Adiabatic switching for degenerate ground states

Gabriel STOLTZ

CERMICS \& MICMAC project team, Ecole des Ponts ParisTech http://cermics.enpc.fr/~stoltz/

Outline of the talk

- Plan of the presentation
- Motivation: Green's functions in many-body perturbation theory
- Some background material
- The Gell-Mann and Low formula in a simple case
- The degenerate case
- Back to Green's functions
- References:
- C. Brouder, G. Stoltz and G. Panatı, Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example, Phys. Rev. A 72 (2008) 042102
- C. Brouder, G. Panati and G. Stoltz, Many-body Green function of degenerate systems, Phys. Rev. Lett. 103 (2009) 230401
- C. Brouder, G. Panati and G. Stoltz, Gell-Mann and Low formula for degenerate unperturbed states, Ann. I. H. Poincare-Phy 10(7) (2010) 1285-1309

Physical motivation

Green's functions

- Gell-Mann and Low formula (Phys. Rev., 1951) $\Psi_{0}=\frac{U_{\varepsilon}(0,-\infty) \Phi_{0}}{\left\langle\Phi_{0}, U_{\varepsilon}(0,-\infty) \Phi_{0}\right\rangle}$
- The two point Green's function is defined as

$$
G\left(t, r ; t^{\prime}, r^{\prime}\right)=-\mathrm{i}\left\langle\Psi_{0}, T\left[\psi_{H}(t, r) \psi_{H}^{\dagger}\left(t^{\prime} x^{\prime}\right)\right] \Psi_{0}\right\rangle
$$

where Ψ_{0} is the (unknown) ground state of some Hamiltonian $H_{0}+V$

- When the ground state Φ_{0} of H_{0} is known, G can be expressed in terms of expectations with respect to Φ_{0} using the Gell-Mann and Low formula:

$$
G\left(t, r ; t^{\prime}, r^{\prime}\right)=-\mathrm{i} \lim _{\varepsilon \rightarrow 0} \frac{\left\langle\Phi_{0}, T\left[\psi_{H}(t, r) \psi_{H}^{\dagger}\left(t^{\prime} x^{\prime}\right) U_{\varepsilon}(+\infty,-\infty)\right] \Phi_{0}\right\rangle}{\left.\left\langle\Phi_{0}, U_{\varepsilon}(+\infty,-\infty)\right] \Phi_{0}\right\rangle}
$$

- Formal expansions in terms of free-field Green's functions using Wick's theorem (Feynman diagrams)

Gell-Mann and Low formula

The Gell-Mann and Low switching procedure requires some care when the ground state is degenerate... and this happens in many situations!

A pedagogical example

- Simplest possible system: Hamiltonian $H(t)=H_{0}+\mathrm{e}^{-\varepsilon|t|} H_{1}$ with

$$
H_{0}=\left(\begin{array}{cc}
\mu-\delta & 0 \\
0 & \mu+\delta
\end{array}\right), \quad H_{1}=\left(\begin{array}{cc}
0 & \alpha \\
\alpha & 0
\end{array}\right)
$$

- Analytical computations can be performed
- The switching procedure is well defined when $\delta \neq 0$
- The switching procedure fails for almost all initial states when $\delta=0$, and can be defined for two specific states only!

First, some background material...

Quantum description of molecular systems

- Fixed nuclei of charges z_{m} located at $R_{m} \in \mathbb{R}^{3}$ (Born-Oppenheimer approximation)
- Wavefunction $\psi\left(\left(x_{1}, \sigma_{1}\right), \ldots,\left(x_{N}, \sigma_{N}\right)\right) \in \bigwedge_{i=1}^{N} \mathrm{~L}^{2}\left(\mathbb{R}^{3} \times\{-1,1\}\right)$ with

$$
\|\psi\|_{\mathrm{L}^{2}}=1
$$

- The spin variable will be omitted in the sequel
- Hamiltonian operator (in atomic units)

$$
H=\sum_{i=1}^{N}\left(-\frac{1}{2} \Delta_{x_{i}}+V_{\mathrm{nuc}}\left(x_{i}\right)\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}
$$

with domain $D(H)=\bigwedge_{i=1}^{N} \mathrm{H}^{2}\left(\mathbb{R}^{3}\right) \subset \mathcal{H}=\bigwedge_{i=1}^{N} \mathrm{~L}^{2}\left(\mathbb{R}^{3}\right)$ and where

$$
V_{\mathrm{nuc}}(x)=-\sum_{m=1}^{M} \frac{z_{m}}{\left|x-R_{m}\right|}
$$

Spectrum of a linear operator (1)

