ECOLE NATIONALE DES

PONTS

er CHAUSSEES

W% 1P PARIS

Error estimates in molecular dynamics

Gabriel STOLTZ
(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

Research funded by ANR SINEQ and ERC Synergy EMC2

CECAM sandpit research school

Gabriel Stoltz (ENPC/INRIA) Birmingham, July 2025

MATHe i a‘| S European Research Council

Established by the European Commission

1/42



Outline

Practical computation of static properties
@ Elements of statistical physics
@ Ergodic averages using Langevin dynamics

Standard Monte Carlo methods
@ Techniques for independent sampling
@ Error estimates

A practical introduction to stochastic differential equations
@ Brownian motion and diffusion processes
@ Discretization of stochastic differential equations
@ Langevin-type dynamics

Error estimates for Langevin dynamics
@ Numerical discretization
@ Types of errors and their scaling
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Practical computation of average
properties
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Microscopic description of physical systems: unknowns

e Microstate of a classical system of IV particles:

(Q7p) - (q17'-'aQN7 pl?"'apN) €&
Positions ¢ (configuration), momenta p (to be thought of as M¢)

e Here, periodic boundary conditions: £ = D x R3N with D = (LT)*"

e Hamiltonian H(q,p) = Exin(p) + V(q), where the kinetic energy is

mq Idg 0

1 _
Exin(p) = ipTM ', M =

0 my Idg

All the physics is contained in V
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Average properties

e Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,. .. )

Eu(p) = /g ©(q, p) p(dq dp)

e Examples of observables:

@ Pressure ¢(q,p) 3|D| Z ( —q- tiV(Q)>

o Kinetic temperature ¢(q,p) = SNk: Z P
m;

e Canonical ensemble = measure on (¢, p) (average energy fixed)

1

pnvr(dgdp) = Zydp e PP dgdp, B = e
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Computing average properties

Main issue
Computation of high-dimensional integrals... Ergodic averages

. 1

i
E#(@) = tlg—noo @ta Yt = t/o (p(qL%ps) ds

e One possible choice: Langevin dynamics with friction parameter v > 0
= Stochastic perturbation of the Hamiltonian dynamics

dgr = M 'p, dt
)
dpy = —VV (qr) dt—yM ' p dt + ,/% AW,

Almost-sure convergence of ergodic averages!

'Kliemann, Ann. Probab. 15(2), 690-707 (1987)
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Standard Monte Carlo methods
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Standard techniques to sample probability measures (1)

e The basis is the generation of numbers uniformly distributed in [0, 1]

e Deterministic sequences which look like they are random...

e Early methods: linear congruential generators (“chaotic” sequences)

T,
c—1

Tpt+1 = axy +b mod c, Uy, =

@ Known defects: short periods, point alignments, etc, which can be
(partially) patched by cleverly combining several generators

e More recent algorithms: shift registers, such as Mersenne-Twister
— defaut choice in e.g. Scilab, available in the GNU Scientific Library

e Randomness tests: various flavors
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Standard techniques to sample probability measures (2)

e Classical distributions are obtained from the uniform distribution by...
xr
@ inversion of the cumulative function F(x) :/ f(y) dy (which is
—00

an increasing function from R to [0, 1])
X=FYU)~ f(z)dx

Proof: P{a < X < b} =P{a < F~1(X) < b} =P{F(a) < U < F(b)} = F(b) — F(a) = /b f(z) dz

1
Example: exponential law of density Acfkml{zgn}, F(z) = 1{120}(1 — c’Am), so that X = 7X InU

@ change of variables: standard Gaussian G = /—21n U cos(27Us)

1 . "+o00 1 de
Proof: E(f(X,Y)) = 2—/2 f(a:,y)ef(12+y2>/2 dacdy:/ f (v/T cos 6, /T sin6) 5e7T/2 dr—
T JR: 0

27

@ using the rejection method
Find a probability density g and a constant ¢ > 1 such that 0 < f(x) < cg(x). Generate i.i.d. variables

on yn e nn s g
( ,U™) ~ g(z)dz ® U0, 1], compute r"* = ———, and accept X" if r™ > U
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Standard techniques to sample probability measures (3)

e The previous methods work only
o for low-dimensional probability measures

@ when the normalization constants of the probability density are known

e In more complex cases, one needs to resort to trajectory averages

Ergodic methods

Niter
1 n
g ") — d
Niter =il (p( ) Niter—+00 pap

e Find methods for which
@ the convergence is guaranteed? (and in which sense?)

