

Established by the European Commission

Enhanced sampling with autoencoders

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

Joint work with Z. Belkacemi (Sanofi & ENPC), P. Gkeka, M. Bianciotto, H. Minoux (Sanofi), T. Pigeon (Inria & IFPEN), Wei Zhang (FU Berlin) and T. Lelièvre (ENPC & Inria)

CECAM workshop "Quantum2 on machine learning enhanced sampling", November 2023

Outline

- A (short/biased) review of machine learning approaches for CV
- Constructing CVs with autoencoders¹
 - Preliminaries: definitions, training, etc.
 - An interpretation in terms of conditional expectations
 - Constructing transition paths
- Applications (alanine dipeptide, chignolin, HSP90)
 - Free energy biasing and iterative learning²
 - A semi-supervised approach for complex systems³

Gabriel Stoltz (ENPC/Inria)

¹Lelièvre/Pigeon/Stoltz/Zhang, arXiv preprint 2310.03492

²Belkacemi/Gkeka/Lelièvre/Stoltz, J. Chem. Theory Comput. 18 (2022)

³Belkacemi/Bianciotto/Minoux/Lelièvre/Stoltz/Gkeka, J. Chem. Phys. (2023)

ML approaches for finding CV

(A biased perspective on some) References

- ML reviews in MD (biased towards dimensionality reduction, not force fields)
 - A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, *Chem. Rev.* 121(16), 9722-9758 (2021)
 - P. Gkeka et al., J. Chem. Theory Comput. 16(8), 4757-4775 (2020)
 - F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71, 361-390 (2020)
 - A.L. Ferguson, J. Phys.: Condens. Matter 30, 04300 (2018)
 - M. Chen, Eur. Phys. J. B 94, 211 (2021)

More general ML references

- P. Mehta, M. Bukov, C.-H. Wang, A.G.R.Day, C. Richardson, C.K. Fisher, D.J.
 Schwab, A high-bias, low-variance introduction to Machine Learning for physicists, *Physics Reports* 810, 1-124 (2019)
- I. Goodfellow, Y. Bengio, A. Courville Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org
- K.P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2022)

Statistical physics (1)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?

Statistical physics (2)

ullet Microstate of a classical system of N particles:

$$(q,p) = (q_1,\ldots,q_N,\ p_1,\ldots,p_N) \in \mathcal{E} = (a\mathbb{T})^{3N} \times \mathbb{R}^{3N}$$

Positions q (configuration), momenta p (to be thought of as $M\dot{q}$)

• Hamiltonian $H(q,p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i}$ (physics is in V)

Macrostate: Boltzmann–Gibbs probability measure (NVT)

$$\mu(dq \, dp) = Z_{\text{NVT}}^{-1} e^{-\beta H(q,p)} \, dq \, dp, \qquad \beta = \frac{1}{k_{\text{B}} T}$$

ullet Typical evolution equations: Langevin dynamics (friction $\gamma>0$)

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sqrt{2\gamma\beta^{-1}} dW_t \end{cases}$$

Reaction coodinates (RC) / collective variables (CV)

- Reaction coordinate $\xi:(a\mathbb{T})^D\to\mathbb{R}^d$ with $d\ll D$
- ullet Ideally: $\xi(q_t)$ captures the slow part of the dynamics
- Free energy computed on $\Sigma(z) = \{q \in (a\mathbb{T})^D \mid \xi(q) = z\}$ (foliation)

$$F(z) = -\frac{1}{\beta} \ln \left(\int_{\Sigma(z)} e^{-\beta V(q)} \, \delta_{\xi(q)-z}(dq) \right)$$

• Various methods: TI, FEP, ABF, metadynamics, etc⁴

7/32

Gabriel Stoltz (ENPC/Inria) November 2023

⁴Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

Some representative approaches for finding CV (1)

- Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)
- Short list of data-oriented approaches (depending on the data at hand...)
 - [supervised learning] separate metastable states
 - [unsupervised/static] distinguish linear models (PCA) and nonlinear ones (e.g. based on autoencoders such as MESA⁵)
 - [unsupervised/dynamics] operator based approaches (VAC, EDMD, diffusion maps, MSM; incl. tICA and VAMPNets)

(Huge literature! I am not quoting precise references here because the list would be too long)

• Other classifications^{6,7} possible, e.g. slow vs. high variance CV

⁵W. Chen and A.L. Ferguson, *J. Comput. Chem.* 2018; W. Chen, A.R. Tan, and A.L. Ferguson, *J. Chem. Phys.* 2018

⁶P. Gkeka et al., J. Chem. Theory Comput. (2020)

