

Machine learning for coarse-graining molecular systems

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

With Zineb Belkacemi (Sanofi & ENPC), Tony Lelièvre (ENPC/Inria) and Paraskevi Gkeka (Sanofi)

MAC-MIGS One-Day Meeting on Mathematical Topics in Machine Learning

Outline

- Molecular systems and basics of statistical physics
 - Reaction coordinates and free energy
- A (short/biased) review of machine learning approaches for RC
- Free-energy biasing and iterative learning with autoencoders¹
 - Autoencoders and their training
 - General presentation of the iterative algorithm
 - Illustration/sanity checks on toy examples
- Applications to systems of interest (alanine dipeptive, HSP90)

¹Z. Belkacemi, P. Gkeka, T. Lelièvre, G. Stoltz, arXiv preprint 2104.11061

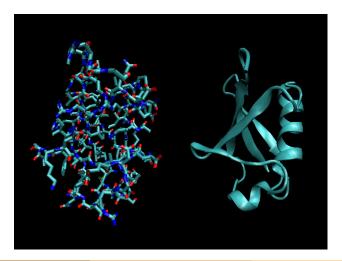
Gabriel Stoltz (ENPC/Inria) June 2

2/28

Molecular description of systems

Statistical physics (1)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?



Statistical physics (2)

ullet Microstate of a classical system of N particles:

$$(q,p) = (q_1,\ldots,q_N,\ p_1,\ldots,p_N) \in \mathcal{E} = (a\mathbb{T})^{3N} \times \mathbb{R}^{3N}$$

Positions q (configuration), momenta p (to be thought of as $M\dot{q}$)

• Hamiltonian $H(q,p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i}$ (physics is in V)

Macrostate: Boltzmann-Gibbs probability measure (NVT)

$$\mu(dq \, dp) = Z_{\text{NVT}}^{-1} e^{-\beta H(q,p)} \, dq \, dp, \qquad \beta = \frac{1}{k_{\text{B}} T}$$

ullet Typical evolution equations: Langevin dynamics (friction $\gamma>0$)

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2\gamma \beta^{-1}} \, dW_t \end{cases}$$

Reaction coodinates (RC) / collective variables (CV)

- ullet Reaction coordinate $\xi:\mathbb{R}^D o \mathbb{R}^d$ with $d \ll D$
- ullet Ideally: $\xi(q_t)$ captures the slow part of the dynamics
- Free energy computed on $\Sigma(z) = \{q \in (a\mathbb{T})^D \mid \xi(q) = z\}$ (foliation)

$$F(z) = -\frac{1}{\beta} \ln \left(\int_{\Sigma(z)} e^{-\beta V(q)} \, \delta_{\xi(q)-z}(dq) \right)$$

• Various methods: TI, FEP, ABF, metadynamics, etc²

6/28

Gabriel Stoltz (ENPC/Inria) June 2021

²Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

Some representative approaches for finding RC/CV (1)

- Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)
- Short list of data-oriented approaches (depending on the data at hand...)
 - [supervised learning] separate metastable states
 - [unsupervised] distinguish linear models (PCA) and nonlinear ones (e.g. based on autoencoders such as MESA³)
 - [dynamics] operator based approaches (VAC, EDMD, diffusion maps, MSM; incl. tICA and VAMPNets)

(Huge litterature! I am not quoting precise references here because the list would be too long)

• Other classifications^{4,5} possible, e.g. **slow vs. high variance CV**

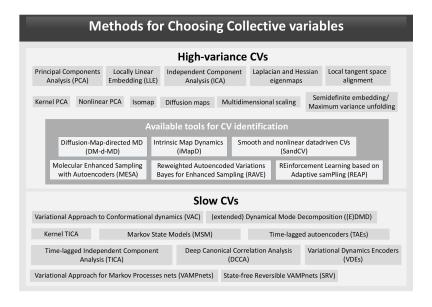
Gabriel Stoltz (ENPC/Inria) June 2021 7/28