- Linear operator $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space, with dense domain $D(A)$
- A is injective if $\operatorname{Ker}(A)=\{\phi \in D(A) \mid A \phi=0\}=\{0\}$
- If A is injective, it is possible to define its inverse, which is an operator with domain

$$
D\left(A^{-1}\right)=\operatorname{Ran}(A)=\{\psi \in \mathcal{H} \mid \exists \phi \in D(A), \psi=A \phi\}
$$

such that $\phi=A^{-1} \psi \Leftrightarrow \psi=A \phi$

- A is invertible if it has a bounded inverse defined on $D\left(A^{-1}\right)=\mathcal{H}$
- If A is closed and one-to-one $D(A) \rightarrow \mathcal{H}$, the operator $A^{-1}: \mathcal{H} \rightarrow D(A)$ is automatically bounded by the closed graph theorem
- Resolvent set $\rho(A)=$ (open) set of $\lambda \in \mathbb{C}$ such that $\lambda-A$ is invertible
- The spectrum $\sigma(A)=\mathbb{C} \backslash \rho(A)$ is closed

Spectrum of a linear operator (2)

- The spectrum can be decomposed as $\sigma(A)=\sigma_{\mathrm{p}}(A) \cup \sigma_{\mathrm{r}}(A) \cup \sigma_{\mathrm{c}}(A)$, where ("by decreasing defaults of invertibility")
- $\lambda \in \sigma_{p}(A)$ iff $\operatorname{Ker}(\lambda-A) \neq\{0\}$ [eigenvalues]
- $\lambda \in \sigma_{r}(A)$ iff $\lambda-A$ is injective but $\overline{\operatorname{Ran}(\lambda-A)} \neq \mathcal{H}$ [the inverse is not uniquely defined]
- $\lambda \in \sigma_{c}(A)$ iff $\lambda-A$ is injective, $\overline{\operatorname{Ran}(\lambda-A)}=\mathcal{H}$ but $\operatorname{Ran}(\lambda-A) \neq \mathcal{H}$ [the inverse is unbounded with dense domain; generalized eigenvalues]
- Other decomposition: $\sigma(A)=\sigma_{\mathrm{d}}(A) \cup \sigma_{\text {ess }}(A)$, where the discrete spectrum $\sigma_{\mathrm{d}}(A) \subset \sigma_{\mathrm{p}}(A)=$ isolated eigenvalues of finite multiplicity
- Examples (necessarily infinite dimensional)
- Residual spectrum: shift operator τ_{d} on $l^{2}(\mathbb{N}, \mathbb{C})$ with

$$
\tau_{\mathrm{d}}\left(z_{0}, z_{1}, z_{2}, \ldots\right)=\left(0, z_{0}, z_{1}, \ldots\right)
$$

- Continuous spectrum: $A \psi(x)=x \psi(x)$ on $\mathrm{L}^{2}(\mathbb{R})$

Spectrum of self-adjoint operators

- Adjoint of an unbounded operator = closed operator with domain

$$
\begin{aligned}
D\left(A^{*}\right) & =\left\{\phi \in \mathcal{H}\left|\forall \psi \in D(A),|\langle A \psi, \phi\rangle| \leq C_{\phi}\|\psi\|\right\}\right. \\
& =\{\phi \in \mathcal{H} \mid \exists \varphi \in \mathcal{H}, \forall \psi \in D(A),\langle A \psi, \phi\rangle=\langle\psi, \varphi\rangle\}
\end{aligned}
$$