⁷A. Gliemlo *et al.*, *Annu. Rev. Phys. Chem.* (2021)

Some representative approaches for finding CV (2)

Constructing CVs with autoencoders

Bottleneck autoencoders (1)

Bottleneck autoencoders (2)

ullet Data space $\mathcal{X} \subseteq \mathbb{R}^D$, bottleneck space $\mathcal{A} \subseteq \mathbb{R}^d$ with d < D

$$f(x) = f_{\text{dec}}\Big(f_{\text{enc}}(x)\Big)$$

where $f_{\mathsf{enc}}: \mathcal{X} \to \mathcal{A}$ and $f_{\mathsf{dec}}: \mathcal{A} \to \mathcal{X}$

Collective variable = encoder part

$$\xi = f_{\rm enc}$$

- ullet Fully connected neural network, symmetrical structure, 2L layers
- \bullet Parameters $\mathbf{p}=\{p_k\}_{k=1,\dots,K}$ (bias vectors b_ℓ and weights matrices $W_\ell)$

$$f_{\mathbf{p}}(x) = g_{2L} [b_{2L} + W_{2L} \dots g_1(b_1 + W_1 x)],$$

with activation functions g_{ℓ}

(examples: $\tanh(x)$, ReLU $\max(0,x)$, sigmoid $\sigma(x)=1/(1+\mathrm{e}^{-x})$, etc)

Training autoencoders

ullet Theoretically: minimization problem in $\mathcal{P}\subset\mathbb{R}^K$

$$\mathbf{p}_{\mu} \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{P}} \mathcal{L}(\mu, \mathbf{p}),$$

with cost function

$$\mathcal{L}(\mu, \mathbf{p}) = \mathbb{E}_{\mu}(\|X - f_{\mathbf{p}}(X)\|^2) = \int_{\mathcal{X}} \|x - f_{\mathbf{p}}(x)\|^2 \ \mu(dx)$$

• In practice, access only to a sample: minimization of empirical cost

$$\mathcal{L}(\hat{\mu}, \mathbf{p}) = \frac{1}{N} \sum_{i=1}^{N} \|x^i - f_{\mathbf{p}}(x^i)\|^2, \qquad \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}$$

ullet Typical choices: canonical measure μ , data points x^i postprocessed from positions q (alignement to reference structure, centering, reduction to backbone carbon atoms, etc)

Some elements on training neural networks

Many local minima...

• Actual procedure:

• "Early stopping": stop when validation loss no longer improves⁸

- Choice of optimization method⁹, here Adam
- No added regularization here (e.g. ℓ^1/ℓ^2 , dropout, etc)

⁸See Section 7.8 in [Goodfellow/Bengio/Courville]

⁹See Chapter 8 in [Goodfellow/Bengio/Courville]

Some properties of autoencoders

Three viewpoints on the loss function (1/2)

Idealized setting: $f_{\mathrm{enc}}: \mathcal{X} \to \mathcal{Z}$ and $f_{\mathrm{dec}}: \mathcal{Z} \to \mathcal{X}$ measurable

$$\mathcal{F} = \{ f = f_{\text{dec}} \circ f_{\text{enc}}, \ f_{\text{enc}} \in \mathcal{F}_{\text{enc}}, \ f_{\text{dec}} \in \mathcal{F}_{\text{dec}} \}$$

Usual loss: $\inf_{f \in \mathcal{F}} \mathbb{E}\left[\left\| X - f(X) \right\|^2 \right]$

Principal manifold formulation: fix decoder, minimize over encoders

$$\inf_{f \in \mathcal{F}} \mathbb{E}\left[\|X - f(X)\|^2 \right] = \inf_{f_{\text{dec}} \in \mathcal{F}_{\text{dec}}} \left\{ \inf_{f_{\text{enc}} \in \mathcal{F}_{\text{enc}}} \mathbb{E}\left[\|X - f_{\text{dec}} \circ f_{\text{enc}}(X)\|^2 \right] \right\}$$
$$= \inf_{f_{\text{dec}} \in \mathcal{F}_{\text{dec}}} \mathbb{E}\left[\|X - f_{\text{dec}} \circ h_{f_{\text{dec}}}^{\star}(X)\|^2 \right]$$

with ideal encoder $h_{f_{\mathrm{dec}}}^{\star}(x) \in \operatorname{argmin}_{z \in \mathcal{Z}} \|x - f_{\mathrm{dec}}(z)\|$

Hastie/Stützle (1986), Tibshirani (1992)

Venturoli/Vanden-Eijnden (2009)

