Adiabatic switching for degenerate ground states

Gabriel STOLTZ

CERMICS & MICMAC project team, Ecole des Ponts ParisTech http://cermics.enpc.fr/~stoltz/

Outline of the talk

- Plan of the presentation
 - Motivation: Green's functions in many-body perturbation theory
 - Some background material
 - The Gell-Mann and Low formula in a simple case
 - The degenerate case
 - Back to Green's functions
- References:
 - C. BROUDER, G. STOLTZ AND G. PANATI, Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example, *Phys. Rev. A* 72 (2008) 042102
 - C. BROUDER, G. PANATI AND G. STOLTZ, Many-body Green function of degenerate systems, *Phys. Rev. Lett.* 103 (2009) 230401
 - C. BROUDER, G. PANATI AND G. STOLTZ, Gell-Mann and Low formula for degenerate unperturbed states, Ann. I. H. Poincare-Phy 10(7) (2010) 1285-1309

– p. 2/28

Physical motivation

- Gell-Mann and Low formula (*Phys. Rev.*, 1951) $\Psi_0 = \frac{U_{\varepsilon}(0, -\infty)\Phi_0}{\langle \Phi_0, U_{\varepsilon}(0, -\infty)\Phi_0 \rangle}$
- The two point Green's function is defined as

$$G(t,r;t',r') = -i \left\langle \Psi_0, T[\psi_H(t,r)\psi_H^{\dagger}(t'x')]\Psi_0 \right\rangle$$

where Ψ_0 is the (unknown) ground state of some Hamiltonian $H_0 + V$

• When the ground state Φ_0 of H_0 is known, G can be expressed in terms of expectations with respect to Φ_0 using the Gell-Mann and Low formula:

$$G(t,r;t',r') = -i\lim_{\varepsilon \to 0} \frac{\left\langle \Phi_0, T[\psi_H(t,r)\psi_H^{\dagger}(t'x')U_{\varepsilon}(+\infty,-\infty)]\Phi_0 \right\rangle}{\left\langle \Phi_0, U_{\varepsilon}(+\infty,-\infty)\right]\Phi_0 \right\rangle}$$

 Formal expansions in terms of free-field Green's functions using Wick's theorem (Feynman diagrams) The Gell-Mann and Low switching procedure requires some care when the ground state is degenerate... and this happens in many situations!

 $s = \varepsilon t$

• Simplest possible system: Hamiltonian $H(t) = H_0 + e^{-\varepsilon |t|} H_1$ with

$$H_0 = \begin{pmatrix} \mu - \delta & 0 \\ 0 & \mu + \delta \end{pmatrix}, \qquad H_1 = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}.$$

- Analytical computations can be performed
- The switching procedure is well defined when $\delta \neq 0$
- The switching procedure fails for almost all initial states when $\delta = 0$, and can be defined for two specific states only!

First, some background material...

Quantum description of molecular systems

- Fixed nuclei of charges z_m located at $R_m ∈ ℝ^3$ (Born-Oppenheimer approximation)
- Wavefunction $\psi((x_1, \sigma_1), \dots, (x_N, \sigma_N)) \in \bigwedge_{i=1}^N L^2(\mathbb{R}^3 \times \{-1, 1\})$ with

$$\|\psi\|_{L^2} = 1$$

- The spin variable will be omitted in the sequel
- Hamiltonian operator (in atomic units)

$$H = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{x_i} + V_{\text{nuc}}(x_i) \right) + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

with domain $D(H) = \bigwedge_{i=1}^{N} \mathrm{H}^{2}(\mathbb{R}^{3}) \subset \mathcal{H} = \bigwedge_{i=1}^{N} \mathrm{L}^{2}(\mathbb{R}^{3})$ and where

$$V_{\rm nuc}(x) = -\sum_{m=1}^{M} \frac{z_m}{|x - R_m|}$$

Spectrum of a linear operator (1)

