Ḿáa

Coarse-graining and efficiently sampling with autoencoders

Gabriel STOLTZ

(CERMICS, Ecole des Ponts \& MATHERIALS team, Inria Paris)

With Z. Belkacemi (Sanofi \& ENPC), T. Lelièvre (ENPC/Inria) and P. Gkeka (Sanofi)

MASIM thematic meeting on ML \& sampling

Outline

- A (short/biased) review of machine learning approaches for CV
- Free-energy biasing and iterative learning with autoencoders ${ }^{1}$
- Autoencoders: definition, training, interpretation
- Extended adaptive biasing force method
- General presentation of the iterative algorithm
- Illustration/sanity checks on toy examples
- Applications to systems of interest (alanine dipeptide, chignolin, HSP90)

[^0]
(A biased perspective on some) References

- ML reviews in MD (biased towards dimensionality reduction, not force fields)
- A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, Chem. Rev. 121(16), 9722-9758 (2021)
- P. Gkeka et al., J. Chem. Theory Comput. 16(8), 4757-4775 (2020)
- F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71, 361-390 (2020)
- A.L. Ferguson, J. Phys.: Condens. Matter 30, 04300 (2018)
- M. Chen, Eur. Phys. J. B 94, 211 (2021)
- More general ML references
- P. Mehta, M. Bukov, C.-H. Wang, A.G.R.Day, C. Richardson, C.K.Fisher, D.J. Schwab, A high-bias, low-variance introduction to Machine Learning for physicists, Physics Reports 810, 1-124 (2019)
- I. Goodfellow, Y. Bengio, A. Courville Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org
- K.P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2022)

Molecular description of systems

Statistical physics (1)

What is the structure of the protein? What are its typical conformations, and what are the transition pathways from one conformation to another?

Statistical physics (2)

- Microstate of a classical system of N particles:

$$
(q, p)=\left(q_{1}, \ldots, q_{N}, p_{1}, \ldots, p_{N}\right) \in \mathcal{E}=(a \mathbb{T})^{3 N} \times \mathbb{R}^{3 N}
$$

Positions q (configuration), momenta p (to be thought of as $M \dot{q}$)

- Hamiltonian $H(q, p)=V(q)+\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}$ (physics is in $\left.V\right)$

Macrostate: Boltzmann-Gibbs probability measure (NVT)

$$
\mu(d q d p)=Z_{\mathrm{NVT}}^{-1} \mathrm{e}^{-\beta H(q, p)} d q d p, \quad \beta=\frac{1}{k_{\mathrm{B}} T}
$$

- Typical evolution equations: Langevin dynamics (friction $\gamma>0$)

$$
\left\{\begin{array}{l}
d q_{t}=M^{-1} p_{t} d t \\
d p_{t}=-\nabla V\left(q_{t}\right) d t-\gamma M^{-1} p_{t} d t+\sqrt{2 \gamma \beta^{-1}} d W_{t}
\end{array}\right.
$$

Reaction coodinates (RC) / collective variables (CV)

- Reaction coordinate $\xi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$ with $d \ll D$
- Ideally: $\xi\left(q_{t}\right)$ captures the slow part of the dynamics
- Free energy computed on $\Sigma(z)=\left\{q \in(a \mathbb{T})^{D} \mid \xi(q)=z\right\}$ (foliation)

$$
F(z)=-\frac{1}{\beta} \ln \left(\int_{\Sigma(z)} \mathrm{e}^{-\beta V(q)} \delta_{\xi(q)-z}(d q)\right)
$$

- Various methods: TI, FEP, ABF, metadynamics, etc ${ }^{2}$

[^1]
ML approaches
 for finding CV

Some representative approaches for finding CV (1)

- Chemical/physical intuition (distances, angles, RMSDs, coordination numbers, etc)
- Short list of data-oriented approaches (depending on the data at hand...)
- [supervised learning] separate metastable states
- [unsupervised/static] distinguish linear models (PCA) and nonlinear ones (e.g. based on autoencoders such as MESA ${ }^{3}$)
- [unsupervised/dynamics] operator based approaches (VAC, EDMD, diffusion maps, MSM; incl. tICA and VAMPNets)
(Huge literature! I am not quoting precise references here because the list would be too long)
- Other classifications ${ }^{4,5}$ possible, e.g. slow vs. high variance CV