³W. Chen and A.L. Ferguson, *J. Comput. Chem.* 2018; W. Chen, A.R. Tan, and A.L. Ferguson, *J. Chem. Phys.* 2018

⁴P. Gkeka et al., J. Chem. Theory Comput. 2020

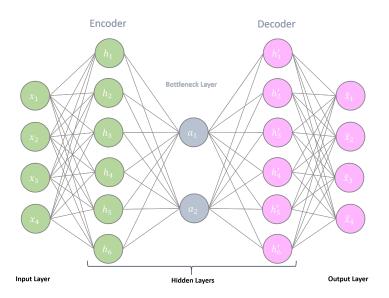
⁵A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Chem. Rev. 2021

Some representative approaches for finding RC/CV (2)



Free-energy biasing and iterative learning with autoencoders

Autoencoders (1)



Autoencoders (2)

ullet Data space $\mathcal{X} \subseteq \mathbb{R}^D$, bottleneck space $\mathcal{A} \subseteq \mathbb{R}^d$ with d < D

$$f(x) = f_{\text{dec}}\Big(f_{\text{enc}}(x)\Big)$$

where $f_{\mathsf{enc}}: \mathcal{X} \to \mathcal{A}$ and $f_{\mathsf{dec}}: \mathcal{A} \to \mathcal{X}$

Reaction coordinate = encoder part

$$\xi = f_{\rm enc}$$

- ullet Fully connected neural network, symmetrical structure, 2L layers
- \bullet Parameters $\mathbf{p} = \{p_k\}_{k=1,\dots,K}$ (bias vectors b_ℓ and weights matrices $W_\ell)$

$$f_{\mathbf{p}}(x) = g_{2L} \left[b_{2L} + W_{2L} \dots g_1 (b_1 + W_1 x) \right]$$
 ,

with activation functions g_ℓ (examples: $\tanh(x)$, $\max(0,x)$, etc)

Training autoencoders

ullet Theoretically: minimization problem in $\mathcal{P}\subset\mathbb{R}^K$

$$\mathbf{p}_{\mu} \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{P}} \mathcal{L}(\mu, \mathbf{p})$$
,

with cost function

$$\mathcal{L}(\mu, \mathbf{p}) = \mathbb{E}_{\mu}(\|X - f_{\mathbf{p}}(X)\|^2) = \int_{\mathcal{X}} \|x - f_{\mathbf{p}}(x)\|^2 \ \mu(dx)$$

• In practice, access only to a sample: minimization of empirical cost

$$\mathcal{L}(\hat{\mu}, \mathbf{p}) = \frac{1}{N} \sum_{i=1}^{N} \|x^i - f_{\mathbf{p}}(x^i)\|^2, \qquad \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}$$

ullet Typical choices: canonical measure μ , data points x^i postprocessed from positions q (alignment to reference structure, centering, reduction to backbone carbon atoms, etc)

Training on modified target measures

- Interesting systems are metastable (no spontaneous exploration of phase space) Sample according to a biased distribution $\widetilde{\mu}$ (importance sampling)
- Need for reweighting to learn the correct encoding!

$$w(x) = \frac{\mu(x)}{\widetilde{\mu}(x)}$$

• Minimization problem: theoretical cost function

$$\mathcal{L}(\mu, \mathbf{p}) = \int_{\mathcal{X}} \|x - f_{\mathbf{p}}(x)\|^2 w(x) \widetilde{\mu}(dx),$$

actual cost function

$$\mathcal{L}(\widehat{\mu}_{\text{wght}}, \mathbf{p}) = \sum_{i=1}^{N} \widehat{w}_i \|x^i - f_{\mathbf{p}}(x^i)\|^2, \qquad \widehat{w}_i = \frac{\mu(x^i)/\widetilde{\mu}(x^i)}{\sum_{i=1}^{N} \mu(x^i)/\widetilde{\mu}(x^j)}$$

ullet Only requires the knowledge of μ and $\widetilde{\mu}$ up to a multiplicative constant.