defined by $A^{*} \phi=\varphi$

- Symmetric operator: $\forall(\phi, \psi) \in D(A)^{2},\langle A \phi, \psi\rangle=\langle\phi, A \psi\rangle$ (i.e. $A \subset A^{*}$)
- A symmetric operator is self-adjoint if $A=A^{*}$ (i.e. $D(A)=D\left(A^{*}\right)$)
- For self-adjoint operators, $\sigma(A) \subset \mathbb{R}$ and $\sigma_{\mathrm{r}}(A)=\emptyset$
- An operator V is H_{0}-bounded if $D\left(H_{0}\right) \subset D(V)$ and

$$
\forall \phi \in D\left(H_{0}\right), \quad\|V \phi\| \leq a\left\|H_{0} \phi\right\|+b\|\phi\|
$$

- Kato-Rellich criterion: If H_{0} is self-adjoint and V is symmetric and H_{0}-bounded with relative bound $a<1$, then $H=H_{0}+V$ defined on $D(H)=D\left(H_{0}\right)$ is self-adjoint

Important example: the molecular Hamiltonian

- Consider $D\left(H_{0}^{N}\right)=\bigwedge_{i=1}^{N} \mathrm{H}^{2}\left(\mathbb{R}^{3}\right)$

$$
H_{0}^{N}=\sum_{i=1}^{N}\left(-\frac{1}{2} \Delta_{x_{i}}+V_{\mathrm{nuc}}\left(x_{i}\right)\right), \quad V^{N}=\sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}
$$

- (Kato) Using the Hardy inequality

$$
\forall \phi \in \mathrm{H}^{1}\left(\mathbb{R}^{3}\right), \quad \int_{\mathbb{R}^{3}} \frac{|\phi(x)|^{2}}{|x|^{2}} d x \leq 4 \int_{\mathbb{R}^{3}}|\nabla \phi(x)|^{2} d x,
$$

it can be shown that $H^{N}=H_{0}^{N}+V^{N}$ is self-adjoint on $\mathcal{H}_{N}=\bigwedge_{i=1}^{N} \mathrm{~L}^{2}\left(\mathbb{R}^{3}\right)$

- HVZ theorem: $\sigma_{\text {ess }}\left(H^{N}\right)=\left[E^{N-1},+\infty[\right.$, where

$$
E^{N-1}=\inf \sigma\left(H^{N-1}\right)
$$

- If $N<Z+1$, then there are infinitely many eigenvalues of finite multiplicity below the essential spectrum

The Gell-Mann and Low formula in a simple case

Switching procedure (1)

- Consider, on a given Hilbert space \mathcal{H},
- a self-adjoint operator H_{0}, with dense domain $D\left(H_{0}\right) \subset \mathcal{H}$
- a symmetric perturbation V, H_{0}-bounded with relative bound $a<1$.
- define $\widetilde{H}(\lambda)=H_{0}+\lambda V$ with $\lambda \in[0,1]$
- Switching function $f \in \mathrm{C}^{2}((-\infty, 0],[0,1])$
- non-decreasing
- $f, f^{\prime \prime} \in L^{1}((-\infty, 0])$
- $f(0)=1$ and $\lim _{\tau \rightarrow-\infty} f(\tau)=0$
- for $\tau \in(-\infty, 0]$, define $H(\tau)=\widetilde{H}(f(\tau))=H_{0}+f(\tau) V$
- Denote by $U_{\varepsilon}\left(s, s_{0}\right)$ the unitary evolution generated by $H(\varepsilon s)$, i.e. the unique solution of the problem:

$$
\mathrm{i} \frac{d U_{\varepsilon}\left(s, s_{0}\right)}{d s}=H(\varepsilon s) U_{\varepsilon}\left(s, s_{0}\right), \quad U_{\varepsilon}\left(s_{0}, s_{0}\right)=\mathbb{I}
$$

Switching procedure (2)

- Divergent phase as $\varepsilon \rightarrow 0$! Consider $V=0$ and ϕ an eigenstate of H_{0} :

$$
U_{\varepsilon}\left(s, s_{0}\right) \phi=\exp \left(-\frac{\mathrm{i} E_{0}\left(s-s_{0}\right)}{\varepsilon}\right) \phi
$$