@ error estimates are available? (typically with Central Limit Theorem)
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Standard techniques to sample probability measures (4)

e Assume that 2" ~ 7 are idependently and identically distributed (i.i.d.)

Law of Large Numbers for p € L'()

Niter
SNiger = 77 Z p(x") ——— Ex(p) = / pdm almost surely
Nlter el Niger—+00 X

Central Limit Theorem for ¢ € L?(m)

Vi (St — [ i) T2 NO.02), 7% = [ o~ Balo)f i

Niger——+00

~ g
Should be thought of as Sy, ~E; e ith G ~ N(0,1
e Should be thought of as Sy;,.. () + \/mg with G (0,1)
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A (practical) introduction to SDEs
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Langevin dynamics

e Stochastic perturbation of the Hamiltonian dynamics : friction v > 0

dgs = M~'p, dt
2
dpy = —VV (qr) dt—yM1p, dt + ,/% AW,

e Motivations
@ Ergodicity can be proved and is indeed observed in practice
@ Many useful extensions

e Aims
@ Understand the meaning of this equation
@ Understand why it samples the canonical ensemble
@ Implement appropriate discretization schemes
o Estimate the errors (systematic biases vs. statistical uncertainty)
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An intuitive view of the Brownian motion (1)

e Independant Gaussian increments whose variance is proportional to time
V0<t0<t1<<tn, Wt¢+1—Wt¢NN(07ti+l_ti)

where the increments Wy, , — W, are independent

e G ~ N(m,c?) distributed according to the probability density

g(x) = ! eXp<—(x_m)2>

oV 2T 202

e The solution of dg; = odW; can be thought of as the limit At — 0

¢ = " + oVALGT, G" ~ N(0,1) i.i.d.

where ¢" is an approximation of g,
e Note that ¢" ~ N (q°, 0?nAt)

e Multidimensional case: Wy = (Wi, ..., Wy,) where W; are independent
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An intuitive view of the Brownian motion (2)

e Analytical study of the process: law ¢(t, q) of the process at time ¢
— distribution of all possible realizations of ¢; for

@ a given initial distribution ¢(0, q), e.g. d,0

@ and all realizations of the Brownian motion

Averages at time ¢

B(ela) = | o) vit.q)da

e Partial differential equation governing the evolution of the law

Fokker-Planck equation

J2

Oy = ?A¢

Here, simple heat equation — “diffusive behavior”
Gabriel Stoltz (ENPC/INRIA) Birmingham, July 2025
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An intuitive view of the Brownian motion (3)

e Proof: Taylor expansion, beware random terms of order v/ At
o (") = (4" +oVAIG")
oAt

= p(q") + oVAIG" - Vo (") + T (G (Ve (¢)G" +0(ar?)
Taking expectations (Gaussian increments G™ independent from the current position ¢™)

oAt
2

Elp(¢"")] =E [sa (") + Ay (q”)} + O(At3/2)

(") —e(d") o2

Therefore, E [ Y - 7A(‘D (q")} — 0. On the other hand,

n+1\ _ n
. [W} = o (2le(@)) = [ el0ovitods

This leads to
0= [etwawie.ain-% [acvitadn= [ ow(owita - G aven)a

This equality holds for all observables .
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General SDEs (1)

e State of the system X € R4, m-dimensional Brownian motion, diffusion
matrix o € RIxm

dX; = b(Xy) dt + o(X;) dW; J

to be thought of as the limit as At — 0 of (X™ approximation of X, )
XM= X" 4 Ath(X™) + VALo(XMG™,  G" ~ N (0,1d,,)

e Generator

L1y, w2 _ 1 T
L=b()-V+ 5007 (@) : V2 =3 bi(@)dh + 5 > [aa (x)} OO,
e Proceeding as before, it can be shown that

o (Blex) = [ vow =B[(eo) (0] = [ (2o
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General SDEs (2)
Fokker-Planck equation

B = LTy J
where L is the adjoint of £

/X (L) (z) B(z) dz = /X () (HB) (z) da

e Invariant measures are stationary solutions of the Fokker-Planck equation

Invariant probability measure () dx

L) =0, / Yoo(z) dz =1, Yoo =0
X

e When L is elliptic (i.e. oo " has full rank: the noise is sufficiently rich),
the process can be shown to be irreducible = accessibility property

Pt<$,S)I]P)(Xt€S‘X0:fL')>O
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General SDEs (3)

e Sufficient conditions for ergodicity
@ irreducibility
@ existence of an invariant probability measure ¥ () dx

Then the invariant measure is unique and

1t
lim T/o @(Xt)dt:/xgo(:v) Voo(x) dx a.s.