Gerber/Whitaker, J. Mach. Learn. Res. (2013); Gerber, arXiv preprint 2104.05000

Gabriel Stoltz (ENPC/Inria) November 2023

16 / 32

Three viewpoints on the loss function (2/2)

Formulation with conditional expectation: fix encoder, minimize over decoders

$$\inf_{f \in \mathcal{F}} \mathbb{E} \left[\|X - f(X)\|^{2} \right] = \inf_{f_{\text{enc}} \in \mathcal{F}_{\text{enc}}} \left\{ \inf_{f_{\text{dec}} \in \mathcal{F}_{\text{dec}}} \mathbb{E} \left[\|X - f_{\text{dec}} \circ f_{\text{enc}}(X)\|^{2} \right] \right\} \\
= \inf_{f_{\text{enc}} \in \mathcal{F}_{\text{enc}}} \mathbb{E} \left[\|X - g_{f_{\text{enc}}}^{\star} \circ f_{\text{enc}}(X)\|^{2} \right]$$

with ideal decoder $g^{\star}_{f_{\mathrm{enc}}}(z) = \mathbb{E}[\,X\,|\,f_{\mathrm{enc}}(X) = z]$

Alternative interpretations of the reconstruction error

$$\mathbb{E}\left[\left\|X - g_{f_{\text{enc}}}^{\star} \circ f_{\text{enc}}(X)\right\|^{2}\right] = \operatorname{Var}(X) - \operatorname{Var}\left[\mathbb{E}(X|f_{\text{enc}}(X))\right]$$
$$= \mathbb{E}\left[\operatorname{Var}(X|f_{\text{enc}}(X))\right]$$

First equality by developing square, second by conditioning on $f_{\rm enc}(X)$

Numerical illustration

Practical implication: minimizing reconstruction loss amounts to...

- ullet minimizing intraclass dispersion (small spread of data points for $f_{
 m enc}$ given around the mean)
- maximizing interclass dispersion (the mean values associated with $f_{\rm enc}$ given should be as spread out as possible)

Left: topology (2, 5, 5, 1, 5, 5, 2). Right: topology (2, 5, 5, 1, 20, 20, 2)

Additional properties

ullet Necessary condition for critical points of the loss functional on $f_{
m enc}$

$$\left[x - g_{\text{fenc}}^{\star}(f_{\text{enc}}(x))\right]^{\top} \partial_{z_j} g_{\text{fenc}}^{\star}(f_{\text{enc}}(x)) = 0, \qquad 1 \leqslant j \leqslant d, \ x \in \text{Supp}(\mu)$$

Low temperature limit: $\{g_{f_{\mathrm{enc}}}^{\star}(z)\}_{z\in[z_A,z_B]}$ minimum energy path 10

- Formulation with conditional expectations for other models:
 - clustering
 - PCA (= autoencoders with identity activation functions)

Various extensions:

- change reference measure to better take transition states into account
- multiple transition paths: single encoder and several decoders
- possibly add some regularization terms

¹⁰Venturoli/Vanden-Eijnden (2009)

Free energy biasing and iterative learning

Extended systems

- ullet Computing $abla \xi$ already difficult, higher order derivatives is worse
- Extended system strategy : $V_{\rm ext}(q,\lambda) = V(q) + \frac{\kappa}{2} \big(\xi(q) \lambda\big)^2$
- ullet Free energy for the (simple) collective variable $\xi_{\mathrm{ext}}(q,\lambda)=\lambda$

$$F_{\kappa}(z) = -\frac{1}{\beta} \ln \int_{\mathcal{D}} e^{-\beta V_{\text{ext}}(q,z)} dq + C$$

$$= -\frac{1}{\beta} \ln \int \left(\int_{\Sigma(\zeta)} e^{-\beta V(q)} \delta_{\xi(q)-\zeta}(dq) \right) e^{-\beta \kappa(\zeta-z)^2/2} d\zeta + C$$

$$= -\frac{1}{\beta} \ln \int e^{-\beta F(\zeta)} \chi_{\kappa}(z-\zeta) d\zeta + \widetilde{C}, \qquad \chi_{\kappa}(s) = \left(\frac{\beta \kappa}{2\pi} \right)^{d/2} e^{-\beta \kappa s^2/2}$$

$$\xrightarrow{\kappa \to +\infty} F(z)$$

Calls for taking κ large

Extended ABF

Extended overdamped Langevin dynamics (κ limits Δt ...)

$$\begin{cases} dq_t = \left[-\nabla V(q_t) + \kappa(\xi(q_t) - \lambda_t) \nabla \xi(q_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^q \\ d\lambda_t = -\kappa [\lambda_t - \xi(q_t)] dt + \sqrt{2\beta^{-1}} dW_t^{\lambda} \end{cases}$$