- Remove divergence by working in the interaction picture:

$$
U_{\varepsilon, \operatorname{int}}\left(s, s_{0}\right)=\mathrm{e}^{\mathrm{i} s H_{0}} U_{\varepsilon}\left(s, s_{0}\right) \mathrm{e}^{-\mathrm{i} s_{0} H_{0}}
$$

- Macroscopic time $t=\varepsilon s$: unitary evolution

$$
\mathrm{i} \varepsilon \frac{d U^{\varepsilon}\left(t, t_{0}\right)}{d t}=H(t) U^{\varepsilon}\left(t, t_{0}\right), \quad U^{\varepsilon}\left(t_{0}, t_{0}\right)=\mathbb{I}
$$

so that, in the interaction picture, $U_{\text {int }}^{\varepsilon}\left(t, t_{0}\right)=\mathrm{e}^{\mathrm{i} t H_{0} / \varepsilon} U^{\varepsilon}\left(t, t_{0}\right) \mathrm{e}^{-\mathrm{i} t_{0} H_{0} / \varepsilon}$

- Standard results show that, for $\psi \in D\left(H_{0}\right)$, the following limit exists:

$$
U_{\mathrm{int}}^{\varepsilon}(t,-\infty) \psi=\lim _{t_{0} \rightarrow-\infty} U_{\mathrm{int}}^{\varepsilon}\left(t, t_{0}\right) \psi
$$

Structure of the spectrum

- In order for eigenstates to be stable during the switching procedure, some gap conditions are required
- The spectrum of $\widetilde{H}(\lambda)=H_{0}+\lambda V, \lambda \in[0,1]$, consists of two disconnected pieces

$$
\sigma(\widetilde{H}(\lambda))=\sigma_{N}(\lambda) \cup\left(\sigma(\widetilde{H}(\lambda)) \backslash \sigma_{N}(\lambda)\right)
$$

where $\sigma_{N}(\lambda)=\left\{\widetilde{E}_{j}(\lambda), j=1, \ldots, N\right\} \subset \sigma_{\text {disc }}(\widetilde{H}(\lambda))$

- There is a uniform gap between the two parts of the spectrum, and between the elements of $\sigma_{N}(\lambda)$, in the sense that:

$$
\begin{gathered}
\Delta(\lambda)=\min _{j=1, \ldots, N}\left(\min \left\{\left|\widetilde{E}_{j}(\lambda)-E\right|, E \in \sigma(H(\lambda)) \backslash\left\{\widetilde{E}_{1}(\lambda), \ldots, \widetilde{E}_{N}(\lambda)\right\}\right\}\right), \\
\delta(\lambda)=\min \left\{\left|\widetilde{E}_{j}(\lambda)-\widetilde{E}_{i}(\lambda)\right|, 1 \leq i<j \leq N\right\}
\end{gathered}
$$

are bounded from below by a positive constant for all $\lambda \in[0,1]$

The Gell-Mann and Low formula

- For simplicity, eigenvalues $E_{j}(\tau)=\widetilde{E}_{j}(f(\tau))$ of multiplicity 1
- Then, for an eigenstate ψ_{j} of H_{0} associated with $E_{j}(-\infty)$, if

$$
\left\|P_{j}(-\infty)-P_{j}(0)\right\|<1
$$

the limit

$$
\Psi_{j}=\lim _{\varepsilon \rightarrow 0} \frac{U_{\mathrm{int}}^{\varepsilon}(0,-\infty) \psi_{j}}{\left\langle\psi_{j} \mid U_{\mathrm{int}}^{\varepsilon}(0,-\infty) \psi_{j}\right\rangle}
$$

exists and is an eigenstate of $H_{0}+V$ corresponding to the eigenvalue $E_{j}(0)=\widetilde{E}_{j}(1)$

- First proof due to Nenciu and Rasche (Helvetica Physica Acta, 1989)
- Extension to the case of eigenspaces of multiplicity higher than 1 provided some direction ϕ exists such that the denominator does not vanish...