- Linear operator $A : D(A) \subset \mathcal{H} \to \mathcal{H}$ on a Hilbert space, with dense domain D(A)
- A is injective if $\operatorname{Ker}(A) = \{\phi \in D(A) \mid A\phi = 0\} = \{0\}$
- If A is injective, it is possible to define its inverse, which is an operator with domain

$$D(A^{-1}) = \operatorname{Ran}(A) = \left\{ \psi \in \mathcal{H} \mid \exists \phi \in D(A), \ \psi = A\phi \right\}$$

such that $\phi = A^{-1}\psi \Leftrightarrow \psi = A\phi$

- A is invertible if it has a bounded inverse defined on $D(A^{-1}) = \mathcal{H}$
- If A is closed and one-to-one $D(A) \to \mathcal{H}$, the operator $A^{-1} : \mathcal{H} \to D(A)$ is automatically bounded by the closed graph theorem
- Resolvent set $\rho(A)$ = (open) set of $\lambda \in \mathbb{C}$ such that λA is invertible
- The spectrum $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is closed

Spectrum of a linear operator (2)

- The spectrum can be decomposed as $\sigma(A) = \sigma_p(A) \cup \sigma_r(A) \cup \sigma_c(A)$, where ("by decreasing defaults of invertibility")
 - $\lambda \in \sigma_p(A)$ iff $\operatorname{Ker}(\lambda A) \neq \{0\}$ [eigenvalues]
 - $\lambda \in \sigma_r(A)$ iff λA is injective but $\overline{\operatorname{Ran}(\lambda A)} \neq \mathcal{H}$ [the inverse is not uniquely defined]
 - λ ∈ σ_c(A) iff λ − A is injective, Ran(λ − A) = H but Ran(λ − A) ≠ H
 [the inverse is unbounded with dense domain; generalized
 eigenvalues]
- Other decomposition: $\sigma(A) = \sigma_d(A) \cup \sigma_{ess}(A)$, where the discrete spectrum $\sigma_d(A) \subset \sigma_p(A)$ = isolated eigenvalues of finite multiplicity
- Examples (necessarily infinite dimensional)
 - Residual spectrum: shift operator τ_d on $l^2(\mathbb{N}, \mathbb{C})$ with $\tau_d(z_0, z_1, z_2, ...) = (0, z_0, z_1, ...)$
 - Continuous spectrum: $A\psi(x) = x\psi(x)$ on $L^2(\mathbb{R})$

Spectrum of self-adjoint operators

Adjoint of an unbounded operator = closed operator with domain

$$D(A^*) = \left\{ \phi \in \mathcal{H} \mid \forall \psi \in D(A), \mid \langle A\psi, \phi \rangle \mid \leq C_{\phi} \parallel \psi \parallel \right\}$$
$$= \left\{ \phi \in \mathcal{H} \mid \exists \varphi \in \mathcal{H}, \forall \psi \in D(A), \langle A\psi, \phi \rangle = \langle \psi, \varphi \rangle \right\}$$

defined by $A^*\phi=\varphi$

- Symmetric operator: $\forall (\phi, \psi) \in D(A)^2$, $\langle A\phi, \psi \rangle = \langle \phi, A\psi \rangle$ (i.e. $A \subset A^*$)
- A symmetric operator is self-adjoint if $A = A^*$ (*i.e.* $D(A) = D(A^*)$)
- For self-adjoint operators, $\sigma(A) \subset \mathbb{R}$ and $\sigma_{r}(A) = \emptyset$
- An operator V is H_0 -bounded if $D(H_0) \subset D(V)$ and $\forall \phi \in D(H_0), \quad ||V\phi|| \le a ||H_0\phi|| + b ||\phi||$
- Kato-Rellich criterion: If H_0 is self-adjoint and V is symmetric and H_0 -bounded with relative bound a < 1, then $H = H_0 + V$ defined on $D(H) = D(H_0)$ is self-adjoint