How training is actually performed...

• Gradient descent with minibatching: randomly reshuffle data points,

$$\mathbf{p}_r = \mathbf{p}_{r-1} - \eta \nabla_{\mathbf{p}} \mathcal{L}_r(\mathbf{p}_{r-1}), \qquad \mathcal{L}_r(p) = \frac{1}{m} \sum_{i=rm+1}^{(r+1)m} \|x^i - f_{\mathbf{p}}(x^i)\|^2$$

One epoch = $\lceil N/m \rceil$ gradient steps (in order to visit all the data)

Actual procedure:

- Use keras module in python
- Computation of gradient performed with backpropagation
- Optimization in fact performed with Adam algorithm (weights summing to 1 to use default optimization parameters)
- "Early stopping" (stop when validation loss no longer improves)
- Many local minima...

Proof of concept (1)

• Gaussian distributions $\mu_i = \mathcal{N}(0, \Sigma_i)$ with

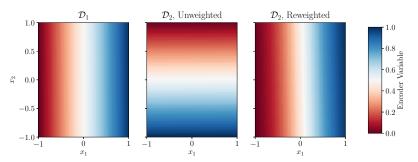
$$\Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0.01 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 0.01 & 0 \\ 0 & 1 \end{pmatrix}$$

Datasets \mathcal{D}_i of $N=10^6$ i.i.d. points

- \bullet Autoencoders with 2 layers of resp. 1 and 2 nodes, linear activation functions (\simeq PCA)
- Training on:
 - \bullet \mathcal{D}_1
 - ullet \mathcal{D}_2
 - \mathcal{D}_2 with reweighting $\widehat{w}_i \propto \mu_1/\mu_2$

Proof of concept (2)

Heat maps of $f_{\rm enc}$

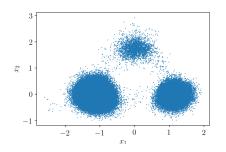


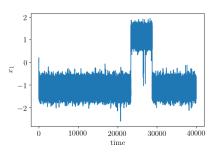
Third encoder very similar to the first: projection on x_1 . Second encoder projects on a direction close to x_2 .

Proof of concept with free energy biasing (1)

Two dimensional potential ("entropic switch")⁶

$$V(x_1, x_2) = 3e^{-x_1^2} \left(e^{-(x_2 - 1/3)^2} - e^{-(x_2 - 5/3)^2} \right)$$
$$- 5e^{-x_2^2} \left(e^{-(x_1 - 1)^2} + e^{-(x_1 + 1)^2} \right) + 0.2x_1^4 + 0.2(x_2 - 1/3)^4$$





17/28

Trajectory from $q^{j+1}=q^j-\nabla V(q^j)\Delta t+\sqrt{2\beta^{-1}\Delta t}G^j$ for $\beta=4$ and $\Delta t=10^{-3}\longrightarrow$ metastability in the x_1 direction

⁶S. Park, M.K. Sener, D. Lu, and K. Schulten (2003)

Gabriel Stoltz (ENPC/Inria) June 2021

Proof of concept with free energy biasing (2)

ullet Free energy biasing: distributions $Z_i^{-1} \exp\left(-\beta \left[V(q) - F_i(\xi_i(q))
ight]
ight)$

$$F_1(x_1) = -\frac{1}{\beta} \ln \left(\int_{\mathbb{R}} \mathrm{e}^{-\beta V(x_1,x_2)} dx_2 \right), \qquad F_2(x_2) = -\beta^{-1} \ln \left(\int_{\mathbb{R}} \dots dx_1 \right)$$

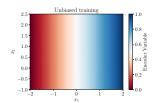
Three datasets: unbiased trajectory, trajectories biased using F_1 and F_2 (free energy biased trajectories are shorter but same number of data points $N=10^6$)