First step of the proof: Geometric evolution

- Kato intertwining operator: $\frac{d \widetilde{A}\left(\lambda, \lambda_{0}\right)}{d \lambda}=\widetilde{K}(\lambda) \widetilde{A}\left(\lambda, \lambda_{0}\right)$ with $\widetilde{A}\left(\lambda_{0}, \lambda_{0}\right)=\mathbb{I}$
- Generator $\widetilde{K}(\lambda)=-\sum_{j=1}^{N+1} \widetilde{P}_{j}(\lambda) \frac{d \widetilde{P}_{j}}{d \lambda}(\lambda)$, with $\widetilde{P}_{N+1}(\lambda)=\mathbb{I}-\sum_{j=1}^{N} \widetilde{P}_{j}(\lambda)$
- Since $\widetilde{K}(\lambda)$ is uniformly bounded (gap, hence projectors smooth), the operator $\widetilde{A}\left(\lambda, \lambda_{0}\right)$ is well-defined and strongly continuous
- $\widetilde{A}\left(\lambda, \lambda_{0}\right)$ is unitary (since $K^{*}=-K$), and intertwines the spectral subspaces:

$$
\widetilde{P}_{j}(\lambda)=\widetilde{A}\left(\lambda, \lambda_{0}\right) \widetilde{P}_{j}\left(\lambda_{0}\right) \widetilde{A}\left(\lambda, \lambda_{0}\right)^{*}
$$

- Denoting by $A\left(s, s_{0}\right)=\widetilde{A}\left(f(s), f\left(s_{0}\right)\right)$,

$$
P_{j}(0) A(0,-\infty) \psi_{j}=A(0,-\infty) P_{j}(-\infty) \psi_{j}=A(0,-\infty) \psi_{j},
$$

so that $A(0,-\infty) \psi_{j}$ is an eigenstate of $H(0)=H_{0}+V$

Second step: Adiabatic evolution (adding the dynamical phase)

- Adiabatic evolution operator $U_{\mathrm{A}}\left(s, s_{0}\right)$ is defined as the unique solution of

$$
\mathrm{i} \frac{d U_{\mathrm{A}}\left(s, s_{0}\right)}{d s}=H_{\mathrm{A}}(s) U_{\mathrm{A}}\left(s, s_{0}\right), \quad U_{\mathrm{A}}\left(s_{0}, s_{0}\right)=\mathbb{I}
$$

where the adiabatic Hamiltonian is $H_{\mathrm{A}}(s)=H(s)+\mathrm{i} K(s)$

- U_{A} is also an intertwiner
- A and U_{A} differ only by a phase, which commutes with the spectral projectors: Define

$$
\Phi\left(s, s_{0}\right)=A\left(s, s_{0}\right)^{*} U_{\mathrm{A}}\left(s, s_{0}\right)
$$

so that $U_{\mathrm{A}}\left(s, s_{0}\right)=A\left(s, s_{0}\right) \Phi\left(s, s_{0}\right)$. Then, $\left[\Phi\left(s, s_{0}\right), P_{j}\left(s_{0}\right)\right]=0$

- The time-evolution of the phase matrix is then easily obtained and

$$
U_{\mathrm{A}}\left(s, s_{0}\right) P_{j}\left(s_{0}\right)=\exp \left(-\mathrm{i} \int_{s_{0}}^{s} E_{j}(r) d r\right) A\left(s, s_{0}\right) P_{j}\left(s_{0}\right)
$$

Second step: Adiabatic evolution (rescaling the dynamical phase)

- Important again to work in the interaction picture to remove the divergent (dynamical) phase: $\quad U_{\mathrm{A}, \text { int }}\left(s, s_{0}\right)=\mathrm{e}^{\mathrm{i} s H_{0}} U_{\mathrm{A}}\left(s, s_{0}\right) \mathrm{e}^{-\mathrm{i} s_{0} H_{0}}$
- It can be shown, through some limiting procedure, that

$$
U_{\mathrm{A}, \mathrm{int}}(0,-\infty) P_{j}(-\infty)=\exp \left(-\mathrm{i} \int_{-\infty}^{0} E_{j}(r)-E_{0} d r\right) A(0,-\infty) P_{j}(-\infty)
$$

