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Physical motivation



Green’s functions

Ug(O, —OO)(I)O
(Do, Us (0, —00) D)

# Gell-Mann and Low formula (Phys. Rev., 1951) ¥, =

# The two point Green’s function is defined as

Gt,rt 1) = —i <\Ilo,T[wH(t,r)@bL(t’x’)]\Ifo>

where ¥, is the (unknown) ground state of some Hamiltonian Hy + V'

# When the ground state &, of H; is known, G can be expressed in terms
of expectations with respect to ¢, using the Gell-Mann and Low formula:

R <‘1>07T WH(ta?“)wL(t’w’)Ug(Jroo,—oo)]q>0>
G(t,rt',r') = —121_{1% Do U (o0, —o0T B3]

# Formal expansions in terms of free-field Green’s functions using Wick’s
theorem (Feynman diagrams)

Shanghai, June 6th, 2011 —p. 4/28




Gell-Mann and Low formula

The Gell-Mann and Low switching procedure requires some care when the
ground state is degenerate... and this happens in many situations!

eigenvalues
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A pedagogical example

» Simplest possible system: Hamiltonian H(t) = Hy + eIl H; with

0 w40 a 0

# Analytical computations can be performed
# The switching procedure is well defined when § # 0

# The switching procedure fails for almost all initial states when 6 = 0, and
can be defined for two specific states only!
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First, some background material...



Quantum description of molecular systems

o Fixed nuclei of charges z,,, located at R,,, € R? (Born-Oppenheimer
approximation)

o Wavefunction ¢ ((x1,01),...,(xn,0nN)) € /\f:\;1 L2(R3 x {—1,1}) with

[Pl =1

# The spin variable will be omitted in the sequel

# Hamiltonian operator (in atomic units)

| 1
H = Z ( — isz + Vnuc(xi>) + Z |z; — CIZj|

i=1 1<i<j<N

with domain D(H) = A\;_, H%(R?) ¢ H = A, , L?(R®) and where

M y
Vouel®) == 2 7=

m=1
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Spectrum of a linear operator (1)

» Linear operator A : D(A) C 'H — H on a Hilbert space, with dense
domain D(A)

o Aisinjective if Ker(A) ={¢p € D(A)|A¢p =0} = {0}

» If Aisinjective, it is possible to define its inverse, which is an operator
with domain

D(A~!) = Ran(A) = {¢ cH ‘ 3¢ € D(A), ¢ = Aqb}

suchthat ¢ = A 1 < ¢ = Ag
» Aisinvertible if it has a bounded inverse defined on D(A™1) = H

» If Ais closed and one-to-one D(A) — H, the operator A=! : H — D(A)
Is automatically bounded by the closed graph theorem

# Resolvent set p(A) = (open) set of A € C such that A — A is invertible

# The spectrum o(A) = C\ p(A) is closed
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Spectrum of a linear operator (2)

» The spectrum can be decomposed as 0(A) = op(A) U (A) Uo.(A),
where (“by decreasing defaults of invertibility”)

s Neo,(A)iff Ker(A— A) # {0} [eigenvalues]

s A€ o.(A)iff A — Ais injective but Ran(A — A) # H [the inverse is not
uniquely defined]

s A€ o.(A)Iiff A — Alisinjective, Ran(A — A) = H but Ran(A — A) # H
[the inverse is unbounded with dense domain; generalized
eigenvalues]

# Other decomposition: o(A) = 04(A) U gess(A), where the discrete
spectrum o4(A) C o,(A) = isolated eigenvalues of finite multiplicity
# Examples (necessarily infinite dimensional)
s Residual spectrum: shift operator 74 on [*(N, C) with

ta(z0, 21, 22, ... ) = (0, 20, 21, . . . )

s Continuous spectrum: Ay (z) = zy(z) on L*(R)
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Spectrum of self-adjoint operators