[^2]
Some representative approaches for finding CV (2)

Methods for Choosing Collective variables

Slow CVs

Variational Approach to Conformational dynamics (VAC)
Kernel TICA

CV construction

with autoencoders

Bottleneck autoencoders (1)

Bottleneck autoencoders (2)

- Data space $\mathcal{X} \subseteq \mathbb{R}^{D}$, bottleneck space $\mathcal{A} \subseteq \mathbb{R}^{d}$ with $d<D$

$$
f(x)=f_{\mathrm{dec}}\left(f_{\mathrm{enc}}(x)\right)
$$

where $f_{\text {enc }}: \mathcal{X} \rightarrow \mathcal{A}$ and $f_{\text {dec }}: \mathcal{A} \rightarrow \mathcal{X}$
Collective variable $=$ encoder part

$$
\xi=f_{\mathrm{enc}}
$$

- Fully connected neural network, symmetrical structure, $2 L$ layers
- Parameters $\mathbf{p}=\left\{p_{k}\right\}_{k=1, \ldots, K}$ (bias vectors b_{ℓ} and weights matrices W_{ℓ})

$$
f_{\mathbf{p}}(x)=g_{2 L}\left[b_{2 L}+W_{2 L} \ldots g_{1}\left(b_{1}+W_{1} x\right)\right]
$$

with activation functions g_{ℓ}
(examples: $\tanh (x), \operatorname{ReLU} \max (0, x)$, sigmoid $\sigma(x)=1 /\left(1+\mathrm{e}^{-x}\right)$, etc)

Training autoencoders

- Theoretically: minimization problem in $\mathcal{P} \subset \mathbb{R}^{K}$

$$
\mathbf{p}_{\mu} \in \underset{\mathbf{p} \in \mathcal{P}}{\operatorname{argmin}} \mathcal{L}(\mu, \mathbf{p}),
$$

with cost function

$$
\mathcal{L}(\mu, \mathbf{p})=\mathbb{E}_{\mu}\left(\left\|X-f_{\mathbf{p}}(X)\right\|^{2}\right)=\int_{\mathcal{X}}\left\|x-f_{\mathbf{p}}(x)\right\|^{2} \mu(d x)
$$

- In practice, access only to a sample: minimization of empirical cost

$$
\mathcal{L}(\hat{\mu}, \mathbf{p})=\frac{1}{N} \sum_{i=1}^{N}\left\|x^{i}-f_{\mathbf{p}}\left(x^{i}\right)\right\|^{2}, \quad \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x^{i}}
$$

- Typical choices: canonical measure μ, data points x^{i} postprocessed from positions q (alignement to reference structure, centering, reduction to backbone carbon atoms, etc)

Some elements on training neural networks

- Many local minima...
- Actual procedure:
- Separate data set into training/validation: optimize on training set
- "Early stopping" : stop when validation loss no longer improves ${ }^{6}$

- Computation of gradient performed with backpropagation
- Choice of optimization method ${ }^{7}$, here Adam
- Add regularization to avoid overfitting (e.g. ℓ^{1} / ℓ^{2}, dropout, etc)

[^3]
Free energy biasing

for complex CV

Extended systems

- Computing $\nabla \xi$ already difficult, higher order derivatives is worse
- Extended system strategy : $V_{\text {ext }}(q, \lambda)=V(q)+\frac{\kappa}{2}(\xi(q)-\lambda)^{2}$
- Free energy for the (simple) collective variable $\xi_{\text {ext }}(q, \lambda)=\lambda$