- \bullet Autoencoders: 2-1-2 topology, activation functions \tanh (so that RC is in [-1,1]) then identity
- Five training scenarios:
 - training on long unbiased trajectory (reference RC)
 - ξ_1 -biased trajectory, with or without reweighting
 - ξ_2 -biased trajectory, with or without reweighting

Proof of concept with free energy biasing (3)

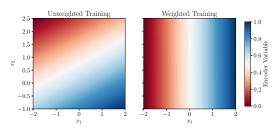
Normalize to compare

$$\xi_{\mathsf{AE}}^{\mathsf{norm}}(x) = \frac{\xi_{\mathsf{AE}}(x) - \xi_{\mathsf{AE}}^{\min}}{\xi_{\mathsf{AE}}^{\max} - \xi_{\mathsf{AE}}^{\min}}$$

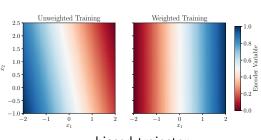


Reference RC

(distinguishes well the 3 wells)



x_1 -biased trajectory



 x_2 -biased trajectory

Full iterative algorithm (Free Energy Biasing and Iterative Learning with AutoEncoders)

Input: Initial condition q_0 , autoencoder topology and initialization parameters $A_{\rm init}$, number of samples N, simulation procedure S and adaptive biasing procedure $S_{\rm AB}$, maximum number of iterations $I_{\rm max}$, minimum convergence score $s_{\rm min}$

Initialization

```
Sample \operatorname{traj}_0 \leftarrow S(q_0,N)
Initialize autoencoder \operatorname{AE}_0 \leftarrow A_{\operatorname{init}}
Train \operatorname{AE}_0 on \operatorname{traj}_0 with weights (\widehat{w}_0,\ldots,\widehat{w}_N)=(1,\ldots 1)
Extract the encoder function \xi_0:x\mapsto \xi_0(x)
```

Iterative update of the reaction coordinate

Set
$$i \leftarrow 0$$
, $s \leftarrow 0$
While $i < I_{\max}$ and $s < s_{\min}$
Set $i \leftarrow i+1$
Sample $\operatorname{traj}_i, \ F_i \leftarrow S_{\mathsf{AB}}(q_0, N, \xi_{i-1})$
Compute weights $\widehat{w}_j \propto \mathrm{e}^{-\beta F_i(\xi_{i-1}(x^j))}$
Initialize autoencoder $\mathsf{AE}_i \leftarrow A_{\mathsf{init}}$

Train AE_i on traj_i with sample weights \widehat{w}_j Extract the encoder function $\xi_i: x \mapsto \xi_i(x)$ Set $s \leftarrow \operatorname{regscore}(\xi_{i-1}, \xi_i)$

Set $\xi_{\text{final}} \leftarrow \xi_i$

Treshold s_{\min} to be determined

in our case: extended ABF

Convergence metric to be made precise

Production of output:

Sample traj_{final}, $F_{\text{final}} \leftarrow S_{\text{AB}}(q_0, N_{\text{final}} \xi_{\text{final}})$ with N_{final} large enough to ensure PMF convergence

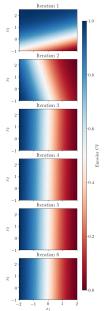
Discussion on the convergence criterion

- ullet Check convergence of CV? Quantify $\xi_i pprox \Phi(\xi_{i-1})$ for some monotonic function Φ
- ullet Approach: approximate Φ by a linear model o linear regression
- ullet Regression score between ξ and ξ'
 - \bullet Two sets of values of RC $(\xi(q^1),\dots,\xi(q^N))$ and $(\xi'(q^1),\dots,\xi'(q^N))$
 - Match them with a linear model M(z) = Wz + b

$$\sum_{i=1}^{N} \|\xi'(q^{i}) - M(\xi(q^{i}))\|^{2}$$

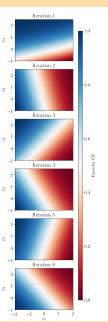
- Coefficient of determination $R^2=1-\frac{\sum\limits_{i=1}^{N}\|\xi'(q^i)-\bar{\xi'}\|^2}{\sum\limits_{i=1}^{N}\|\xi'(q^i)-\bar{\xi'}\|^2}$
- Maximization of R^2 w.r.t. W, b provides $\operatorname{regscore}(\xi', \xi)$
- ullet Value of s_{\min} computed using some bootstrap procedure