- Phase well-defined since $\left|E_{j}(r)-E_{0}\right|=\left|\widetilde{E}_{j}(f(r))-\widetilde{E}_{j}(0)\right| \leq C f(r)$
- In the time-rescaled variable $t=\varepsilon s$,

$$
U_{\mathrm{A}, \text { int }}^{\varepsilon}(0,-\infty) P_{j}(-\infty)=\exp \left(-\frac{\mathrm{i}}{\varepsilon} \int_{-\infty}^{0} E_{j}(\tau)-E_{0} d \tau\right) A(0,-\infty) P_{j}(-\infty) .
$$

- Eliminate the phase using

$$
\frac{P_{j}(0) \psi_{j}}{\left\|P_{j}(0) \psi_{j}\right\|^{2}}=\frac{A(0,-\infty) \psi_{j}}{\left\langle\psi_{j} \mid A(0,-\infty) \psi_{j}\right\rangle}=\frac{U_{\mathrm{A}, \text { int }}^{\varepsilon}(0,-\infty) \psi_{j}}{\left\langle\psi_{j} \mid U_{\mathrm{A}, \mathrm{int}}^{\varepsilon}(0,-\infty) \psi_{j}\right\rangle},
$$

Third step: Adiabatic limit of the full evolution

- Compare the adiabatic and full evolutions in the rescaled time-variable:

$$
\mathrm{i} \varepsilon \frac{d U_{\mathrm{A}}^{\varepsilon}\left(t, t_{0}\right)}{d t}=(H(t)+\mathrm{i} \varepsilon K(t)) U_{\mathrm{A}}^{\varepsilon}\left(t, t_{0}\right), \quad \mathrm{i} \varepsilon \frac{d U^{\varepsilon}\left(t, t_{0}\right)}{d t}=H(t) U^{\varepsilon}\left(t, t_{0}\right)
$$

- Prove the uniform convergence $\lim _{\varepsilon \rightarrow 0}\left\|U^{\varepsilon}(0,-\infty)-U_{\mathrm{A}}^{\varepsilon}(0,-\infty)\right\|=0$ (although $U^{\varepsilon}(0,-\infty), U_{\mathrm{A}}^{\varepsilon}(0,-\infty)$ do not have limits as $\varepsilon \rightarrow 0$)
- Strategy from (Teufel, Adiabatic perturbation theory in quantum dynamics, 2003):

$$
U^{\varepsilon}\left(t, t_{0}\right)-U_{\mathrm{A}}^{\varepsilon}\left(t, t_{0}\right)=-U^{\varepsilon}\left(t, t_{0}\right) \int_{t_{0}}^{t} U^{\varepsilon}\left(t_{0}, t^{\prime}\right) K\left(t^{\prime}\right) U_{\mathrm{A}}^{\varepsilon}\left(t^{\prime}, t_{0}\right) d t^{\prime}
$$

- Define $\mathcal{K}(t)=-\mathrm{i} \varepsilon U^{\varepsilon}\left(t_{0}, t\right) F(t) U^{\varepsilon}\left(t, t_{0}\right)$ with $[H(t), F(t)]=K(t)$. Then

$$
\mathcal{K}^{\prime}(t)=U^{\varepsilon}\left(t_{0}, t\right)[H(t), F(t)] U^{\varepsilon}\left(t, t_{0}\right)-\mathrm{i} \varepsilon U^{\varepsilon}\left(t_{0}, t\right) F^{\prime}(t) U^{\varepsilon}\left(t, t_{0}\right)
$$

- Similar to $\int_{0}^{t} \mathrm{e}^{-i \tau / \varepsilon} d \tau=\mathrm{i} \varepsilon\left(\mathrm{e}^{-\mathrm{i} t / \varepsilon}-1\right)=$ highly oscillatory integral

Third step: Adiabatic limit of the full evolution (2)