$$
\begin{aligned}
F_{\kappa}(z) & =-\frac{1}{\beta} \ln \int_{\mathcal{D}} \mathrm{e}^{-\beta V_{\mathrm{ext}}(q, z)} d q+C \\
& =-\frac{1}{\beta} \ln \int\left(\int_{\Sigma(\zeta)} \mathrm{e}^{-\beta V(q)} \delta_{\xi(q)-\zeta}(d q)\right) \mathrm{e}^{-\beta \kappa(\zeta-z)^{2} / 2} d \zeta+C \\
& =-\frac{1}{\beta} \ln \int \mathrm{e}^{-\beta F(\zeta)} \chi_{\kappa}(z-\zeta) d \zeta+\widetilde{C}, \quad \chi_{\kappa}(s)=\left(\frac{\beta \kappa}{2 \pi}\right)^{d / 2} \mathrm{e}^{-\beta \kappa s^{2} / 2} \\
& \xrightarrow[\kappa \rightarrow+\infty]{\longrightarrow} F(z)
\end{aligned}
$$

Calls for taking κ large

Extended ABF

Extended overdamped Langevin dynamics (κ limits $\Delta t \ldots$)

$$
\left\{\begin{array}{l}
d q_{t}=\left[-\nabla V\left(q_{t}\right)+\kappa\left(\xi\left(q_{t}\right)-\lambda_{t}\right) \nabla \xi\left(q_{t}\right)\right] d t+\sqrt{2 \beta^{-1}} d W_{t}^{q} \\
d \lambda_{t}=-\kappa\left[\lambda_{t}-\xi\left(q_{t}\right)\right] d t+\sqrt{2 \beta^{-1}} d W_{t}^{\lambda}
\end{array}\right.
$$

Extended ABF overdamped Langevin dynamics

$$
\left\{\begin{array}{l}
d q_{t}=\left[-\nabla V\left(q_{t}\right)+\kappa\left(\xi\left(q_{t}\right)-\lambda_{t}\right) \nabla \xi\left(q_{t}\right)\right] d t+\sqrt{2 \beta^{-1}} d W_{t}^{q} \\
d \lambda_{t}=\kappa\left[\xi\left(q_{t}\right)-\mathbb{E}\left(\xi\left(q_{t}\right) \mid \lambda_{t}\right)\right] d t+\sqrt{2 \beta^{-1}} d W_{t}^{\lambda}
\end{array}\right.
$$

In practice, $\mathbb{E}\left(\xi\left(q_{t}\right) \mid \lambda_{t}\right)$ is estimated by $\Xi_{t}\left(\lambda_{t}\right)$ with

$$
\Xi_{t}(\Lambda)=\frac{\int_{0}^{t} \delta_{\varepsilon}\left(\lambda_{s}-\Lambda\right) \xi\left(q_{s}\right) d s}{\max \left(\eta, \int_{0}^{t} \delta_{\varepsilon}\left(\lambda_{s}-\Lambda\right) d s\right)}
$$

Unbiased estimate of the free energy in eABF

- Stationarity: configurations distributed according to $\mathrm{e}^{-\beta\left(V_{\text {ext }}(q, \lambda)-F_{\kappa}(\lambda)\right)}$

$$
\rho(z, \lambda)=Z_{\kappa}^{-1} \exp \left(-\beta\left[F(z)+\frac{\kappa}{2}(z-\lambda)^{2}-F_{\kappa}(\lambda)\right]\right)
$$

- Unbiased estimator of the mean force (CZAR) ${ }^{8}$

$$
F^{\prime}(z)=-\frac{1}{\beta} \frac{d[\ln \bar{\rho}(z)]}{d z}+\kappa\left(\langle\lambda\rangle_{z}-z\right)
$$

with $\bar{\rho}(z)=\int \rho(z, \lambda) d \lambda$ and $\langle\lambda\rangle_{z}=\frac{1}{\bar{\rho}(z)} \int \lambda \rho(z, \lambda) d \lambda$ (conditional dist.)

