

Langevin dynamics with space-time periodic nonequilibrium forcing

Gabriel STOLTZ

stoltz@cermics.enpc.fr

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Rocquencourt)

AIMS conference, Madrid, July 2014

Gabriel Stoltz (ENPC/INRIA)

Madrid, July 2014 1 / 18

Definition of the dynamics

- Periodic boundary conditions: position $q \in \mathcal{M} = (L\mathbb{T})^d$
- Nonequilibrium Langevin dynamics ($M \in \mathbb{R}^{d imes d}$ positive definite, $\gamma > 0$)

$$\int dq_t^\eta = M^{-1} p_t^\eta \, dt,$$

 $\int dp_t^\eta = \Big(-\nabla V(q_t^\eta) + \eta F(t, q_t^\eta) \Big) dt - \gamma M^{-1} p_t^\eta \, dt + \sqrt{rac{2\gamma}{eta}} \, dW_t.$

- Smooth potential V and external force F
- The external force is periodic in time with period T

Questions

- what is the steady-state of the system?
- behavior under hyperbolic space-time scaling? (average velocity)
- fluctuations around the average velocity: longtime effective diffusion
- P. Collet and S. Martínez, J. Math. Biol., 56(6) (2008) 765-792
- G. Pavliotis, R. Joubaud and G. Stoltz, arXiv preprint 1403.1883 (2014)

Convergence to the equilibrium state

Exponential convergence to a limiting cycle

• Lyapunov functions $\mathcal{K}_n(q,p) = 1 + |p|^{2n}$ (for $n \ge 1$) and corresponding L^{∞} norms on functions $f(\theta, q, p)$

$$\|f\|_{L^{\infty}(L^{\infty}_{\mathcal{K}_n})} = \sup_{\theta \in T\mathbb{T}} \left\|\frac{f(\theta)}{\mathcal{K}_n}\right\|_{L^{\infty}}$$

Uniform convergence result for $\eta \in [-\eta_*, \eta_*]$

Unique probability measure $\psi_\eta(\theta, q, p)$ on $\mathcal{E} = T\mathbb{T} \times \mathcal{M} \times \mathbb{R}^d$ such that

$$\left|\mathbb{E}\Big(f([t],q_t^{\eta},p_t^{\eta})\Big)-\overline{f}_{\eta}([t])\right|\leqslant C_n\mathrm{e}^{-\lambda_n t}\,\|f\|_{L^{\infty}(L^{\infty}_{\mathcal{K}_n})},$$

with time-dependent spatial average $\overline{f}_{\eta}(\theta) = \int_{\mathcal{M} \times \mathbb{R}^d} f(\theta, q, p) \psi_{\eta}(\theta, q, p) \, dq \, dp$

• In addition, convergence of the trajectorial average for any (q_0, p_0)

$$\frac{1}{t}\int_0^t f([s], q_s^{\eta}, p_s^{\eta}) \, ds \xrightarrow[t \to +\infty]{} \int_{\mathcal{E}} f \, \psi_{\eta} \qquad \text{a.s}$$

Properties of the limiting cycle

• Time dependent generator $\mathcal{A}_0 + \eta \mathcal{A}_1$, adjoints on $L^2(\mathcal{E})$

$$\mathcal{A}_{0} = M^{-1} \rho \cdot \nabla_{q} - \nabla V \cdot \nabla_{p} + \gamma \left(-M^{-1} \rho \cdot \nabla_{p} + \frac{1}{\beta} \Delta_{p} \right), \quad \mathcal{A}_{1} = F(t, q) \cdot \nabla_{p}$$

Fokker-Planck equation for ψ_η

The invariant distribution is smooth, positive and satisfies

$$\left(-\partial_t + \mathcal{A}_0^{\dagger} + \eta \mathcal{A}_1^{\dagger}\right)\psi_{\eta} = 0, \qquad \int_{\mathscr{E}}\psi_{\eta} = 1.$$

• Finite moments of order 2n uniformly in the time variable

$$orall heta \in T\mathbb{T}, \qquad \int_{\mathcal{M} imes \mathbb{R}^d} \mathcal{K}_{n}(q, p) \, \psi_{\eta}(heta, q, p) \, dq \, dp \leqslant R_n < +\infty$$