The iterative algorithm on the toy 2D example



Left: with reweighting Convergence to RC $\simeq x_1$

Right: without reweighting No convergence (cycles between two RCs)



Applications to systems of interest

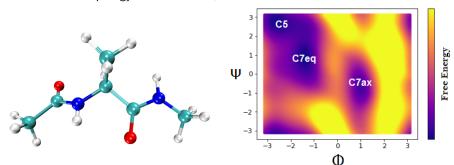
Alanine dipeptide

Molecular dynamics:

openmm with openmm-plumed to link it with plumed colvar module for eABF and computation of free energies timestep 1 fs, friction $\gamma=1~{\rm ps^{-1}}$ in Langevin dynamics

• Machine learning:

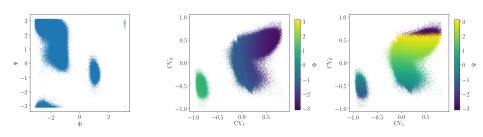
keras for autoencoder training input = carbon backbone (realignement to reference structure and centering) neural network: topology 24-40-2-40-24, tanh activation functions



Ground truth computation

Long trajectory (1.5 μ s), $N=10^6$ (frames saved every 1.5 ps)

RC close to dihedral angles Φ,Ψ

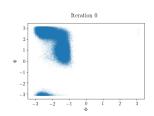


Quantify $s_{\rm min}=0.99$ for $N=10^5$ using a bootstraping procedure

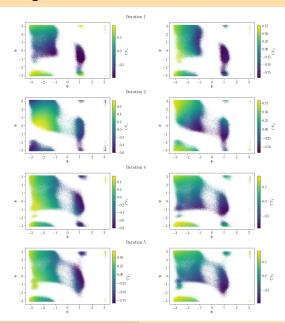
For the iterative algorithm: 10 ns per iteration

(compromise between times not too short to allow for convergence of the free energy, and not too large in order to alleviate the computation cost)

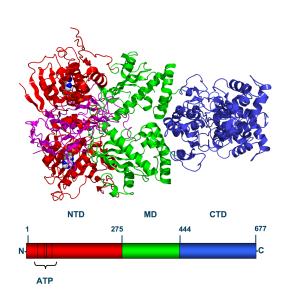
Results for the iterative algorithm



iter.	regscore	(Φ, Ψ)
0	_	0.922
1	0.872	0.892
2	0.868	0.853
3	0.922	0.973
4	0.999	0.972
5	0.999	0.970
6	0.999	0.971
7	0.999	0.967
8	0.998	0.966
9	0.999	0.968



HSP90 (work in progress...)



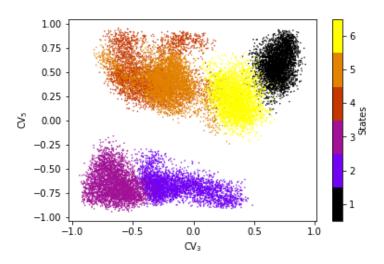
Chaperone protein assisting other proteins to fold properly and stabilizing them against stress, including proteins required for tumor growth

→ look for inhibitors (e.g. targeting binding region of ATP; focus only on the N-terminus domain)

27 / 28

(picture from https://en.wikipedia.org/wiki/File:Hsp90_schematic_2cg9.png)

HSP90 (work in progress...)



6 conformational states, data from 10×20 ns trajectories, input features = 621 C carbons, AE topology 621-100-5-100-621