- Expression of $F(t)$: useful to keep track of the dependence on the gap (required to understand the degenerate case)

$$
F(t)=-\frac{1}{2}\left(\sum_{j=1}^{N+1} F_{j}(t)+G_{j}(t)\right), \quad F_{j}(t)=\frac{1}{2 \mathrm{i} \pi} \oint_{\Gamma_{j}(t)} P_{j}^{\perp}(t) R(z, t) \dot{R}(z, t) d z
$$

where $R(z, t)=(H(t)-z)^{-1}$ and $\Gamma_{j}(t)$ is a contour enclosing $E_{j}(t)$ and no other element of the spectrum

- Similar definitions for G_{j}, F_{N+1}, G_{N+1}
- Bounds $\|F(t)\| \leq C_{F} \frac{f^{\prime}(t)}{f(t)}$ and

$$
\int_{t_{0}}^{t}\left\|F^{\prime}\right\| \leq C\left(\frac{1}{f\left(t_{0}\right)} \int_{t_{0}}^{t}\left(\left|f^{\prime \prime}\right|+\left(f^{\prime}\right)^{2}\right)+\frac{1}{f\left(t_{0}\right)^{2}} \int_{t_{0}}^{t}\left(f^{\prime}\right)^{2}\right)
$$

The degenerate case

Structure of the spectrum

- Initial state is degenerate: $\widetilde{E}_{j}(0)=\widetilde{E}_{k}(0)$ for all $1 \leq j, k \leq N$
- Degeneracy splitting (for simplicity): $\mathcal{P}_{0} V \mathcal{P}_{0}$ has non-degenerate eigenvalues and for any $\lambda^{*}>0$, there exists α such that

$$
\inf _{\lambda^{*} \leq \lambda \leq 1} \min _{k \neq l}\left|\widetilde{E}_{k}(\lambda)-\widetilde{E}_{l}(\lambda)\right| \geq \alpha>0
$$

- Let $\left(\psi_{1}, \ldots, \psi_{N}\right)$ be an basis of \mathcal{E}_{0} which diagonalizes the bounded operator $\left.\mathcal{P}_{0} V \mathcal{P}_{0}\right|_{\mathcal{E}_{0}}$. Then, if $\left\|P_{j}(-\infty)-P_{j}(0)\right\|<1$, the limit

$$
\Psi_{j}=\lim _{\varepsilon \rightarrow 0} \frac{U_{\mathrm{int}}^{\varepsilon}(0,-\infty) \psi_{j}}{\left\langle\psi_{j} \mid U_{\mathrm{int}}^{\varepsilon}(0,-\infty) \psi_{j}\right\rangle}
$$

exists and is an eigenstate of $H_{0}+V$ corresponding to $E_{j}(0)=\widetilde{E}_{j}(1)$

- Several extensions: decomposition to avoid the condition $\left\|P_{j}(-\infty)-P_{j}(0)\right\|<1$; extension the case when $\left.\mathcal{P}_{0} V \mathcal{P}_{0}\right|_{\mathcal{E}_{0}}$ has degenerate eigenvalues; existence of finitely many eigenvalue crossings

Characterization of the initial states

- Theorem II. 6.1 in (Kato, Perturbation Theory for Linear Operators) shows that the eigenvalues \widetilde{E}_{j} and projectors \widetilde{P}_{j} are analytic functions of λ
- Initial states defined from $P_{j}^{\text {init }}:=\widetilde{A}(0, \lambda) \widetilde{P}_{j}(\lambda) \widetilde{A}(\lambda, 0)$. Characterization?
- Eigenvectors satisfy $\widetilde{H}(\lambda) \phi_{j}(\lambda)=\widetilde{E}_{j}(\lambda) \phi_{j}(\lambda)$ with

$$
\widetilde{E}_{j}(\lambda)=\sum_{n=0}^{+\infty} \lambda^{n} E_{j, n}, \quad \phi_{j}(\lambda)=\sum_{n=0}^{+\infty} \lambda^{n} \varphi_{j, n}
$$

- Hierarchy of equations. First order condition

$$
\left(H_{0}-E_{0}\right) \varphi_{j, 1}=\left(E_{j, 1}-V\right) \varphi_{j, 0}
$$

