

Computational statistical physics and hypocoercivity

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

Saint Jean de Monts, July 2021

Outline of the talk

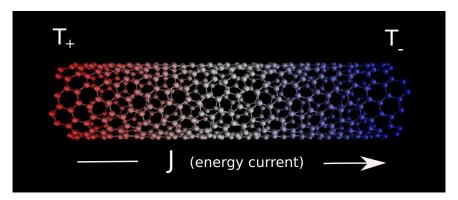
- Computational statistical physics¹
 - A general perspective
 - Langevin dynamics and its overdamped limit
- Longtime convergence of overdamped Langevin dynamics
 - Poincaré inequalities
 - Estimates on the asymptotic variance
- Longtime convergence of "hypocoercive" ODEs
- Longtime convergence of Langevin dynamics
 - The need for a modified scalar product
 - One hypocoercive approach for Langevin dynamics
 - Direct estimates on the variance

¹T. Lelièvre and G. Stoltz, Acta Numerica (2016)

Computational statistical physics

Computational statistical physics (1)

- Aims of computational statistical physics
 - numerical microscope
 - computation of average properties, static or dynamic



"Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?"

Computational statistical physics (2)

• Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,...)

$$\mathbb{E}_{\mu}(\varphi) = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp)$$

- Choice of thermodynamic ensemble
 - least biased measure compatible with the observed macroscopic data
 - Volume, energy, number of particles, ... fixed exactly or in average
 - Equivalence of ensembles (as $N \to +\infty$)
- ullet Canonical ensemble = measure on (q,p), average energy fixed H

$$\mu_{\text{NVT}}(dq \, dp) = Z_{\text{NVT}}^{-1} e^{-\beta H(q,p)} \, dq \, dp$$

with $\beta=rac{1}{k_{
m B}T}$ the Lagrange multiplier of the constraint $\int_{\cal E} H\, \rho\, dq\, dp=E_0$

Langevin dynamics (1)

Computation of high-dimensional integrals... Ergodic averages

$$\int_{\mathcal{E}} \varphi \, d\mu = \lim_{t \to +\infty} \widehat{\varphi}_t, \qquad \widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) \, ds$$

- ullet Positions $q\in\mathcal{D}=(L\mathbb{T})^d$ or \mathbb{R}^d , and momenta $p\in\mathbb{R}^d$
- ightarrow phase-space $\mathcal{E} = \mathcal{D} imes \mathbb{R}^d$
- Hamiltonian $H(q,p) = V(q) + \frac{1}{2}p^TM^{-1}p$

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sqrt{\frac{2\gamma}{\beta}} dW_t \end{cases}$$

ullet Given (known) friction $\gamma > 0$ (could be a position-dependent matrix)

Gabriel Stoltz (ENPC/Inria)

6/29

Langevin dynamics (2)

- ullet Evolution semigroup $\left(\mathrm{e}^{t\mathcal{L}}arphi
 ight)(q,p)=\mathbb{E}\left[arphi(q_t,p_t)\left|(q_0,p_0)=(q,p)
 ight]$
- ullet Generator of the dynamics ${\cal L}$

$$\frac{d}{dt} \left(\mathbb{E} \left[\varphi(q_t, p_t) \, \middle| (q_0, p_0) = (q, p) \right] \right) = \mathbb{E} \left[(\mathcal{L}\varphi)(q_t, p_t) \, \middle| (q_0, p_0) = (q, p) \right]$$

Generator of the Langevin dynamics $\mathcal{L} = \mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$

$$\mathcal{L}_{\text{ham}} = p^T M^{-1} \nabla_q - \nabla V^T \nabla_p, \qquad \mathcal{L}_{\text{FD}} = -p^T M^{-1} \nabla_p + \frac{1}{\beta} \Delta_p$$

• Existence and uniqueness of the invariant measure characterized by

$$\forall \varphi \in C_0^{\infty}(\mathcal{E}), \qquad \int_{\mathcal{E}} \mathcal{L}\varphi \, d\mu = 0$$

• Here, canonical measure

$$\mu(dq dp) = Z^{-1} e^{-\beta H(q,p)} dq dp = \nu(dq) \kappa(dp)$$

Fokker-Planck equations

ullet Evolution of the law $\psi(t,q,p)$ of the process at time $t\geqslant 0$

$$\frac{d}{dt} \left(\int_{\mathcal{E}} \varphi \, \psi(t) \right) = \int_{\mathcal{E}} (\mathcal{L}\varphi) \, \psi(t)$$

ullet Fokker–Planck equation (with \mathcal{L}^\dagger adjoint of $\mathcal L$ on $L^2(\mathcal E)$)