Important example: the molecular Hamiltonian

• Consider $D(H_0^N) = \bigwedge_{i=1}^N \mathrm{H}^2(\mathbb{R}^3)$

A T

$$H_0^N = \sum_{i=1}^N \left(-\frac{1}{2} \Delta_{x_i} + V_{\text{nuc}}(x_i) \right), \qquad V^N = \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

(Kato) Using the Hardy inequality

$$\forall \phi \in \mathrm{H}^{1}(\mathbb{R}^{3}), \quad \int_{\mathbb{R}^{3}} \frac{|\phi(x)|^{2}}{|x|^{2}} \, dx \leq 4 \int_{\mathbb{R}^{3}} |\nabla \phi(x)|^{2} \, dx,$$

it can be shown that $H^N = H_0^N + V^N$ is self-adjoint on $\mathcal{H}_N = \bigwedge_{i=1}^N L^2(\mathbb{R}^3)$

• HVZ theorem: $\sigma_{\rm ess}(H^N) = [E^{N-1}, +\infty[$, where

$$E^{N-1} = \inf \sigma \left(H^{N-1} \right)$$

• If N < Z + 1, then there are infinitely many eigenvalues of finite multiplicity below the essential spectrum

The Gell-Mann and Low formula in a simple case

Switching procedure (1)

- Consider, on a given Hilbert space \mathcal{H} ,
 - a self-adjoint operator H_0 , with dense domain $D(H_0) \subset \mathcal{H}$
 - a symmetric perturbation V, H_0 -bounded with relative bound a < 1.
 - define $\widetilde{H}(\lambda) = H_0 + \lambda V$ with $\lambda \in [0, 1]$
- Switching function $f \in C^2((-\infty, 0], [0, 1])$
 - non-decreasing
 - $f, f'' \in L^1((-\infty, 0])$

•
$$f(0) = 1$$
 and $\lim_{\tau \to -\infty} f(\tau) = 0$

- for $\tau \in (-\infty, 0]$, define $H(\tau) = \widetilde{H}(f(\tau)) = H_0 + f(\tau) V$
- Denote by $U_{\varepsilon}(s, s_0)$ the unitary evolution generated by $H(\varepsilon s)$, *i.e.* the unique solution of the problem:

$$i\frac{dU_{\varepsilon}(s,s_0)}{ds} = H(\varepsilon s) U_{\varepsilon}(s,s_0), \qquad U_{\varepsilon}(s_0,s_0) = \mathbb{I}$$

Switching procedure (2)

• Divergent phase as $\varepsilon \to 0$! Consider V = 0 and ϕ an eigenstate of H_0 :

$$U_{\varepsilon}(s, s_0) \phi = \exp\left(-\frac{\mathrm{i}E_0(s-s_0)}{\varepsilon}\right) \phi$$

Remove divergence by working in the interaction picture:

$$U_{\varepsilon,\mathrm{int}}(s,s_0) = \mathrm{e}^{\mathrm{i}sH_0} U_{\varepsilon}(s,s_0) \,\mathrm{e}^{-\mathrm{i}s_0H_0}$$

• Macroscopic time $t = \varepsilon s$: unitary evolution

$$i\varepsilon \frac{dU^{\varepsilon}(t,t_0)}{dt} = H(t) U^{\varepsilon}(t,t_0), \quad U^{\varepsilon}(t_0,t_0) = \mathbb{I},$$

so that, in the interaction picture, $U_{int}^{\varepsilon}(t,t_0) = e^{itH_0/\varepsilon} U^{\varepsilon}(t,t_0) e^{-it_0H_0/\varepsilon}$

Standard results show that, for $\psi \in D(H_0)$, the following limit exists:

$$U_{\text{int}}^{\varepsilon}(t, -\infty) \psi = \lim_{t_0 \to -\infty} U_{\text{int}}^{\varepsilon}(t, t_0) \psi$$