Proof: start from $F^{\prime}(z)=-\frac{1}{\beta} \frac{\partial_{z} \rho(z, \lambda)}{\rho(z, \lambda)}-\kappa(z-\lambda)$, multiply both sides of the equality by $\rho(z, \lambda) / \bar{\rho}(z)$ and integrate with respect to λ
${ }^{8}$ A. Lesage, T. Lelièvre, G. Stoltz and J. Hénin, J. Phys. Chem. B (2017)

Joint distribution of (λ, z) (deca-alanine)

logarithmic scale

$$
\sigma^{2}=\frac{1}{\beta \kappa}
$$

Marginal distribution in λ nearly uniform (as expected)

Iterative

free energy biasing/ autoencoder learning

Training on modified target measures

- Interesting systems are metastable (no spontaneous exploration of phase space) Sample according to a biased distribution $\widetilde{\mu}$ (importance sampling)
- Need for reweighting to learn the correct encoding!

$$
w(x)=\frac{\mu(x)}{\widetilde{\mu}(x)}
$$

- Minimization problem: theoretical cost function

$$
\mathcal{L}(\mu, \mathbf{p})=\int_{\mathcal{X}}\left\|x-f_{\mathbf{p}}(x)\right\|^{2} w(x) \widetilde{\mu}(d x)
$$

actual cost function

$$
\mathcal{L}\left(\widehat{\mu}_{\text {wght }}, \mathbf{p}\right)=\sum_{i=1}^{N} \widehat{w}_{i}\left\|x^{i}-f_{\mathbf{p}}\left(x^{i}\right)\right\|^{2}, \quad \widehat{w}_{i}=\frac{\mu\left(x^{i}\right) / \widetilde{\mu}\left(x^{i}\right)}{\sum_{j=1}^{N} \mu\left(x^{j}\right) / \widetilde{\mu}\left(x^{j}\right)}
$$

- Only requires the knowledge of μ and $\tilde{\mu}$ up to a multiplicative constant.
- Stochastic gradients in training: sampling with replacement according to multinomial distribution

Proof of concept (1)

- Gaussian distributions $\mu_{i}=\mathcal{N}\left(0, \Sigma_{i}\right)$ with

$$
\Sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0.01
\end{array}\right), \quad \Sigma_{2}=\left(\begin{array}{cc}
0.01 & 0 \\
0 & 1
\end{array}\right)
$$

Datasets \mathcal{D}_{i} of $N=10^{6}$ i.i.d. points

- Autoencoders with 2 layers of resp. 1 and 2 nodes, linear activation functions (\simeq PCA)
- Training on:
- \mathcal{D}_{1}
- \mathcal{D}_{2}
- \mathcal{D}_{2} with reweighting $\widehat{w}_{i} \propto \mu_{1} / \mu_{2}$

Proof of concept (2)

Heat maps of $f_{\text {enc }}$

Third encoder very similar to the first one: projection on x_{1}. Second encoder projects on a direction close to x_{2}.

Proof of concept with free energy biasing (1)

Two dimensional potential ("entropic switch") ${ }^{9}$

$$
\begin{aligned}
V\left(x_{1}, x_{2}\right) & =3 \mathrm{e}^{-x_{1}^{2}}\left(\mathrm{e}^{-\left(x_{2}-1 / 3\right)^{2}}-\mathrm{e}^{-\left(x_{2}-5 / 3\right)^{2}}\right) \\
& -5 \mathrm{e}^{-x_{2}^{2}}\left(\mathrm{e}^{-\left(x_{1}-1\right)^{2}}+\mathrm{e}^{-\left(x_{1}+1\right)^{2}}\right)+0.2 x_{1}^{4}+0.2\left(x_{2}-1 / 3\right)^{4}
\end{aligned}
$$

Trajectory from $q^{j+1}=q^{j}-\nabla V\left(q^{j}\right) \Delta t+\sqrt{2 \beta^{-1} \Delta t} G^{j}$ for $\beta=4$ and $\Delta t=10^{-3} \longrightarrow$ metastability in the x_{1} direction
${ }^{9}$ S. Park, M.K. Sener, D. Lu, and K. Schulten (2003)

Proof of concept with free energy biasing (2)