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

- It is convenient to work in $L^2(\mu)$ with $f(t) = \psi(t)/\mu$
 - ullet denote the adjoint of ${\mathcal L}$ on $L^2(\mu)$ by ${\mathcal L}^*$

$$\mathcal{L}^* = -\mathcal{L}_{\mathrm{ham}} + \gamma \mathcal{L}_{\mathrm{FD}}, \quad \mathcal{L}_{\mathrm{FD}} = -\frac{1}{\beta} \sum_{i=1}^d \partial_{p_i}^* \partial_{p_i}, \quad \mathcal{L}_{\mathrm{ham}} = \frac{1}{\beta} \sum_{i=1}^d \partial_{p_i}^* \partial_{q_i} - \partial_{q_i}^* \partial_{p_i}$$

- Fokker–Planck equation $\partial_t f = \mathcal{L}^* f$
- ullet Convergence results for $\mathrm{e}^{t\mathcal{L}}$ on $L^2(\mu)$ are very similar to the ones for $\mathrm{e}^{t\mathcal{L}^*}$

Hamiltonian and overdamped limits

ullet As $\gamma o 0$, the Hamiltonian dynamics is recovered

$$\frac{d}{dt}\mathbb{E}\left[H(q_t, p_t)\right] = -\gamma \left(\mathbb{E}\left[p_t^T M^{-2} p_t\right] - \frac{1}{\beta} \text{Tr}(M^{-1})\right) dt$$

Time $\sim \gamma^{-1}$ to change energy levels in this limit²

ullet Overdamped limit $\gamma \to +\infty$ with $M=\mathrm{Id}$: rescaling of time γt

$$q_{\gamma t} - q_0 = -\frac{1}{\gamma} \int_0^{\gamma t} \nabla V(q_s) \, ds + \sqrt{\frac{2}{\gamma \beta}} W_{\gamma t} - \frac{1}{\gamma} (p_{\gamma t} - p_0)$$
$$= -\int_0^t \nabla V(q_{\gamma s}) \, ds + \sqrt{2\beta^{-1}} B_t - \frac{1}{\gamma} (p_{\gamma t} - p_0)$$

which converges to the solution of $dQ_t = -\nabla V(Q_t) dt + \sqrt{2\beta^{-1}} dB_t$

- ullet Alternatively, $\mathrm{e}^{\gamma t (\mathcal{L}_{\mathrm{ham}} + \gamma \mathcal{L}_{\mathrm{FD}})} pprox \mathrm{e}^{t \mathcal{L}_{\mathrm{ovd}}}$ with $\mathcal{L}_{\mathrm{ovd}} = -\nabla V^T \nabla_q + \beta^{-1} \Delta_q$
- ullet In both cases, slow convergence, with rate scaling as $\min\left(\gamma,\gamma^{-1}\right)$

²Hairer and Pavliotis, *J. Stat. Phys.*, **131**(1), 175-202 (2008)

Ergodicity results for Langevin dynamics (1)

- ullet Almost-sure convergence of ergodic averages $\widehat{arphi}_t = rac{1}{t} \int_0^t arphi(q_s,p_s) \, ds$
- Asymptotic variance of ergodic averages (provides error estimates)

$$\lim_{t\to +\infty} t \mathrm{Var}\left[\widehat{\varphi}_t^2\right] = 2 \int_{\mathcal{E}} \int_0^{+\infty} \left(\mathrm{e}^{t\mathcal{L}} \mathscr{P} \varphi\right) \mathscr{P} \varphi \, dt \, d\mu = 2 \int_{\mathcal{E}} \left(-\mathcal{L}^{-1} \mathscr{P} \varphi\right) \mathscr{P} \varphi \, d\mu$$
 where $\mathscr{P} \varphi = \varphi - \mathbb{E}_{\mu}(\varphi)$

 \bullet A central limit theorem $\mathsf{holds^4}$ when the equation has a solution in $L^2(\mu)$

Poisson equation in $L^2(\boldsymbol{\mu})$

$$-\mathcal{L}\Phi = \mathscr{P}\varphi = \varphi - \int_{\mathcal{E}} \varphi \, d\mu$$

• Well-posedness of such equations?