T—o00

e Rate of convergence given by Central Limit Theorem: ¢ = ¢ — /gp@boo

V(%[ orsy o) 72 MO,

T—+o0

+o00
with 033 = QE[/ &(Xt){p’(Xo)dt} (proof: later, discrete time setting)
0
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SDEs: numerics (1)

e Numerical discretization: various schemes (Markov chains in all cases)

e Example: Euler—Maruyama

xntl — xn + At b(Xn) + /AtU(Xn) G™, G" N_/\/(O,Idd)

e Standard notions of error: fixed integration time T < 400
e Strong error  sup E|X" — X, a¢| < CAt®
0<n<T /At
o Weak error: sup |E[p (X™)] —E[p (Xnat)]| < CAt® (for any ¢)
0<n<T/ At
@ “mean error” vs. “error of the mean”

e Example: for Euler—Maruyama, weak order 1, strong order 1/2 (1 when
o constant)

Gabriel Stoltz (ENPC/INRIA) Birmingham, July 2025 22 /42



SDEs: numerics (2)

Niter
. . : ~ 1
e Trajectorial averages: estimator ®p,, = . E e(X™)
1ter n=1

e Numerical scheme ergodic for the probability measure 9o A/

e Two types of errors to compute averages w.r.t. invariant measure

@ Statistical error, quantified using a Central Limit Theorem

3 OAt,p
Dy, = + Gy . Gy, ~N(0,1
Nlter //‘Y SO wOO,At /Niter Nlter iter ( )

@ Systematic errors
e perfect sampling bias, related to the finiteness of At

/@woo,At_/proo’gCapAta
X X

o finite sampling bias, related to the finiteness of N,
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SDEs: numerics (3)

Expression of the asymptotic variance: correlations matter!

+o0o
Py = Varlg)+ 2 EFAMFX),  F=p- [ovma
n=1

2
where Var(y) 2/ 521/100,& Z/ <P21/Joo,At — </ 80¢oo,At>
X X X

2 e
e Note also that JQAW A KtE [/ o(X1)p(Xo) dt}
0

Proof: by the stationary property E [p(¢")(¢™)] = E [p(¢"~™)p(¢%)]

1 Niger —

1
_ 2
NiterE (<I>?vm) = > Ele@)?] + > E[p(¢")p(a™)]
Niter n=0 Niter 0<m<n< Niger—1

=E(p?)+2 > (17 - )E[so(q")w(qo)}

N.
1< Niger —1 tter
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Overdamped Langevin dynamics

e SDE on the configurational part only (momenta trivial to sample)

dqt = —VV(qt) dt + \/gth J

e Invariance of the canonical measure v(dq) = ¥o(q) dgq

Yolg) = Z71 e AV, A _/ o BV
D

1

B

e invariance of v: adjoint LTy = div, ((VV)QD + ;ng0>

o elliptic generator hence irreducibility and ergodicity

2At

g

e Generator L = -VV(q) -V, + =4,

e Discretization ¢"™! = ¢" — At VV (¢") + G" (+ Metropolization)
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Langevin dynamics (1)

e Stochastic perturbation of the Hamiltonian dynamics

dge = M~'p; dt
dps = —VV(q) dt—yM p; dt + o dW;

® v,0 may be matrices, and may depend on ¢

e Generator £ = Lyam + Lihm

dN
Loam =p" M7V, =YV () 'V, = Y L0, - 0,V ()9,
i=1 """

1 o?
Lihm = —PTMflfyTVp + 3 (O'O'T> : Vf, (: EA‘D for scalar a>
e [rreducibility can be proved (control argument)
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Langevin dynamics (2)

e Invariance of the canonical measure to conclude to ergodicity?

Fluctuation /dissipation relation

oo = —7v implies ct (e*ﬁH) =0

e Proof for scalar v, 0: a simple computation shows that

ﬁﬂam = _ﬁhama LpamH =0

1
e Overdamped Langevin analogy Linm = 7y (_pTMlvp + BAP>
— Replace ¢ by p and VV(q) by M~ 1p

TM—I
L'Ihm [exp (—BWJ)} =0

e Conclusion: £!  and EIhm both preserve e #H (@) dq dp

ham
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Langevin dynamics (3)

e Asymptotic variance U?D =, liin t Var,(@y): with Ilp = ¢ — / wdu,
—+00 £

. t s
ol = . ; (1 - ;) E, Mo(qt, pe)e(qo, po)] ds

+oo
= 2/ /(eSEHgo)Hcpduds = 2/(—£_1Hg0)Hg0du
0 E &

Well-defined provided —£® = Ily has a solution in L3(p) = L% (1)

