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Outline of the talk

» A brief presentation of methods to compute free energy differences

# Thermodynamic integration using Langevin dynamics

# Nonequilibrium Langevin dynamics
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Computing free energy differences
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Microscopic description of a classical system

# Positions ¢ (configuration), momenta p = M ¢ (M diagonal mass matrix)

# Microscopic description of a classical system (/N particles):

(¢,p) = (¢1,---,qn, P1,---,DN) €EE

# Forinstance, £ = T*D = D x R3Y with D = R3Y or T3V

#» More complicated situations can be considered... (constraints defining
submanifolds of the phase space)

o Hamiltonian H(q,p) = Z p" +V (q1,---,qN)

# All the physics is contalned inV

# Canonical probability measure:

1
kT
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Sampling the canonical measure

o

The aim is to compute an approximation of the high dimensional integral

(4) I/*DA(q,p)u(dqdp)

Restated as a one-dimensional integral using ergodic properties of an
irreducible dynamics for which the canonical measure is invariant:

1
lim ?/ A(qs, pe) dt :/ A(q,p) u(dqdp) a.s.
0 D

T — 400

Overdamped Langevin dynamics (momenta trivial to sample)

2

Zero mass limit of the Langevin dynamics or the limit of the Langevin
dynamics when the friction goes to infinity (with suitable time rescaling)
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Langevin dynamics

o

Stochastic perturbation of the Hamiltonian dynamics
dgr = M~ 'p, dt
dp; = —VV (q) dt—~(q:)M ~p; dt + o(q;) dW;

. L . 2
Fluctuation/dissipation relation oo = =

~
5
Invariance of the canonical measure when it is a stationary solution of the
Fokker-Planck equation 0y = L*v with

BH

L={ H+ %divp (ve PHY, )

and {Al, AQ} = (Vqu)T VpAQ — (val)T quQ
Irreducibility amounts to controllability (Hérmander condition)

Numerical schemes obtained by a splitting strategy for instance (Verlet
scheme + partial randomization of momenta)
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Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

2At
" =" - AtVV (") + \ 6 '

where G"™ ~ N(O, IddN) 1.1.d.

I I I I I I I [ T T T T T T T T T
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X coordinate Time

o
(3]

y coordinate

X coordinate

Projected trajectory in the x variable for At = 0.01, g = 8.
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Metastability (2)

# Although the trajectory average converges to the phase-space average,
the convergence may be slow...

# Slowly evolving macroscopic function of the microscopic degrees of
freedom: reaction coordinate £(q) € R™ with m < N

# Two origins : energetic or entropic barriers (in fact, free energy barriers)

=

e

X coordinate

y coordinate

i

T T T T T T |
0.0 5000 10000 15000 20000

I I
® . &
| ==

X coordinate Time
(@) Entropic barrier. (b) Associated trajectory.
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Metastability (3)

o Assume the free energy F' associated with the slow direction x has been
computed, and sample the modified potential V(z,y) = V(x,y) — F(x).

5

y coordinate
X coordinate

I I I I I I I ] I T T T T T T T T T 1
-15 -1 05 0 05 1 15 0.0 2000 4000 6000 8000 10000
X coordinate Time

Projected trajectory in the x variable for At = 0.01, g = 8.

o Many more transitions! The variable z is uniformly distributed.
» Reweighting with weights ¢=#F(*) to compute canonical averages

» Compute efficiently the free energy?
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Computation of free energy differences

» Alchemical transition: indexed by an external parameter X\ (force field
parameter, magnetic field,...)

/ e~ PHILP) o dp
*D

/ o—BHo(q,p) dq dp
*D

AF = -3 1In

)

Typically, Hy = (1 — \)Hg + \H;

# (given) reaction coordinate ¢ : R3® — R™ (angle, length,. . .):

/ o~ BH(q:p) 5§(q)_zl (dgq) dp
T*Y,

AF = —-3"11n
/ o~ BH(4:p) O¢(q)—= (dq) dp
T3,

with 33, = {q €D ‘ £(q) = z} Recall d¢(y)—. = |V&| Hdos,.