Structure of the spectrum

- In order for eigenstates to be stable during the switching procedure, some gap conditions are required
- The spectrum of $\widetilde{H}(\lambda) = H_0 + \lambda V$, $\lambda \in [0, 1]$, consists of two disconnected pieces

$$\sigma\left(\widetilde{H}(\lambda)\right) = \sigma_N(\lambda) \cup \left(\sigma\left(\widetilde{H}(\lambda)\right) \setminus \sigma_N(\lambda)\right)$$

where
$$\sigma_N(\lambda) = \left\{ \widetilde{E}_j(\lambda), \ j = 1, \dots, N \right\} \subset \sigma_{\text{disc}}\left(\widetilde{H}(\lambda) \right)$$

• There is a uniform gap between the two parts of the spectrum, and between the elements of $\sigma_N(\lambda)$, in the sense that:

$$\Delta(\lambda) = \min_{j=1,\dots,N} \left(\min\left\{ \left| \widetilde{E}_j(\lambda) - E \right|, \ E \in \sigma(H(\lambda)) \setminus \{\widetilde{E}_1(\lambda), \dots, \widetilde{E}_N(\lambda)\} \right\} \right),$$

$$\delta(\lambda) = \min\left\{ \left| \widetilde{E}_j(\lambda) - \widetilde{E}_i(\lambda) \right|, \ 1 \le i < j \le N \right\}$$

are bounded from below by a positive constant for all $\lambda \in [0, 1]$

The Gell-Mann and Low formula

- For simplicity, eigenvalues $E_j(\tau) = \widetilde{E}_j(f(\tau))$ of multiplicity 1
- Then, for an eigenstate ψ_j of H_0 associated with $E_j(-\infty)$, if

$$||P_j(-\infty) - P_j(0)|| < 1,$$

the limit

$$\Psi_j = \lim_{\varepsilon \to 0} \frac{U_{\text{int}}^{\varepsilon}(0, -\infty)\psi_j}{\langle \psi_j \mid U_{\text{int}}^{\varepsilon}(0, -\infty)\psi_j \rangle}$$

exists and is an eigenstate of $H_0 + V$ corresponding to the eigenvalue $E_j(0) = \widetilde{E}_j(1)$

- First proof due to NENCIU and RASCHE (Helvetica Physica Acta, 1989)
- Extension to the case of eigenspaces of multiplicity higher than 1 provided some direction ϕ exists such that the denominator does not vanish...

First step of the proof: Geometric evolution

• Kato intertwining operator: $\frac{dA(\lambda, \lambda_0)}{d\lambda} = \widetilde{K}(\lambda) \widetilde{A}(\lambda, \lambda_0)$ with $\widetilde{A}(\lambda_0, \lambda_0) = \mathbb{I}$

• Generator
$$\widetilde{K}(\lambda) = -\sum_{j=1}^{N+1} \widetilde{P}_j(\lambda) \frac{d\widetilde{P}_j}{d\lambda}(\lambda)$$
, with $\widetilde{P}_{N+1}(\lambda) = \mathbb{I} - \sum_{j=1}^N \widetilde{P}_j(\lambda)$

- Since $\widetilde{K}(\lambda)$ is uniformly bounded (gap, hence projectors smooth), the operator $\widetilde{A}(\lambda, \lambda_0)$ is well-defined and strongly continuous
- $\widetilde{A}(\lambda, \lambda_0)$ is unitary (since $K^* = -K$), and intertwines the spectral subspaces:

$$\widetilde{P}_j(\lambda) = \widetilde{A}(\lambda, \lambda_0) \widetilde{P}_j(\lambda_0) \widetilde{A}(\lambda, \lambda_0)^*$$

• Denoting by $A(s, s_0) = \widetilde{A}(f(s), f(s_0))$,

$$P_j(0) A(0, -\infty) \psi_j = A(0, -\infty) P_j(-\infty) \psi_j = A(0, -\infty) \psi_j,$$

so that $A(0, -\infty) \psi_j$ is an eigenstate of $H(0) = H_0 + V$

Second step: Adiabatic evolution (adding the dynamical phase)