A Central Limit Theorem holds in this case?: |@; — E,(¢) ~ %g

Vi

e Sufficient condition: integrability of the semigroup, e.g.

e[l < Ce™

—+oc0
so that — £ = / e ds
0

2R. N. Bhattacharya, Z. Wahrsch. Verw. Gebiete (1982)
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Langevin dynamics (4)

Prove exponential convergence of the semigroup e on E C L(Q)(,u)
Lyapunov techniques® L% (€) = {gp measurable, sup ‘%‘ < +oo}
standard hypocoercive* setup H'(p)
L?(u) after hypoelliptic regularization® from H* (1)
direct transfer from H'(u) to L?(u) by spectral argument®
directly” L?(u) (recently® Poincaré using 0; — Lyam)
coupling arguments®

o direct estimates on the resolvent using Schur complements!©
Rate of convergence min (’y, 7_1) SO variance ~ max (% ’\,/71)

®© 6 6 6 6 o

3Wu ('01); Mattingly/Stuart/Higham ('02); Rey-Bellet ('06); Hairer/Mattingly ('11)

*Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004),...
®Hérau, J. Funct. Anal. (2007)

®Deligiannidis/Paulin/Doucet, Ann. Appl. Probab. (2020)

"Hérau (2006), Dolbeaut/Mouhot/Schmeiser (2009, 2015)

8 Armstrong/Mourrat (2019), Cao/Lu/Wang (2019), Brigatti (2021), Brigati/Stoltz (2023)
gEberIe/GuiIIin/Zimmer, Ann. Probab. (2019)

1Bernard/Fathi/Levitt/Stoltz, Annales Henri Lebesgue (2022)
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Hamiltonian and overdamped limits

e As v — 0, the Hamiltonian dynamics is recovered

%E [H (g1, pi)] = = (E [ptTM_th] - ;Tf(M_l)> dt

Time ~ 77! to change energy levels in this limit!?

e Overdamped limit v — +o0o with M = Id: rescaling of time ~t

Ik [2
gyt — 4o = _; VV QS dS + W’yt pvt )

0

_ _/O VV(q,YS) ds + \/257_1Bt — 5 (p'yt - pU)

which converges to the solution of dQ; = —VV (Q;) dt + /281 dB;
o Alternatively, e7t(Lham+7LrD) v etlova with L,q = —VVTVq + B7A,

e In both cases, slow convergence, with rate scaling as min (q/,ﬂ/*l)

"Hairer and Pavliotis, J. Stat. Phys., 131(1), 175-202 (2008)
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Error estimates on the
computation of average properties
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Numerical integration of the Langevin dynamics (1)

e Splitting strategy: Hamiltonian part + fluctuation/dissipation

{ do= Mipar [0 5
dp; = —V'V (q;) dt dp; = —y M~ Lp, dt + ,/% AW,

e Hamiltonian part integrated using a Verlet scheme

e Analytical integration of the fluctuation/dissipation part

d (eVMiltpt) — MM (dpt + fyM_lpt dt) =4 /zge”Mlt dWy

so that .
D = ef’y]V[_ltpO + 21 ef'y]\/[_l(tfs) dW,
V 8 Jo

t t
It can be shown that / f(s)dWs ~ N (0,/ f(s)2d3>
0 0
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Numerical integration of the Langevin dynamics (2)

e Trotter splitting (define aa; = e~ YMTIAL hoose yM~tAt ~0.01 — 1)

P =t = SV,
qn+l _ qn _i_Athlpnle/Q,

-n T At mn
D +1 =p +1/2 7v‘/(q +1)

)

11—«
n+l _ ~n+1 + 2AtMGn,

p QAP 3

Error estimate on the invariant measure pa; of the numerical scheme

There exist a function f such that, for any smooth observable ¢,

/sodum=/wdu+At2/<ﬁfdu+O(At3)
£ & &

e Strang splitting: same accuracy
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Practical computation of average properties

e Numerical scheme = Markov chain characterized by evolution operator

Prip(q,p) = E(@ ("t p" ) ‘(q",p") = (q,p))
e Discretization of the Langevin dynamics: splitting strategy
1