# Adjoint of an unbounded operator = closed operator with domain
D(A7) = {oeH |V e D), [(Ah,6) < Cyllyl}
= {oeH|Ipen, vy e D), (Ab,0) = (v, }

defined by A*¢ = ¢
® Symmetric operator: V(¢,v) € D(A)?, (Ag,v) = (¢, AY) (i.e. A C A¥)
# A symmetric operator is self-adjoint if A = A* (i.e. D(A) = D(A"))
» For self-adjoint operators, o(A) C Rand o,.(A4) = ()

# An operator V' is Hy-bounded if D(Hy) € D(V) and
Vo € D(Ho), |V < allHogll + bl[¢]

» Kato-Rellich criterion: If Hy Is self-adjoint and V' is symmetric and
Hy-bounded with relative bound a < 1, then H = Hy + V defined on
D(H) = D(H)) is self-adjoint
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Important example: the molecular Hamiltonian

» Consider D(HY) = A\, H2(R?)

N

1 1
N _ = . N _
HO - Z ( QAQLL + Vnuc(xz))a V Z |ZC1 L ZC]|
=1 1<i<j<N
» (Kato) Using the Hardy inequality
2
Vo € H'(R?), / |¢(x2\ dr <4 [ |Vé(x)|?dx,
R3S |Z| R3

it can be shown that HY = HYY + V¥ is self-adjoint on Hy = A, L2(R?)

=1
® HVZtheorem: oo (HYN) = [EN 71, 4-00[, where
EN-L = infa(HN_l)

o If N < Z+1, then there are infinitely many eigenvalues of finite
multiplicity below the essential spectrum
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The Gell-Mann and Low formula in a
simple case
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Switching procedure (1)

o Consider, on a given Hilbert space H,
» a self-adjoint operator H, with dense domain D(Hy) C 'H
s asymmetric perturbation V', Hy-bounded with relative bound a < 1.
. define H(\) = Hy + AV with X € [0,1]

# Switching function f € CQ((—oo,O], 0, 1])
s nhon-decreasing

s [, f" € L'((—00,0])
s f(0O)=1and lim f(r)=0

T——00

s forr € (=00, 0], define H(r) = H(f(7)) = Hy + f(1)V

# Denote by U, (s, sg) the unitary evolution generated by H (es), i.e. the
unique solution of the problem:

.dU.(s, s0)
i

ds

= H(es) U(s, sp), U-(s9,50) =1
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Switching procedure (2)

# Divergent phase as € — 0! Consider V' = 0 and ¢ an eigenstate of Hy:

UG5, 5000 = exp (=200 )

#» Remove divergence by working in the interaction picture:

Ue.int (S, 50) = eisto U:(s, s0) e~ 1soHo

#® Macroscopic time ¢ = es: unitary evolution

dU=(t,t
ie C(it’ 0) = H(t)U(t, to), US(to,to) =1,

so that, in the interaction picture, US, (t,to) = etHo/e e (¢, 1) e ~itoto/e

# Standard results show that, for ) € D(Hy), the following limit exists:

Ulsnt( OO) w = lim Ulf(lt (t7 tO) w

to——00
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Structure of the spectrum

# In order for eigenstates to be stable during the switching procedure, some
gap conditions are required

» The spectrum of H(\) = Hy + AV, X € [0,1], consists of two disconnected
pieces

a(ﬁ(m)::aNchJQT(ﬁ(n)\aNcn)
MmmaNQﬁzﬁiQLj:LHWN}Ca%mGﬂM>

# There is a uniform gap between the two parts of the spectrum, and
between the elements of o (), in the sense that:

A(A) = min (min{ ‘EJ(A) —F

j=1,...,N

,I?EcﬂEHA»\{EﬂA%.“,ENCM}})a

~

MM:mmH@Q%JMM

,1§i<j§N}

are bounded from below by a positive constant for all A € [0, 1]
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The Gell-Mann and Low formula

» For simplicity, eigenvalues E;(7) = E;(f(r)) of multiplicity 1

» Then, for an eigenstate ¢; of H, associated with E;(—o0), if
|15 (—o0) = P3(0)]| <1,

the limit
, £ (0, —00)1,;
U. — lim mt( ) J
T e=0 (5| Upy(0,—00)yy )
exists and is an eigenstate of H, + V' corresponding to the eigenvalue
E;(0) = E;(1)