- A necessary condition for this equation to have a solution is that the right-hand side belongs to \mathcal{E}_{0}^{\perp}
- This requires $E_{j, 1}=\left\langle\varphi_{j, 0}, V \varphi_{j, 0}\right\rangle$ and $\forall k \neq j,\left\langle\varphi_{k, 0}, V \varphi_{j, 0}\right\rangle=0$ so that the basis diagonalizes $\left.\mathcal{P}_{0} V \mathcal{P}_{0}\right|_{\mathcal{E}_{0}}$

Adiabatic limit

- Geometric and adiabatic evolutions: unchanged (the regularity of the projectors follows from the analytic continuation at $\lambda=0$)
- Adiabatic limit: decomposition of the evolution into

$$
\begin{aligned}
U^{\varepsilon}\left(0, t_{0}\right)-U_{\mathrm{A}}^{\varepsilon}\left(0, t_{0}\right)= & -U^{\varepsilon}\left(0, t_{0}\right) \int_{t_{0}}^{T} U^{\varepsilon}\left(t_{0}, t\right) K(t) U_{\mathrm{A}}^{\varepsilon}\left(t, t_{0}\right) d t \\
& -U^{\varepsilon}\left(0, t_{0}\right) \int_{T}^{0} U^{\varepsilon}\left(t_{0}, t\right) K(t) U_{\mathrm{A}}^{\varepsilon}\left(t, t_{0}\right) d t
\end{aligned}
$$

- an evolution on $[T, 0]$, for Hamiltonians operators with (small) gaps of order $f(T)$; bound in $C \varepsilon\left(1+f(T)^{-2}\right)$
- an evolution on the time-frame $(-\infty, T]$, with T small enough so that the unitary evolutions are not very different; bound in $C f(T)$
- choose T such that $f(T)=\varepsilon^{1 / 3}$ to have a final bound in $\varepsilon^{1 / 3}$

Physical extensions

Application to Green's functions (formal)

- Operator A expressed in the Heisenberg picture $A_{\text {hsnbrg }}(t)=\mathrm{e}^{\mathrm{i} t H} A \mathrm{e}^{-\mathrm{i} t H}$ and, in the interaction picture, $A_{\text {int }}(t)=\mathrm{e}^{\mathrm{i} t H_{0}} A \mathrm{e}^{-\mathrm{i} t H_{0}}$
- Correlation function $C_{A, B}\left(t, t^{\prime}\right)=\langle\psi| T\left[A_{\mathrm{hsnbrg}}(t) B_{\mathrm{hsnbrg}}\left(t^{\prime}\right)\right]|\psi\rangle$
- Technical lemma: For fixed t, t^{\prime},

$$
\mathrm{s}-\lim _{\varepsilon \rightarrow 0} U_{\varepsilon, \text { int }}(t, 0)^{*} A_{\mathrm{int}}(t) U_{\varepsilon, \text { int }}\left(t, t^{\prime}\right) B_{\mathrm{int}}\left(t^{\prime}\right) U_{\varepsilon, \text { int }}\left(t^{\prime}, 0\right)=A_{\mathrm{hsnbrg}}(t) B_{\mathrm{hsnbrg}}\left(t^{\prime}\right)
$$

- Using the Gell-Mann and Low formula, it can then be shown that

$$
C_{A, B}\left(t, t^{\prime}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\left\langle\psi_{0}\right| T\left[A_{\text {int }}(t) B_{\text {int }}\left(t^{\prime}\right) U_{\varepsilon, \text { int }}(+\infty,-\infty)\right]\left|\psi_{0}\right\rangle}{\left\langle\psi_{0}\right| U_{\varepsilon, \text { int }}(+\infty,-\infty)\left|\psi_{0}\right\rangle} .
$$

- Formal extension to the case when A, B are field operators
- Basis for a perturbative treatment of the Green's function, where the operators $U_{\varepsilon, \text { int }}(+\infty,-\infty)$ in the numerator and denominator are expanded using Feynman diagrams.