A=M7'p-Vy  B=-VV(@):Vp O=-Mp-Vyptg

Ap

e First order splitting schemes: PZY X = eAtZeAY gAIX ~ AL

e Example: Pft’A’O corresponds to (with aa; = exp(—yM ~1At))

=" — At VV(¢"),
qn+1 _ qn + At M_lﬁn+1,

(1)
n+l __ ~n+1 1-— a2At n
P = QAP + 7ﬂ M G",

where G™ are i.i.d. standard Gaussian random variables
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Practical computation of average properties (2)
e Second order splitting P{Y XY Z = eAtZ/2eA1Y[26ALX ALY [2A12/2

e Example: P&’B’A’B’O (Verlet in the middle)

l-«
ﬁn+1/2 t/2pn At M G™,
At
pn+1/2 ﬁn+1/2 . v‘r<qn)7

qn+1 _ qn —|—AtM_1pn+1/2,

]‘)’n-‘rl _ pn+1/2 _ % VV(q”H),
ptl = am/ﬂ;nﬂ + /1_;AtM Gn+l/2,

e Other category: Geometric Langevin algorithms, e.g. PAOt’A’B’A

e Current recommendation: BAOAB scheme

B. Leimkuhler and Ch. Matthews, Appl. Math. Res. Express (2013)
N. Bou-Rabee and H. Owhadi, SIAM J. Numer. Anal. (2010)
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Types of errors

Estimators of E, ()

Niter

t
1
~Nj n n
wt=/soq,p ds, AL = § w(q",p

t Jo (4s:p5) At Niter = ( )

. : 1
Statistical error (variance of the estimator) : O <>
A]\'fitteertL

o dictated by the central limit theorem for continuous dynamics

@ discrete dynamics: asymptotic variance coincides at order At®
Bias (expectation of the estimator)
o finite time integration — bias O <

1
NiterAt
e discretization of the dynamics — bias O(At%)
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Finite time integration bias

Bias O(1/t), typically smaller than statistical error O(1/+/%)

E (P) ~Eu(p)| < 7

Key equality for the proofs: introduce —L® = Ilp and write

~ 1t
B—Eule) = ¢ [ Mol ds

> % 271 [
— 2av20) t o) | \/gt/ Vyp®(gs.ps) AWy
0

with lto calculus d®(gs, ps) = LP(gs, ps) + \/27ﬁ*1Vp<I>(qS,ps)TdWs

Also allows to prove CLT: martingale part dominant, with variance

2y
Bt Je

Gabriel Stoltz (ENPC/INRIA) Birmingham, July 2025
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Timestep discretization bias

The ergodicity of numerical schemes can be proved (D bounded):

Niter
1 - /
) EE— , d ,
Niter nzl gp(q b ) Niter—++00 gO(q p) /'L’%At(q p)

Systematic error estimates: « order of the splitting scheme

/ ©(q,p) piy,at(dg dp) = / ©(q, p) p(dg dp)
£ I

aF At® /g @(Qap)fa,v(Q»P) )U’(dq dp) A O(Ata+1)

Correction function f, , solution of an appropriate Poisson equation

ﬁ*fow =9y

where g, depends on the numerical scheme (adjoints taken on L?(p))
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Proof for the first-order scheme P{:" 4(1)

e By definition of the invariant measure, /PAtqZ) dpiy At = / ¢ dpiy,At, SO
& &

Id-P
L) o awai=o0

e In view of the BCH formula eAt4seAtd2gAtAr — oALA \yith

At
A= A1+A2+A3+—([A3,A1+Ag] [AQ,A1]>+

ey

A
it holds PO;%* = 1d + AtL + =~ (£2 + 81) + At Ry a¢ with

1 1
S = [C,A+B]+[B,A, Ria— 2/ (1= 0)2Roa; db,
0
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Proof for the first-order scheme Pgt’B’A (2)

e The correction function f7, is chosen so that

1d — PB4
[

This requirement can be rewritten as

(14 Atf1,) dp = O(A?)

1 1
0= [ (Gs0+ oy )an= [o| i1+ 2ons) dn

1
which suggests to choose L f , = —551“1 (well posed equation)

Id — pO-B-A
e Technical work to replace (A?t) ¢ by ¢
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Conclusion and perspectives
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Need for variance reduction methods

Dominant error = statistical error

Niter

g,
nop") & dp+ —2——G + ...
> wlg" ") /gcp et e

2
P

e stratification (Umbrella sampling)

Variance reduction: play on o7 (cannot play on the scaling)

@ importance sampling (replace V by V + V and reweight trajectory)
@ control variates (replace ¢ by ¢ + LP)
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