# First proof due to Nenciu and RascHE (Helvetica Physica Acta, 1989)

# Extension to the case of eigenspaces of multiplicity higher than 1 provided
some direction ¢ exists such that the denominator does not vanish...
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First step of the proof: Geometric evolution

. - A\ A _ s
# Kato intertwining operator: d (d;\ 0) = K(\) A(\, o) with A(A\g, A\g) =1
N+1 N
» Generator K () Z P ), with Py 1 (A Z P;(\
71=1

# Since l?()\) Is uniformly bounded (gap, hence projectors smooth), the
operator Z(A, o) is well-defined and strongly continuous

» E(A, Ao) IS unitary (since K* = —K), and intertwines the spectral
subspaces:

Pi(\) =AM A0)Pi( M) A(X, Ao)*

~

# Denoting by A(s,sqg) = A(f(s), f(s0)),
PJ(O)A(O OO)¢J—A(O OO)P( )%—A(O OO)¢J>

so that A(0, —o0) v; is an eigenstate of H(0) = Hyp + V
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Second step: Adiabatic evolution (adding the dynamical phase)

# Adiabatic evolution operator Ua (s, sg) is defined as the unique solution of

i dUx (s, S0)
ds

= Ha(s)Ua(s;s0), Ua(so,s0) =1L

where the adiabatic Hamiltonian is Ha(s) = H(s) +iK(s)
# U, Is also an intertwiner

# A and U, differ only by a phase, which commutes with the spectral
projectors: Define

(I)(Sa 80) — A(37 SO)*UA(87 80)7
so that UA(S, SO) = A(S, S()) (I)(S, SO). Then, [(I)(S, 80), Pj(SO)] =0

» The time-evolution of the phase matrix is then easily obtained and

Ua (s, 50) Pj(s0) = exp (—i / "B () dfr) A(s, 50) P;(s0)

S0
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Second step: Adiabatic evolution (rescaling the dynamical phase)

» Important again to work in the interaction picture to remove the divergent
(dynamical) phase: U int(s, S0) = oisHo Ua (s, so) e—isoHo

# [t can be shown, through some limiting procedure, that

Unint (0, —00) P;(~00) = exp (—i / " ) - B dr) A(0, —o0) P;(—o0)

» Phase well-defined since |E;(r) — Ey| = ‘Ej(f(r)) — Ej(())‘ < Cf(r)
# Inthe time-rescaled variable t = ¢s,
i 0
UX int (0, —00) Pj(—00) = exp (—g/ E;(1) — Ey dT) A(0, —o00) Pj(—00).

# Eliminate the phase using

P; (0) (oF _ A0, —0) (oF _ Ui,int(oa —00) Y
0P ™ T AB=2)357 ~ (3, (U500 )05 )
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Third step: Adiabatic limit of the full evolution

» Compare the adiabatic and full evolutions in the rescaled time-variable:

ic dUig’tO) = (H(t) +ieK (1)) US (t.10), i

dU= (t, to)
dt

= H(t)U®(t,t9)

# Prove the uniform convergence lir% |U€(0, —o0) — Uz (0, —00)|| =0
(although U*#(0, —0), U5 (0, —oc0) do not have limits as € — 0)

# Strategy from (TEuFEL, Adiabatic perturbation theory in quantum dynamics, 2003):

t
US(t,to) — Ux(t, to) = —UE(t,to)/ U* (to, t")K (UL (t', to) dt’

to

» Define K(t) = —ie Us(to, ) F(t)US(t, to) with [H (1), F(t)] = K(t). Then

K'(t) = Us(to, )[H (), F()]U(¢, to) — ieU* (Lo, t) F' (1)U (¢, to)

t
» Similar to / e /e dr = ie (e_it/€ - 1) = highly oscillatory integral
0
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Third step: Adiabatic limit of the full evolution (2)

» Expression of F(t): useful to keep track of the dependence on the gap
(required to understand the degenerate case)