- Free energy biasing: distributions $Z_{i}^{-1} \exp \left(-\beta\left[V(q)-F_{i}\left(\xi_{i}(q)\right)\right]\right)$

$$
F_{1}\left(x_{1}\right)=-\frac{1}{\beta} \ln \left(\int_{\mathbb{R}} \mathrm{e}^{-\beta V\left(x_{1}, x_{2}\right)} d x_{2}\right), \quad F_{2}\left(x_{2}\right)=-\beta^{-1} \ln \left(\int_{\mathbb{R}} \ldots d x_{1}\right)
$$

Three datasets: unbiased trajectory, trajectories biased using F_{1} and F_{2} (free energy biased trajectories are shorter but same number of data points $N=10^{6}$)

- Autoencoders: 2-1-2 topology, activation functions tanh (so that CV is in $[-1,1])$ then identity
- Five training scenarios:
- training on long unbiased trajectory (reference CV)
- ξ_{1}-biased trajectory, with or without reweighting
- ξ_{2}-biased trajectory, with or without reweighting

Proof of concept with free energy biasing (3)

Normalize to compare
$\xi_{\mathrm{AE}}^{\mathrm{norm}}(x)=\frac{\xi_{\mathrm{AE}}(x)-\xi_{\mathrm{AE}}^{\min }}{\xi_{\mathrm{AE}}^{\max }-\xi_{\mathrm{AE}}^{\min }}$

Reference CV
(distinguishes well the 3 wells)

x_{1}-biased trajectory

x_{2}-biased trajectory

Full iterative aloorithm (Free Energy Biasing and Iterative Learning with AutoEncoders)

Input: Initial condition q_{0}, autoencoder topology and initialization parameters $A_{\text {init }}$, number of samples N, simulation procedure S and adaptive biasing procedure S_{AB}, maximum number of iterations $I_{\text {max }}$, minimum convergence score $s_{\text {min }}$

Initialization

Sample trajo $\leftarrow S\left(q_{0}, N\right)$
Initialize autoencoder $\mathrm{AE}_{0} \leftarrow A_{\text {init }}$
Train AE_{0} on trajo with weights $\left(\widehat{w}_{0}, \ldots, \widehat{w}_{N}\right)=(1, \ldots 1)$
Extract the encoder function $\xi_{0}: x \mapsto \xi_{0}(x)$

Iterative update of the collective variable

Set $i \leftarrow 0, s \leftarrow 0$
While $i<I_{\text {max }}$ and $s<s_{\text {min }} \quad$ Threshold $s_{\text {min }}$ to be determined
Set $i \leftarrow i+1$
Sample traj ${ }_{i}, F_{i} \leftarrow S_{\mathrm{AB}}\left(q_{0}, N, \xi_{i-1}\right) \quad$ in our case: extended ABF
Compute weights $\widehat{w}_{j} \propto \mathrm{e}^{-\beta F_{i}\left(\xi_{i-1}\left(x^{j}\right)\right)}$
Initialize autoencoder $\mathrm{AE}_{i} \leftarrow A_{\text {init }}$
Train AE_{i} on traj ${ }_{i}$ with sample weights \widehat{w}_{j}
Extract the encoder function $\xi_{i}: x \mapsto \xi_{i}(x)$
Set $s \leftarrow \operatorname{regscore}\left(\xi_{i-1}, \xi_{i}\right) \quad$ Convergence metric to be made precise
Set $\xi_{\text {final }} \leftarrow \xi_{i}$
Production of output:
Sample trajfinal,$F_{\text {final }} \leftarrow S_{\mathrm{AB}}\left(q_{0}, N_{\text {final }} \xi_{\text {final }}\right)$ with $N_{\text {final }}$ large enough to ensure PMF convergence

Discussion on the convergence criterion $(1 / 2)$

- Check convergence of CV?