Edinburgh, june 2010 —p. 10/33




Cartoon comparison of the methods (reaction coordinate case)

(

(b) Thermodynamic integration

(C) Nonequilibrium switching dynamics (d) Adaptive dynamics
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Some elements on the scientific landscape

# We focus on the reaction coordinate case
o Histogram methods: WHAM (Kumar et al.), MBAR (Chodera/Shirts)

# Thermodynamic integration in the Hamiltonian case (Carter et al., den
Otter/Briels, Sprik/Ciccotti, Hartmann/Schitte) or for overdamped
Langevin dynamics (Ciccotti/Lelievre/Vanden-Eijnden)

# Nonequilibrium methods: overdamped case (Lelievre/Rousset/Stoltz) or
steered versions (potentials V) (q) = V(q) + K(£(q) — M)?)

# Adpative methods: adaptive biasing force (Darve/Pohorille, Chipot/Hénin),
nonequilibrium metadynamics (Bussi/Laio/Parrinello), self-healing
umbrella sampling (Marsili et al., Dickson et al.)

# Aims of this work:

s Thermodynamic integration with Langevin dynamics
s Nonequilibrium Langevin dynamics
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Thermodynamic integration with
Langevin dynamics
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Constrained Langevin dynamics (1)

# Consider the following Langevin process:

(th = M 'p, dt,

/"

dpy = —VV (q) dt — v(q)M  p, dt + o(qe) AWy + VE(qr) d)y,

\5(%&) =z

. . . 2
» Standard fluctuation/dissipation relation oo’ = ny

d
i(lft) = ve(qe,pt) = VE(@) ' M~ 'p, =0

» The corresponding phase-space is ¥¢ ,, (z,0) where

# Hidden velocity constraint:

Ng v (2,02) = {(qap) e RN | &(q) = 2, velq,p) = Uz}

# An explicit expression of the Lagrange multiplier can be found by
computing the second derivative in time of the constraint
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Constrained Langevin dynamics (2)

» Reformulation of the constrained Langevin dynamics as

(
dgs = M~ 'p; dt,

\dpe = =V V(qr) dt + VE(qr) fima(ae,pe) dt —vp(qe) M~ prdt + op(qe) dWr,
# Projected fluctuation/dissipation matrices
(0p,vp) = (Py o, Py Pyy)

where Py (q) = Id — VE&(q) G} (@) VE(q)T M1
# Constraining force (projection of the conservative force + centrifugal term)

fosa(a,p) = G (@ VE(Q)" M~'VV (q) — Gy (q)Hessg (&) (M~ 'p, M~ 'p)

r

where G (q) = VE(Q)T M~1VE(q)
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Properties of the projected Langevin dynamics

» Generator of the dynamics: £ = £ha™ 4 £thm with

1 . _
Lrhm — 3 eﬁHdlvp(e A Np Y, )

# |nvariant measure

pse ., (-0 (dadp) = Zog e PHEP gy () (dgdp),
where OS¢ 0, (2,v.)(dq dp) is the phase space Liouville measure of
Yi¢ ve (2, v2) induced by the symplectic matrix J
o Reversibility: Law(q:, p4;0 <t <T) = Law(qr_¢, —pr—+;0 <t <T)
» Ergodicity (longtime trajectorial convergence)

# The normalizing constant of this canonical distribution defines a rigid free
energy (more on this later)
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Numerical discretization (1)

o Splitting in a Hamiltonian part + constrained Ornstein-Uhlenbeck process

# Midpoint scheme for the momenta (reversible for the canonical measure
with constraints)

At At
p" Tt = pn -y M +p”“/4)+\/709”+V§(Q”)A”“/4,

with the constraint V&(¢™)T M~ 1pnt1/4 =0

#» RATTLE scheme (symplectic)

( At ny \n
pn—|-1/2 pn—|—1/4 o —VV( n) +V€(q ))\ —|—1/27
At
\ pn—|—3/4 _ pn—i—1/2 VV( n—l—l) —|-V€( n—l—l))\n—l—3/4

with £(¢g™+1) = z and vg(q”H)TM Lpn+3/4 — @
# Metropolization of the RATTLE part to eliminate the time-step error

# Overdamped limit (exact sampling)
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Thermodynamic integration (1)

» The free energy can be estimated from constrained samplings as

1

F(z) = ——In e PH@P) ey (dq) dp
B Jxz)xmraN
1 _
— Frgd( ) — B In - (det GM) 1/2dII,L2£,U5 (2,0) + C

with the rigid free energy (constraints on both ¢ and p)

1
Fi(z)=—=In e PP dps, | (20
B I8 20 e

# Extension to the case of molecular constraints

# Thermodynamic integration through the computation of the mean force

V.Frga(2) = / frea(@,p) b5 .. (=,0) (dg dp)
25 v (2: O)
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Thermodynamic integration (2)