B 217 T, (t)

N+1
Ft) = —% (Z Fi(t) + @-(t)) R =— ¢ PHOR(=OR(=1) de

where R(z,t) = (H(t) — z)~* and T';(¢) is a contour enclosing F;(t) and
no other element of the spectrum

# Similar definitions for G, Fnyi+1, Gyt

» Bounds |F(t)|| < Cp J}/((f)) and

< (= [ 01+ ) + s [ @)
to f(to) Ji f(to)? Ji,

Shanghai, June 6th, 2011 —p. 22/28




The degenerate case
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Structure of the spectrum

# |Initial state is degenerate: Ej(()) — E(0)foralll1 < j, k<N
# Degeneracy splitting (for simplicity): PyV'Py has non-degenerate
eigenvalues and for any A* > 0, there exists « such that

inf min |E,(\) — Ej(\)] >
B T [ = B2 > 0

® Let (¢1,...,%N) be an basis of & which diagonalizes the bounded
operator PoV Pyl . Then, if | P;j(—oc) — P;(0)|| < 1, the limit

. ight(ov _OO) wj
U, = lim
T e=0 (9] Up(0, —00) ¢y )

exists and is an eigenstate of Hy + V corresponding to £,(0) = E;(1)

# Several extensions: decomposition to avoid the condition
| Pj(—o0) — P;(0)]| < 1, extension the case when 770V770|50 has
degenerate eigenvalues; existence of finitely many eigenvalue crossings
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Characterization of the initial states

# Theorem I1.6.1 in (KaTo, Perturbation Theory for Linear Operators) Shows that the
eigenvalues £; and projectors P; are analytic functions of A

» Initial states defined from Pinit := A(0, ) P;j(A\)A(), 0). Characterization?
» Eigenvectors satisfy H()) ¢, (A) = E;(\) ¢;(\) with

+00 T
E;(N) =) AN'Ejn,  ¢5(A) =) Nojn
n=0 n=0
o Hierarchy of equations. First order condition

(Ho — Eo) pj1 = (Ej1— V) pjo

# A necessary condition for this equation to have a solution is that the
right-hand side belongs to &;

» Thisrequires E;1 = (@0, Vo) and Yk # j, (pro0,Ve;o) =0 so that

the basis diagonalizes POVPO\EO
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Adiabatic limit

# Geometric and adiabatic evolutions: unchanged (the regularity of the
projectors follows from the analytic continuation at A = 0)

# Adiabatic limit: decomposition of the evolution into

U= (0, to) — US(0,t0) = —U=(0, to) / ) US (to, ) K (t)US (t, to) dt

to

_U%(0. o) / U o, VK (DU (1, t0) d

s an evolution on [T, 0], for Hamiltonians operators with (small) gaps of
order f(T); bound in Ce(1 + f(T)™?)

s an evolution on the time-frame (—oo, T'], with 7" small enough so that
the unitary evolutions are not very different; bound in C'f(T)

s choose T such that f(T) = £/3 to have a final bound in /%
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Physical extensions
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Application to Green'’s functions (formal)

» Operator A expressed in the Heisenberg picture Apgpbrg(t) = oltf A o~ itH
and, in the interaction picture, A, (t) = eltHo A o—itHo

» Correlation function Cy g (t,t') = (¢ |T [Ansabre (t) Bhsnbre (t)]] 1)

o Technical lemma: For fixed ¢, t/,
S— llﬂ(l) Us,int (t, O)*Aint (t) Uz—:,int (t7 t,) Bint (t,) Us,int (t/a O) — Ahsnbrg (t)Bhsnbrg (t/)

# Using the Gell-Mann and Low formula, it can then be shown that

N — Tim (Yo | T [Aing(t) Bint (t") U int (+00, —00)]| 1o)
Ca B(t,t) = lim 0o | Unim (50, —00)| 00} .

# Formal extension to the case when A, B are field operators

# Basis for a perturbative treatment of the Green’s function, where the
operators U, int (400, —o0) in the numerator and denominator are
expanded using Feynman diagrams.
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