• Uniform marginals in time $\overline{\psi_{\eta}}(\theta) = \int_{\mathcal{E}} \psi_{\eta}(\theta, q, p) \, dq \, dp = \frac{1}{T}$

Perturbative expansion for small forcings

• Write $\psi_\eta(t,q,p) =
ho_\eta(t,q,p)\mu(q,p)$: adjoints on $\mathcal{H} = L^2(\mathcal{E},\mu) \cap \{\mathbf{1}\}^\perp$

$$(-\partial_t + \mathcal{A}_0^* + \eta \mathcal{A}_1^*)\rho_\eta = 0, \qquad \psi_\eta = \rho_\eta \mu, \qquad \int_{\mathscr{E}} \rho_\eta \mu = 1$$

• Use the invertibility of $\partial_t + A_0$ on \mathcal{H} (Fourier series in time) and the relative boundedness of A_1 with respect to $\partial_t + A_0$

Series expansion of the invariant measure

There exists C, r > 0 such that, for $|\eta| < r$,

$$\rho_{\eta} = 1 + \eta \varrho_1 + \eta^2 \varrho_2 + \dots$$

with
$$\int_{\mathcal{E}} |\varrho_m(t,q,p)|^2 \mu(q,p) \, dq \, dp \, dt \leqslant \frac{C}{r^m}$$
 and $\int_{\mathscr{E}} \varrho_m \, \mu \, dq \, dp \, dt = 0$

- Functions ρ_m not explicitely known: solutions of Poisson equations
- The leading order correction ρ_1 governs the linear response Gabriel Stoltz (ENPC/INRIA) Madrid,

Linear response of the velocity

General result on the mobility

• Linear response of the time dependent spatially averaged velocity

$$\mathscr{V}(t) = \lim_{\eta \to 0} \frac{\overline{v}_{\eta}(t)}{\eta}, \qquad \overline{v}_{\eta}(t) = \int_{\mathcal{M}} \int_{\mathbb{R}^d} M^{-1} p \, \psi_{\eta}(t, q, p) \, dq \, dp$$

• Fourier series in time: $e_n(t) = e^{in\omega t} (\omega = 2\pi/T)$

$$F(t,q) = F_0(q) + 2\sum_{n\geq 1} \operatorname{Re}\Big(F_n(q)e_n(t)\Big)$$

Space-time decomposition of the mobility

$$\mathscr{V}(t) = \beta \sum_{n \in \mathbb{Z}} e_n(t) \int_{\mathcal{M}} D_n(q) F_n(q) \widetilde{\mu}(q) dq, \qquad \widetilde{\mu}(q) =$$

$$\widetilde{\mu}(q) = \widetilde{Z}^{-1} \mathrm{e}^{-\beta V(q)}$$

with the position-dependent diffusion matrix

$$D_n(q) = \int_0^{+\infty} \mathbb{E}\Big(\left(M^{-1}p_s\right) \otimes \left(M^{-1}p_0\right) \ \Big| \ q_0 = q\Big) \mathrm{e}^{\mathrm{i} n \omega s} ds$$

• In particular, the average (time-independent) velocity depends only on F_0

- 2-dimensional case $V(q) = 2\cos(2x) + \cos(y) + \cos(x y)$
- Non-gradient forces $F_{0,n}(q) = e^{\beta V(q)} \begin{pmatrix} \cos(nx) \\ 0 \end{pmatrix}$
- Parameters $\beta = \gamma = 1$ and M = Id

Negative mobility

 \bullet Decomposition of the real, $\mathcal M\text{-}\mathsf{periodic}$ and symmetric matrix

$$D_0(q) = \sum_{K \in \mathcal{L}^*} D_{0,K} e^{-iK \cdot q} = \sum_{K \in \mathcal{L}^*} a_{0,K} \cos(K \cdot q) + b_{0,K} \sin(K \cdot q),$$

