- An important ingredient is that the rejection rate is of order $\Delta t^{3/2}$ $\mathbb{E}_{G} \left| A_{\Delta t} \left(q, q - \beta \Delta t \, \nabla V(q) + \sqrt{2\Delta t} \, G \right) - 1 + \Delta t^{3/2} \overline{\xi}(q) \right|^{p} \leq C_{p} \Delta t^{2p}$
- For compact position spaces, geometric ergodicity can be proved

Error estimates on integrated correlation functions

$$\int_{0}^{+\infty} \mathbb{E}\Big(\varphi(q_t)\varphi(q_0)\Big) dt = \Delta t \sum_{n=0}^{+\infty} \mathbb{E}_{\Delta t}\Big(\varphi(q^n)\varphi(q^0)\Big) + \mathrm{O}(\Delta t)$$

The error is determined by weak type expansions

Lower the rejection rate?

Modifying the scheme to lower the rejection rate (1D expressions)
modified drift -βV'(q) + βΔt/6 (V⁽³⁾ - βV"V')(q)
modified diffusion Id + βΔt/3 V"(q)

Rejection rate of order $\Delta t^{5/2}$ but weak order unchanged!

Modify the proposal functions

• Midpoint scheme: implicit hence more expensive...

$$\widetilde{q}^{n+1} = q^n - \beta \Delta t \, \nabla V \left(\frac{\widetilde{q}^{n+1} + q^n}{2} \right) + \sqrt{2\Delta t} \, G^n$$

• Hybrid Monte Carlo-like scheme

$$\widetilde{q}^{n+1} = q^n - \beta \Delta t \, \nabla V \left(q^n + \frac{\sqrt{2\Delta t}}{2} \, G^n \right) + \sqrt{2\Delta t} \, G^n$$

Can be reformulated as (using $h = \sqrt{2\beta\Delta t}$)

$$p^{n} = \beta^{-1/2} G^{n}, \qquad \begin{cases} q^{n+1/2} = q^{n} + \frac{h}{2} p^{n}, \\ p^{n+1} = p^{n} - h \nabla V \left(q^{n+1/2} \right), \\ \widetilde{q}^{n+1} = q^{n+1/2} + \frac{h}{2} p^{n+1}. \end{cases}$$

Reversible structure: allows to compute the Metropolis ratio in terms of some extended energy difference $H(q, p) = V(q) + p^2/2$

Modify the acceptance criterion

- Metropolis criterion $A_{\Delta t}^{MH}(q^n, \tilde{q}^{n+1}) = \min\left(1, e^{-\alpha_{\Delta t}(q^n, \tilde{q}^{n+1})}\right)$ \rightarrow rejection rate $O(\Delta t^{3/2})$
- Barker rule $A_{\Delta t}^{\text{Barker}}(q^n, \tilde{q}^{n+1}) = \frac{e^{-\alpha_{\Delta t}(q^n, \tilde{q}^{n+1})}}{1 + e^{-\alpha_{\Delta t}(q^n, \tilde{q}^{n+1})}}$

 \rightarrow rejection rate $1/2 + O(\Delta t^3)$ in average, $1/2 + O(\Delta t^{3/2})$ in absolute value

Gabriel Stoltz (ENPC/INRIA)

Results on integrated correlation functions

Improved Green-Kubo formulas

Set a = 1/2 and $\alpha = 2$ for Barker, and a = 1 and $\alpha = 3/2$ for Metropolis-Hastings. Then,

$$\int_{0}^{+\infty} \mathbb{E}\Big[\psi(q_t)\varphi(q_0)\Big]dt = \Delta t \left(a \sum_{n=0}^{+\infty} \mathbb{E}_{\Delta t}\big[\psi(q^n)\varphi(q^0)\big] - \frac{\mathbb{E}_{\nu}(\psi\varphi)}{2}\right) + \mathcal{O}(\Delta t^{\alpha})$$

• Some comments...

- reduces to trapezoidal rule for Metropolis (but error $\Delta t^{3/2}$)
- time renormalization by a factor 2 for Barker
- statistical error increased by factor 2 for Barker, but reduced bias
- no fractional powers of Δt when Barker is used
- Key ingredient in the proof: $\frac{P_{\Delta t} \mathrm{Id}}{\Delta t} \varphi = a \left(\mathcal{L} \varphi + \frac{\Delta t}{2} \mathcal{L}^2 \varphi \right) + \mathrm{O}(\Delta t^{\alpha})$
- Numerical illustration for 1D system with $V(q) = \cos(2\pi q)$ and $\beta = 1$

Results on integrated correlations $\varphi = \psi = V'$

Conclusion and perspectives

- \bullet Numerical analysis of integrated correlation functions \rightarrow bias
- Extension to dynamics with multiplicative noise

$$dq_t = \left(-\beta M(q_t)\nabla V(q_t) + \operatorname{div}(M)(q_t)\right)dt + \sqrt{2}M^{1/2}(q_t)\,dW_t$$

 \bullet Many open issues when the invariant measure is not known explicitely... \rightarrow Nonequilibrium systems in molecular dynamics

References

B. Leimkuhler, Ch. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics, *IMA J. Numer. Anal.* (2015)

M. Fathi, A.-A. Homman and G. Stoltz, Error analysis of the transport properties of Metropolized schemes, *ESAIM Proc.* (2015)

M. Fathi and G. Stoltz, Improving dynamical properties of stabilized discretizations of overdamped Langevin dynamics, *arXiv* **1505.04905** (2015)

Variance reduction approaches for linear response

A paradigmatic example

Langevin dynamics perturbed by a constant force term

$$\begin{cases} dq_t = M^{-1} p_t \, dt, \\ dp_t = (-\nabla V(q_t) + \eta F) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t, \end{cases}$$
(1)

where

- $F \in \mathbb{R}^d$ with |F| = 1 is a given direction
- $\eta \in \mathbb{R}$ determines the strength of the external forcing
- Non-zero velocity in the direction F is expected in the steady-state
- F does not derive from the gradient of a periodic function
 - of course, $F = -\nabla W_F(q)$ with $W_F(q) = -F^T q$
 - ... but W_F is not periodic!

The need for variance reduction

- Response function $R(q, p) = F^T M^{-1} p$
- Standard approach: compute the steady-state average as

$$\frac{1}{t}\int_0^t R(q_s, p_s) \, ds \xrightarrow[t \to +\infty]{} \int_{\mathcal{E}} R \, \psi_\eta = \mathrm{O}(\eta)$$

when R vanishes at equilibrium

- Variance of order $1 \rightarrow$ relative error of order $1/\eta!$
- Need for variance reduction... but
 - no straightforward importance sampling
 - no easy stratification

Control variate approach

$$rac{\mathbb{E}_\eta(R)}{\eta} = rac{\mathbb{E}_\eta(R-\mathcal{L}_\eta\Phi)}{\eta} \quad ext{with} \quad ext{Var}_\eta(R-\mathcal{L}_\eta\Phi) \ll ext{Var}_\eta(R)$$

Control variates for linear response

- Idea:¹ consider Φ such that $-\mathcal{L}_0\Phi = R$ (Galerkin discretization)
- Variance of order η^2 when Φ is exactly computed \rightarrow relative error O(1)