# Longtime (a.s.) convergence

1t M
TEI—EOOT/O dA\i = V. Fl.q(2)

# Variance reduction: keep only the Hamiltonian part of \;

#» Numerical discretization: approximate the mean force using only the
Lagrange multipliers from the RATTLE part:

N-1 N-1
1

1 n n n n
V.Fha(z) ~ N Z fowa(q",p") ~ NA7 Z(A T2 4 A/

# Consistency result

APTL/2 | \nt3/4 _ %( gd(qn’an/Q)Jr éfd(qn“,p”“”)) + O(A)
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Application: Solvatation effects on conformational changes (1)

. . . (r —rg —w)? ’
# Two particules (q1,q2) interacting through Vs(r) = h |1 —

’UJ2
# Solvent: particules interacting through the purely repulsive potential

Vivea (r) = 4e [<€>12 — <g>6] +eifr <rg, 0ifr > rg

r r

\Ch — CI2| —To
(q) =

# Reaction coordinate & 5
w

stretched state ¢71(1)

, compact state £~1(0),

= . — - %%
= = = S
= = =
%§ -
%% & e =
e & S = & =
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Application: Solvatation effects on conformational changes (2)

20: 0.0
10- -0.51
8 S
S
S o 2 -10
G o |
-10; I
] 2.0
201 |
] -2.5]
-30 T T T T T T T T T T T T T T T T T T T T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reaction coordinate Reaction coordinate

Left: Estimated mean force. Right: Corresponding potential of mean force.

Parameters: 3 = 1, N = 100 particles, solvent density p = 0.436, WCA interactions ¢ = 1 and
e = 1, dimer w = 2 and h = 2. Mean force estimated at the values z; = z,,in + 1Az, With
zmin = —0.2, zmax = 1.2 and Az = 0.014, by ergodic averages obtained with the projected

dynamics with Metropolis correction (time T = 2 x 104, step size At = 0.02, scalar friction v = 1).
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Nonequilibrium Langevin dynamics
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Presentation of the dynamics (1)

# Idea: start at equilibrium and perform a switching from the initial to the
final state in a finite time T’

o Schedule z(¢) for t € [0, T] and dynamics
dgg = M~ 'pdt,
¢ dpy = =VV(q)dt—yp(q) M 'pdt + op(q) AW + VE(qe) dXy,

L &lae) = =2(1), (Cq(1))

with initial conditions (qo,po) ~ ,uzg,vg (Z(O)’z(o))(dq dp)

» Projected fluctuation/dissipation relation (op,vp) := (Py o, Py oy Piy) SO
that the noise act only in the direction orthogonal to V¢

» Hidden constraint on the reaction coordinate velocity ve(q, p) = 2(¢)
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Presentation of the dynamics (2)

# Backward dynamics: start at equilibrium for the final value of the
schedule, switching with a time-reversed schedule t’ — z(T — t/)

» Initial conditions (g2, pp) ~ e, (=(T).2(T) (dg dp) and evolution

(dQ};/ — _M ptldt,

/G

dpt,—VV( )dt,_”YP( )M pt,dt’—l—a( )th]?—I—V§( )d)\}i)’a

(@) = 2(T =t

# The generator of the forward dynamics is (Gram matrix I' = {Z, =
C T (Za Z))
££ — { ) 7H}E + CtEhm + {'> E} F_1C(t)

while the generator of the backward dynamics is £, = R £%._,, R (where
R : ¢ — ¢ o S is the momentum flip operator with S(q,p) = (¢, —p))
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Generalized free energy and work

. 1
» Rigid free energy FM (2,v.) = —=1n e_mq(q’p)duz:g,v£ (2,0.)

rgd
/8 E&,vg (Za'vz)

# Actual free energy recovered from the difference F(z) — ng’gg (z,v,),
which equals, up to an unimportant additive constant:

1 _ B
[ et Garla) e (GG @0 ) s e (dad)
ﬁ Eg,vg (z,v%) 2 ¢

# Work performed during the switching: several expressions

T
s Force times displacement: Wy 1 ({qt,pt}0<t<T) =/ )T d)y
- 0

T
s Energy variations: Wy r ({qt,pt}0<t<T) :/ w(t, g, py) dt where
- 0

d

wlt,p) = SOTTHE HY (0.0) = (50 B )

the flow of the switched Hamiltonian dynamics

(q,p) with ®
h=0
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Jarzynski-Crooks relation