• Adiabatic evolution operator $U_A(s, s_0)$ is defined as the unique solution of

$$i \frac{dU_{A}(s, s_{0})}{ds} = H_{A}(s) U_{A}(s, s_{0}), \quad U_{A}(s_{0}, s_{0}) = \mathbb{I},$$

where the adiabatic Hamiltonian is $H_A(s) = H(s) + iK(s)$

- $U_{\rm A}$ is also an intertwiner
- A and U_A differ only by a phase, which commutes with the spectral projectors: Define

$$\Phi(s, s_0) = A(s, s_0)^* U_{\mathcal{A}}(s, s_0),$$

so that $U_A(s, s_0) = A(s, s_0) \Phi(s, s_0)$. Then, $[\Phi(s, s_0), P_j(s_0)] = 0$

The time-evolution of the phase matrix is then easily obtained and

$$U_{\rm A}(s, s_0) P_j(s_0) = \exp\left(-i \int_{s_0}^s E_j(r) \, dr\right) A(s, s_0) P_j(s_0)$$

Second step: Adiabatic evolution (rescaling the dynamical phase)

- Important again to work in the interaction picture to remove the divergent (dynamical) phase: $U_{A,int}(s,s_0) = e^{isH_0} U_A(s,s_0) e^{-is_0H_0}$
- It can be shown, through some limiting procedure, that $U_{A,int}(0, -\infty) P_j(-\infty) = \exp\left(-i \int_{-\infty}^0 E_j(r) - E_0 dr\right) A(0, -\infty) P_j(-\infty)$
- Phase well-defined since $|E_j(r) E_0| = \left|\widetilde{E}_j(f(r)) \widetilde{E}_j(0)\right| \le Cf(r)$

• In the time-rescaled variable $t = \varepsilon s$,

$$U_{\mathrm{A,int}}^{\varepsilon}(0,-\infty)P_j(-\infty) = \exp\left(-\frac{\mathrm{i}}{\varepsilon}\int_{-\infty}^0 E_j(\tau) - E_0\,d\tau\right)A(0,-\infty)P_j(-\infty).$$

Eliminate the phase using

$$\frac{P_j(0)\,\psi_j}{\|P_j(0)\,\psi_j\|^2} = \frac{A(0,-\infty)\,\psi_j}{\langle\,\psi_j\,|\,A(0,-\infty)\,\psi_j\,\rangle} = \frac{U_{\mathrm{A,int}}^\varepsilon(0,-\infty)\,\psi_j}{\langle\,\psi_j\,\left|\,U_{\mathrm{A,int}}^\varepsilon(0,-\infty)\,\psi_j\,\right\rangle},$$

Third step: Adiabatic limit of the full evolution

Compare the adiabatic and full evolutions in the rescaled time-variable:

$$i\varepsilon \frac{dU_{A}^{\varepsilon}(t,t_{0})}{dt} = \left(H(t) + i\varepsilon K(t)\right)U_{A}^{\varepsilon}(t,t_{0}), \quad i\varepsilon \frac{dU^{\varepsilon}(t,t_{0})}{dt} = H(t)U^{\varepsilon}(t,t_{0})$$

- Prove the uniform convergence $\lim_{\varepsilon \to 0} \|U^{\varepsilon}(0, -\infty) U^{\varepsilon}_{A}(0, -\infty)\| = 0$ (although $U^{\varepsilon}(0, -\infty), U^{\varepsilon}_{A}(0, -\infty)$) do not have limits as $\varepsilon \to 0$)
- Strategy from (TEUFEL, Adiabatic perturbation theory in quantum dynamics, 2003):

$$U^{\varepsilon}(t,t_0) - U^{\varepsilon}_{\mathcal{A}}(t,t_0) = -U^{\varepsilon}(t,t_0) \int_{t_0}^t U^{\varepsilon}(t_0,t') K(t') U^{\varepsilon}_{\mathcal{A}}(t',t_0) dt'$$