• Related spatial decomposition of the external force

$$F_0(q) = rac{1}{\widetilde{\mu}(q)|\mathcal{M}|} \left(\sum_{K\in\mathcal{L}^*} F_{0,K} \mathrm{e}^{-\mathrm{i}K\cdot q}
ight), \qquad F_{0,K} = \overline{F_{0,-K}} \in \mathbb{C}^{d imes d}.$$

• Normalization such that $F_{0,0} =$ canonical equilibrium average of F_0

Spatial decomposition of the mobility

The space-time averaged linear response of the velocity reads

$$\overline{\mathscr{V}} = D_{0,0}F_{0,0} + \int_{\mathcal{M}} \left(D_0(q) - D_{0,0} \right) \left(F_0(q)\widetilde{\mu}(q) - F_{0,0} \right) dq$$

• Non-zero velocity produced either by constant forcing or as a result of some spatial resonance

• Time-independent force
$$F_0(q) = e^{\beta V(q)} \begin{pmatrix} -1 + 3\cos(2x) \\ 0 \end{pmatrix}$$

Left: Average observed velocity in the *x* direction. **Right:** Average experienced force in the *x* direction.

Resonance of the frequency-dependent mobility

• Dependence on the period T of the forcing: fix $F_1(q)$ and consider

$$F(t,q) = 2 \operatorname{Re} \left(F_1(q) \operatorname{e}^{\mathrm{i}\omega t} \right)$$

• Linear response result: $\mathscr{V}(t) = 2\beta \operatorname{Re}\left(\widehat{\mathscr{V}}(\omega) \operatorname{e}^{\mathrm{i}\omega t}\right)$ with

$$\widehat{\mathscr{V}}(\omega) = -2\beta \int_{\mathcal{M}} \int_{\mathbb{R}^d} \left(\left[(\mathbf{i}\omega + \mathcal{A}_0)^{-1} \left(M^{-1} p \right) \right] \otimes \left(M^{-1} p \right) \right) \mathcal{F}_1 \mu.$$

High-frequency decay of the linear response

For any $n \ge 2$, there exists a constant $C_n > 0$ and $\nu_1, \ldots, \nu_{n-1} \in \mathbb{C}^d$, such that, for all $\omega \ge 1$,

$$\left|\widehat{\mathscr{V}}(\omega)-\sum_{m=1}^{n-1}\frac{\nu_m}{\omega^m}\right|\leqslant \frac{C_n}{\omega^n}, \qquad \nu_1=2\mathrm{i}\beta M^{-1}\int_{\mathcal{M}}F_1(q)\,\widetilde{\mu}(q)\,dq$$

• Existence of a local/global maximum of $|\widehat{\mathscr{V}}(\omega)|$?

• Force
$$F(t,q) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cos(\omega t)$$
 and $\gamma = 0.1$

• Asymptotic behavior $\widehat{\mathscr{V}}(\omega)_{\scriptscriptstyle X} \sim \omega^{-1}$ since $\nu_1 \neq 0$

Longtime diffusive behavior

Convergence to an effective Brownian motion

- Diffusive rescaling on the dynamics not reprojected into \mathcal{M} • introduce $\mathscr{Q}_t^{\eta} = q_0^{\eta} + \int_0^t M^{-1} p_s^{\eta} ds$ • remove average drift $\mathcal{V}_{\eta} = \int_{\mathcal{E}} M^{-1} p \psi_{\eta}(t, q, p) dt dq dp$

 - define $Q_t^\eta = \mathscr{Q}_t^\eta t\mathcal{V}_\eta$ and rescale as $Q_t^{\eta,\varepsilon} = \varepsilon Q_{t/\varepsilon^2}^\eta$
- Stationary initial conditions $(q_0^{\eta}, p_0^{\eta}) \sim \psi_n(0, q, p) dq dp$

Weak convergence over finite time intervals

Limiting Brownian motion $d\overline{Q}_t = \sqrt{2} \mathcal{D}_n^{1/2} dB_t$ with $\overline{Q}_0 \sim \widetilde{\psi}_n(q) dq$ and symmetric, positive definite covariance matrix

$$\forall \xi \in \mathbb{R}^{d}, \qquad \xi^{T} \mathscr{D}_{\eta} \xi = \frac{\gamma}{\beta} \int_{\mathscr{E}} \left| \nabla_{p} \left(\xi^{T} \Phi_{\eta} \right) \right|^{2} \psi_{\eta}.$$