Bias by the free energy: add $F_\kappa'(\lambda)=$ steady state conditional average of $\kappa(\lambda-\xi(q))$

Extended ABF overdamped Langevin dynamics

$$\begin{cases} dq_t = \left[-\nabla V(q_t) + \kappa(\xi(q_t) - \lambda_t) \nabla \xi(q_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^q \\ d\lambda_t = \kappa \left[\xi(q_t) - \mathbb{E}(\xi(q_t) | \lambda_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^{\lambda} \end{cases}$$

In practice,
$$\mathbb{E}(\xi(q_t) \mid \lambda_t)$$
 is estimated by
$$\frac{\displaystyle\int_0^t \delta_{\varepsilon}(\lambda_s - \Lambda) \xi(q_s) \, ds}{\displaystyle\max\left(\eta, \int_0^t \delta_{\varepsilon}(\lambda_s - \Lambda) \, ds\right)}$$

Iterative training on modified target measures

- Interesting systems are metastable (no spontaneous exploration of phase space) Sample according to a biased distribution $\widetilde{\mu}$ (importance sampling)
- ullet Need for reweighting 11 $w(q)=\mu(q)/\widetilde{\mu}(q)$

$$\mathcal{L}(\widehat{\mu}_{\text{wght}}, \mathbf{p}) = \sum_{i=1}^{N} \widehat{w}_i \| q^i - f_{\mathbf{p}}(q^i) \|^2, \qquad \widehat{w}_i = \frac{\mu(q^i)/\widetilde{\mu}(q^i)}{\sum_{j=1}^{N} \mu(q^j)/\widetilde{\mu}(q^j)}$$

- Free-energy biasing: $\mu(q,\lambda) \propto \mathrm{e}^{-\beta V_{\mathrm{ext}}(q,\lambda)}$ and $\widetilde{\mu}(q,\lambda) \propto \mu(q,\lambda) \mathrm{e}^{\beta F_{\kappa}(\lambda)}$
- ullet lteration between free energy biasing for ξ fixed and retraining of $\xi=f_{
 m enc}$
- ullet Convergence: (linear) regression to assess whether $\xi_k pprox \Phi(\xi_{k-1})$

Gabriel Stoltz (ENPC/Inria)

 $^{^{11}\}mbox{As done in RAVE for instance, see Ribeiro/Bravo/Wang/Tiwary (2018), Wang/Ribeiro/Tiwary (2019)$

Alanine dipeptide

Molecular dynamics:

openmm with openmm-plumed to link it with plumed colvar module for eABF and computation of free energies timestep 1 fs, friction $\gamma=1~{\rm ps^{-1}}$ in Langevin dynamics

• Machine learning:

keras for autoencoder training

input = carbon backbone (realignement to reference structure and centering) neural network: topology 24-40-2-40-24, tanh activation functions

¹²See also Chen/Liu/Feng/Fu/Cai/Shao/Chipot, J. Chem. Inf. Model. (2022)

Ground truth computation

Long trajectory (1.5 $\mu {\rm s}),~N=10^6$ (frames saved every 1.5 ps)

CV close to dihedral angles Φ,Ψ

Quantify $s_{\rm min}=0.99$ for $N=10^5$ using a bootstraping procedure

For the iterative algorithm: 10 ns per iteration

(compromise between times not too short to allow for convergence of the free energy, and not too large in order to alleviate the computation cost)

Results for the iterative algorithm

iter.	regscore	(Φ, Ψ)
0	_	0.922
1	0.872	0.892
2	0.868	0.853
3	0.922	0.973
4	0.999	0.972
5	0.999	0.970
6	0.999	0.971
7	0.999	0.967
8	0.998	0.966
9	0.999	0.968

Chignolin (Folded/misfolded/unfolded states)

A semi-supervised approach for complex systems

Case study: HSP90

Chaperone protein assisting other proteins to fold properly and stabilizing them against stress, including proteins required for tumor growth

→ look for inhibitors (e.g. targeting binding region of ATP; focus only on the N-terminal domain)

29 / 32

(picture from https://en.wikipedia.org/wiki/File:Hsp90_schematic_2cg9.png)

Semi-supervised approach

Local sampling from 6 known conformations taken from the protein databank ; 10×20 ns trajectories each (in fact, States 4 and 5 can be merged)

Selecting the most relevant 2D collective variable

Free energy biasing with the resulting CV allows to observe transitions between states

On-going work on making these choices more automatic

Interested in interfaces between ML and MD?

Program March-May 2024 at University of Chicago