• Define $\mathcal{K}(t) = -i\varepsilon U^{\varepsilon}(t_0, t)F(t)U^{\varepsilon}(t, t_0)$ with [H(t), F(t)] = K(t). Then

$$\mathcal{K}'(t) = U^{\varepsilon}(t_0, t) [H(t), F(t)] U^{\varepsilon}(t, t_0) - i\varepsilon U^{\varepsilon}(t_0, t) F'(t) U^{\varepsilon}(t, t_0)$$

• Similar to
$$\int_0^t e^{-i\tau/\varepsilon} d\tau = i\varepsilon \left(e^{-it/\varepsilon} - 1 \right)$$
 = highly oscillatory integral

– p. 21/28

Third step: Adiabatic limit of the full evolution (2)

• Expression of F(t): useful to keep track of the dependence on the gap (required to understand the degenerate case)

$$F(t) = -\frac{1}{2} \left(\sum_{j=1}^{N+1} F_j(t) + G_j(t) \right), \quad F_j(t) = \frac{1}{2i\pi} \oint_{\Gamma_j(t)} P_j^{\perp}(t) R(z,t) \dot{R}(z,t) dz$$

where $R(z,t) = (H(t) - z)^{-1}$ and $\Gamma_j(t)$ is a contour enclosing $E_j(t)$ and no other element of the spectrum

- Similar definitions for G_j , F_{N+1} , G_{N+1}
- Bounds $||F(t)|| \le C_F \frac{f'(t)}{f(t)}$ and

$$\int_{t_0}^t \|F'\| \le C\left(\frac{1}{f(t_0)}\int_{t_0}^t \left(|f''| + (f')^2\right) + \frac{1}{f(t_0)^2}\int_{t_0}^t (f')^2\right)$$

The degenerate case

Structure of the spectrum

- Initial state is degenerate: $\widetilde{E}_j(0) = \widetilde{E}_k(0)$ for all $1 \le j, k \le N$
- Degeneracy splitting (for simplicity): $\mathcal{P}_0 V \mathcal{P}_0$ has non-degenerate eigenvalues and for any $\lambda^* > 0$, there exists α such that

$$\inf_{\lambda^* \le \lambda \le 1} \min_{k \ne l} \left| \widetilde{E}_k(\lambda) - \widetilde{E}_l(\lambda) \right| \ge \alpha > 0$$

• Let (ψ_1, \ldots, ψ_N) be an basis of \mathcal{E}_0 which diagonalizes the bounded operator $\mathcal{P}_0 V \mathcal{P}_0|_{\mathcal{E}_0}$. Then, if $\|P_j(-\infty) - P_j(0)\| < 1$, the limit

$$\Psi_j = \lim_{\varepsilon \to 0} \frac{U_{\text{int}}^{\varepsilon}(0, -\infty) \psi_j}{\langle \psi_j \mid U_{\text{int}}^{\varepsilon}(0, -\infty) \psi_j \rangle}$$

exists and is an eigenstate of $H_0 + V$ corresponding to $E_j(0) = \widetilde{E}_j(1)$

• Several extensions: decomposition to avoid the condition $\|P_j(-\infty) - P_j(0)\| < 1$; extension the case when $\mathcal{P}_0 V \mathcal{P}_0|_{\mathcal{E}_0}$ has degenerate eigenvalues; existence of finitely many eigenvalue crossings