Covariance matrix determined by the solution of the Poisson equation

$$(\partial_t + \mathcal{A}_0 + \eta \mathcal{A}_1) \Phi_\eta(t, q, p) = M^{-1}p - \mathcal{V}_\eta, \qquad \int_{\mathscr{E}} \Phi_\eta \, \psi_\eta \, dt \, dq \, dp = 0.$$

Gabriel Stoltz (ENPC/INRIA)

Madrid, July 2014 15 / 18

Elements of proof

• Rewrite
$$\xi^{T} \left(Q_{t}^{\eta,\varepsilon} - Q_{0}^{\eta,\varepsilon} \right) = \varepsilon \int_{0}^{t/\varepsilon^{2}} \xi^{T} \left(M^{-1} p_{s}^{\eta} - \mathcal{V}_{\eta} \right) ds$$
 as
 $\varepsilon \xi^{T} \left(\Phi_{\eta} \left(\left[\frac{t}{\varepsilon^{2}} \right], ... \right) - \Phi_{\eta} \left(0, ... \right) \right) - \varepsilon \sqrt{\frac{2\gamma}{\beta}} \int_{0}^{t/\varepsilon^{2}} \nabla_{p} \left(\xi^{T} \Phi_{\eta} \right) \left([\theta], q_{\theta}^{\eta}, p_{\theta}^{\eta} \right) \cdot dW_{\theta}$

and use Martingale CLT (cv. finite dimensional laws) + thightness

Functional estimates (Talay (2002) and Kopec (2013))

For a smooth function f with derivatives growing at most polynomially in p, the solution to the Poisson equation

$$(\partial_t + \mathcal{A}_0 + \eta \mathcal{A}_1) \Phi_\eta(t, q, p) = f(t, q, p) - \int_{\mathscr{E}} f \psi_\eta, \qquad \int_{\mathscr{E}} \Phi_\eta \, \psi_\eta = 0$$

is unique. For any $k \ge 1$ and $\eta_* > 0$, there exists a real constant C > 0and integers $n, m, N \ge 1$ such that, for all $\eta \in [-\eta_*, \eta_*]$ and $|I| \le k$,

$$|\partial^{I} \Phi_{\eta}(t,q,p)| \leq C \mathcal{K}_{n}(q,p) \sup_{|r| \leq N} \|\partial^{r} f\|_{L^{\infty}(L^{\infty}_{\mathcal{K}_{m}})}$$

Further properties of the covariance matrix

Perturbative expansion of the covariance matrix

$$\xi^{\mathsf{T}} \mathscr{D}_{\eta} \xi = \xi^{\mathsf{T}} \mathscr{D}_{0} \xi + \eta \xi^{\mathsf{T}} \mathscr{D}_{1} \xi + \eta^{2} \widetilde{\mathscr{D}}_{\eta,\xi}$$

with $\widetilde{\mathcal{D}}_{\eta,\xi}$ uniformly bounded for $|\xi| \leqslant 1$.

• Equilibrium covariance
$$\mathscr{D}_0 = \int_{\mathcal{M}} D_0(q) \, \widetilde{\mu}(q) \, dq$$

• When the external force has time average 0 for all configurations

$$\forall q \in \mathcal{M}, \qquad \int_{T\mathbb{T}} F(t,q) \, dt = 0,$$

the first order correction vanishes: $\mathcal{D}_1 = 0$

• Simulations using $\mathscr{D}_{\eta} = \lim_{t \to \infty} \frac{\mathbb{E}\left(\left[\mathscr{Q}_{t}^{\eta} - \mathbb{E}(\mathscr{Q}_{t}^{\eta})\right] \otimes \left[\mathscr{Q}_{t}^{\eta} - \mathbb{E}(\mathscr{Q}_{t}^{\eta})\right]\right)}{2t}$ • External forcing $F(t, q) = e^{\beta V(q)} \begin{pmatrix} -1 + 3\cos(2x) \\ 0 \end{pmatrix} \cos(\omega t)$