» For any bounded path functional ¢ 771,

Zz(T),,é(T) B E (SO[O,T] ({Qt,pt}ogth) e_ﬁWO’T({Qt’Pt}te[o,T]»

Z(0),2(0) E (SOfO,T] ({QBaP?}OSt'ST))

where (- )" denotes the composition with the operation of time reversal of
paths:

Spfo,T] ({QS/,pg/}ogﬂgT) = ¥0,T] ({C]bT—typtbr—t}ogtST)

# This leads in particular to the following free energy estimator

E (e_ﬁ[WO,T ({Qt ,pt}te[O,T] )+C(T,QT)]>

F((T)) — F(2(0)) = —% In

with the corrector C(t, q) = % In (det GM(q)) - % ()G (@)2(t)
# Standard methods can then be used (bridge estimators, etc)
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Some elements on the proof

# The proof relies on the following balance condition
/  (e1Li(e2) — 2Ly (1)) e dos, , (0),20)
Y (2(),2(1))

B / Bt )prpee M dos, | .z
Eg,v£ (2(¢),2(1))

d _
* dt </ (2(t),2(1)) P12¢ - dUZs,vs (z(t)"é(t)))
ZE,’Ug z(t ,Z t

» Left-hand side: detailed balance contribution

# Right-hand side: evolution of the measure and work correction
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Numerical schemes: splitting strategy

# Fluctuation/dissipation part (no Lagrange multiplier needed)

At — n n At n\on
pn T = pn — p(d" )M Hpm T ") 5 op(q")9g

# Hamiltonian part for the forward evolution

( At n

pr R = pn I - SV (") + VE(gAT?,

qn—i—l _ qn —I—At ]\4—11)77,4—1/27
(@) = 2(tnsa), (Cq)

At
pn—i—3/4 _ pn—|—1/2 o 7v‘/(qn—i—l) + vé-(qn—l—l))\7@—}—3/47
n+INT nj—1, n+3/4 _ 2(tnt2) — 2(tnt1)
(VE(g"T)T M = A7 , (Cp)

which defines a symplectic map

A I ET ERE e )

At At
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Discrete Jarzynski-Crooks equality: Alchemical case

# lIdea in the alchemical case

» Discrete schedule {\(0),..., A(tn,)} With NpAt =T

» Initial conditions (¢°,p°) ~ uo(dgdp) = Z; " exp (—BH/\(O) (q,p)) dg dp

# Successive updates of the parameter and the configuration:
» Change the parameter from A\(nAt) to A\((n + 1)At)
s Update work: WY/ 2 = Wm + Hy (ny1)an (@7, P") — Hamar (¢ ")

s Update the configuration using the Verlet map ®”*! associated with
the Hamiltonian H((,+1)a¢)

s WL = W2 4 By (ngnyan (@ 0" ) — Hy(ng1)an (@7 p")

» Total work: W™ = H (A (q",p") — HA(O)(QO,Z?O)

n Zy
# It can be checked that E (e_ﬁw ) = for any value of At such that the
0

Verlet scheme is stable

# Extension to path functionals
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Discrete Jarzynski-Crooks equality: The reaction coordinate case

» Discrete schedule {z(0),...,z(tn,.)}

Initial conditions (¢, p°) ~ cieo—=e0 (dg dp) and
9 tial conditio S(q ,p) Mzg,%(z(to), (1)At(0))( q P)

(¢>°,p"0) ~

z(t —2z(t d d
2ig, e <Z(tNT)a (NT+1A)t (NT)>( ! p)
# Initial work W° = 0, and work update
Wn—l—l — Wn + H(qn—l—ljpn—i—?)/él) o H(qn’pn+1/4)

» Time-step error free estimator of the free energy difference:

N
2 (g Z2rp) o) E(%O[O,NT] ({g",p" Yo<n<ny) e T)

At

Zz(t ), z(t1) z(to) E (gpfO,NT] ({qb’n/apb’n,}OSn’SNT)>

At At . L .
» Overdamped limit 5 7= M = TId: no bias due to the finite time-step in

the estimator
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Application: Solvatation effects on conformational changes

Free energy

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Reaction coordinate

Estimated free energy profiles for 7' = 1 with M = 10° (top curve), T = 10 with
M = 10* and T = 100 with M = 103 (smoothest curve).

Same parameters as before, except At = 0.01. Schedule z(t) = zmin + (Zmax — zmin)% with
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