Characterization of the initial states

- Theorem II.6.1 in (KATO, Perturbation Theory for Linear Operators) shows that the eigenvalues \widetilde{E}_j and projectors \widetilde{P}_j are analytic functions of λ
- Initial states defined from $P_j^{\text{init}} := \widetilde{A}(0,\lambda)\widetilde{P}_j(\lambda)\widetilde{A}(\lambda,0)$. Characterization?
- Eigenvectors satisfy $\widetilde{H}(\lambda) \phi_j(\lambda) = \widetilde{E}_j(\lambda) \phi_j(\lambda)$ with

$$\widetilde{E}_{j}(\lambda) = \sum_{n=0}^{+\infty} \lambda^{n} E_{j,n}, \qquad \phi_{j}(\lambda) = \sum_{n=0}^{+\infty} \lambda^{n} \varphi_{j,n}$$

Hierarchy of equations. First order condition

$$(H_0 - E_0) \,\varphi_{j,1} = (E_{j,1} - V) \,\varphi_{j,0}$$

- A necessary condition for this equation to have a solution is that the right-hand side belongs to \mathcal{E}_0^{\perp}
- This requires $E_{j,1} = \langle \varphi_{j,0}, V \varphi_{j,0} \rangle$ and $\forall k \neq j, \langle \varphi_{k,0}, V \varphi_{j,0} \rangle = 0$ so that the basis diagonalizes $\mathcal{P}_0 V \mathcal{P}_0 |_{\mathcal{E}_0}$

– p. 25/28

Adiabatic limit

- Geometric and adiabatic evolutions: unchanged (the regularity of the projectors follows from the analytic continuation at $\lambda = 0$)
- Adiabatic limit: decomposition of the evolution into

$$U^{\varepsilon}(0,t_0) - U^{\varepsilon}_{\mathcal{A}}(0,t_0) = -U^{\varepsilon}(0,t_0) \int_{t_0}^{T} U^{\varepsilon}(t_0,t) K(t) U^{\varepsilon}_{\mathcal{A}}(t,t_0) dt$$
$$-U^{\varepsilon}(0,t_0) \int_{T}^{0} U^{\varepsilon}(t_0,t) K(t) U^{\varepsilon}_{\mathcal{A}}(t,t_0) dt$$

- an evolution on [T,0], for Hamiltonians operators with (small) gaps of order f(T); bound in $C\varepsilon(1 + f(T)^{-2})$
- an evolution on the time-frame $(-\infty, T]$, with T small enough so that the unitary evolutions are not very different; bound in Cf(T)
- choose T such that $f(T) = \varepsilon^{1/3}$ to have a final bound in $\varepsilon^{1/3}$

Physical extensions

Application to Green's functions (formal)

- Operator A expressed in the Heisenberg picture $A_{\text{hsnbrg}}(t) = e^{itH}Ae^{-itH}$ and, in the interaction picture, $A_{\text{int}}(t) = e^{itH_0}Ae^{-itH_0}$
- Correlation function $C_{A,B}(t,t') = \langle \psi | T [A_{hsnbrg}(t)B_{hsnbrg}(t')] | \psi \rangle$
- Technical lemma: For fixed t, t',

 $s-\lim_{\varepsilon \to 0} U_{\varepsilon, \text{int}}(t, 0)^* A_{\text{int}}(t) U_{\varepsilon, \text{int}}(t, t') B_{\text{int}}(t') U_{\varepsilon, \text{int}}(t', 0) = A_{\text{hsnbrg}}(t) B_{\text{hsnbrg}}(t')$

Using the Gell-Mann and Low formula, it can then be shown that

$$C_{A,B}(t,t') = \lim_{\varepsilon \to 0} \frac{\langle \psi_0 \mid T \left[A_{\text{int}}(t) B_{\text{int}}(t') U_{\varepsilon,\text{int}}(+\infty,-\infty) \right] |\psi_0\rangle}{\langle \psi_0 \mid U_{\varepsilon,\text{int}}(+\infty,-\infty) \mid \psi_0\rangle}.$$

- Formal extension to the case when A, B are field operators
- Basis for a perturbative treatment of the Green's function, where the operators $U_{\varepsilon,int}(+\infty, -\infty)$ in the numerator and denominator are expanded using Feynman diagrams.