Quantify $\xi_{i} \approx \Phi\left(\xi_{i-1}\right)$ for some monotonic function Φ

- Approach: approximate Φ by a linear model (Nonlinear regression may be needed)
- Regression score between ξ and ξ^{\prime}
- Two sets of values of $\operatorname{CV}\left(\xi\left(q^{1}\right), \ldots, \xi\left(q^{N}\right)\right)$ and $\left(\xi^{\prime}\left(q^{1}\right), \ldots, \xi^{\prime}\left(q^{N}\right)\right)$
- Match them with a linear model $M(z)=W z+b$

$$
\sum^{N}\left\|\xi^{\prime}\left(q^{i}\right)-M\left(\xi\left(q^{i}\right)\right)\right\|^{2}
$$

- Coefficient of determination $R^{2}=1-\underline{i=1}$

$$
\sum_{i=1}^{N}\left\|\xi^{\prime}\left(q^{i}\right)-\bar{\xi}^{\prime}\right\|^{2}
$$

- Maximization of R^{2} w.r.t. W, b provides regscore $\left(\xi^{\prime}, \xi\right)$
- Value of $s_{\text {min }}$ computed using some bootstrap procedure

Discussion on the convergence criterion $(2 / 2)$

Histogram of the R^{2} scores obtained using subsets of $N=10^{5}$ points out of 10^{6} points (vertical black line $=5 \%$ percentile).
(Left: Alanine dipeptide. Right: Chignolin)

The iterative algorithm on the toy 2D example

Left: with reweighting
Convergence to $\mathrm{CV} \simeq x_{1}$

Right: without reweighting No convergence (cycles between two CVs)

Applications

to systems of interest

Alanine dipeptide

- Molecular dynamics:

openmm with openmm-plumed to link it with plumed colvar module for eABF and computation of free energies ${ }^{10}$ timestep 1 fs , friction $\gamma=1 \mathrm{ps}^{-1}$ in Langevin dynamics

- Machine learning:

keras for autoencoder training input $=$ carbon backbone (realignement to reference structure and centering) neural network: topology 24-40-2-40-24, tanh activation functions

[^4]
Ground truth computation

Long trajectory (1.5 $\mu \mathrm{s}$), $N=10^{6}$ (frames saved every 1.5 ps)
CV close to dihedral angles Φ, Ψ

Quantify $s_{\text {min }}=0.99$ for $N=10^{5}$ using a bootstraping procedure

For the iterative algorithm: 10 ns per iteration
(compromise between times not too short to allow for convergence of the free energy, and not too large in order to alleviate the computation cost)

Results for the iterative algorithm

Iteration 1

Iteration 0

iter.	regscore	(Φ, Ψ)
0	-	0.922
1	0.872	0.892
2	0.868	0.853
3	0.922	0.973
4	0.999	0.972
5	0.999	0.970
6	0.999	0.971
7	0.999	0.967
8	0.998	0.966
9	0.999	0.968

Iteration 2

Iteration 4

Iteration 5

Chignolin (Folded/misfolded/unfolded states)

Iteration 0

Iteration 1

Iteration 5

Iteration 3

Iteration 6

HSP90 (work in progress...)

Chaperone protein assisting other proteins to fold properly and stabilizing them against stress, including proteins required for tumor growth
\longrightarrow look for inhibitors (e.g. targeting binding region of ATP; focus only on the
N -terminus domain)

HSP90 (work in progress...)

6 conformational states, data from 10×20 ns trajectories, input features $=621 \mathrm{C}$ carbons, AE topology 621-100-5-100-621
Issue: dimension of bottleneck?

[^0]: ${ }^{1}$ Z. Belkacemi, P. Gkeka, T. Lelièvre, G. Stoltz, J. Chem. Theory Comput. 18 (2022)

[^1]: ${ }^{2}$ Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

[^2]: ${ }^{3}$ W. Chen and A.L. Ferguson, J. Comput. Chem. 2018; W. Chen, A.R. Tan, and A.L. Ferguson, J. Chem. Phys. 2018
 ${ }^{4}$ P. Gkeka et al., J. Chem. Theory Comput. (2020)
 ${ }^{5}$ A. Gliemlo et al., Annu. Rev. Phys. Chem. (2021)

[^3]: ${ }^{6}$ See Section 7.8 in [Goodfellow/Bengio/Courville]
 ${ }^{7}$ See Chapter 8 in [Goodfellow/Bengio/Courville]

[^4]: ${ }^{10}$ See also Chen/Liu/Feng/Fu/Cai/Shao/Chipot, J. Chem. Inf. Model. (2022)