³Kliemann, Ann. Probab. **15**(2), 690-707 (1987)

⁴Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185–201 (1982)

Ergodicity results for Langevin dynamics (2)

• Invertibility of $\mathcal L$ on subsets of $L^2_0(\mu) = \left\{ \varphi \in L^2(\mu) \ \left| \int_{\mathcal E} \varphi \, d\mu = 0 \right. \right\}$?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} e^{t\mathcal{L}} dt$$

- ullet Prove exponential convergence of the semigroup $\mathrm{e}^{t\mathcal{L}}$
 - ullet various Banach spaces $E\cap L^2_0(\mu)$
 - Lyapunov techniques $B_W^\infty(\mathcal{E}) = \left\{ \varphi \text{ measurable, sup} \left| \frac{\varphi}{W} \right| < +\infty \right\}$
 - standard hypocoercive⁶ setup $H^1(\mu)$
 - ullet $E=L^2(\mu)$ after hypoelliptic regularization 7 from $H^1(\mu)$
 - Directly $E=L^2(\mu)$ (recently Poincaré using $\partial_t-\mathcal{L}_{\mathrm{ham}}$)
 - coupling arguments⁹

⁵Wu ('01); Mattingly/Stuart/Higham ('02); Rey-Bellet ('06); Hairer/Mattingly ('11)

⁶Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)

⁷F. Hérau, *J. Funct. Anal.* **244**(1), 95-118 (2007)

⁸Armstrong/Mourrat (2019), Cao/Lu/Wang (2019)

⁹A. Eberle, A. Guillin and R. Zimmer, *Ann. Probab.* **47**(4), 1982-2010 (2019)

Convergence of overdamped Langevin dynamics

Overdamped Langevin dynamics and its generator

• Generator of Langevin dynamics (advection/diffusion)

$$\mathcal{L}_{\text{ovd}} = -\nabla V(q) \cdot \nabla_q + \frac{1}{\beta} \Delta_q = -\frac{1}{\beta} \sum_{i=1}^d \partial_{q_i}^* \partial_{q_i}$$

hence self-adjoint on $L^2(\nu)$ with $\nu(dq)=Z_{\nu}^{-1}{\rm e}^{-\beta V(q)}\,dq$. Indeed,

$$\int_{\mathcal{D}} \left(\partial_{q_i} \varphi \right) \phi \, d\nu = - \int_{\mathcal{D}} \varphi \left(\partial_{q_i} \phi \right) d\nu - \int_{\mathcal{D}} \varphi \phi \, \partial_{q_i} \nu$$

so that $\partial_{q_i}^* = -\partial_{q_i} + \beta \partial_{q_i} V$

ullet Generator unitarily equivalent to a Schrödinger operator on $L^2(\mathbb{R}^d)$

$$-\widetilde{\mathcal{L}}_{\mathrm{ovd}} = \frac{1}{\beta}\Delta + \mathcal{V}, \qquad \mathcal{V} = \frac{1}{2}\left(\frac{\beta}{2}|\nabla V|^2 - \Delta V\right)$$

by considering $\widetilde{\mathcal{L}}_{\mathrm{ovd}}g=\nu^{1/2}\mathcal{L}_{\mathrm{ovd}}(\nu^{-1/2}g)$

Time evolution and decay estimates

• Solution $\varphi(t) = e^{t\mathcal{L}_{\text{ovd}}} \varphi_0$ to $\partial_t \varphi(t) = \mathcal{L}_{\text{ovd}} \varphi(t)$: mass preservation

$$\frac{d}{dt} \left(\int_{\mathcal{D}} \varphi(t) \, \nu \right) = \int_{\mathcal{D}} \mathcal{L}_{\text{ovd}} \varphi(t) \, \nu = \int_{\mathcal{D}} \varphi(t) \left(\mathcal{L}_{\text{ovd}} \mathbf{1} \right) \nu = 0$$

- ullet Suggests the longtime limit $\varphi(t) \xrightarrow[t \to +\infty]{} \int_{\mathcal{D}} \varphi_0 \, d\nu$
- ullet Can assume w.l.o.g. that $\int_{\mathcal{D}} arphi_0 \,
 u = 0$ (subspace $L_0^2(
 u)$ of $L^2(
 u)$)
- Decay estimate

$$\frac{d}{dt} \left(\frac{1}{2} \left\| \varphi(t) \right\|_{L^{2}(\nu)}^{2} \right) = \langle \mathcal{L}_{\text{ovd}} \varphi(t), \varphi(t) \rangle_{L^{2}(\nu)} = -\frac{1}{\beta} \left\| \nabla_{q} \varphi(t) \right\|_{L^{2}(\nu)}^{2}$$

Poincaré inequality and convergence of the semigroup

• Assume that a Poincaré inequality holds:

$$\forall \phi \in H^1(\nu) \cap L_0^2(\nu), \qquad \|\phi\|_{L^2(\nu)} \leqslant \frac{1}{K_\nu} \|\nabla_q \phi\|_{L^2(\nu)}$$

Various sufficient conditions (V uniformly convex, V confining, etc)

Exponential decay of the semigroup

u satisfies a Poincaré inequality with constant $K_{
u}>0$ if and only if

$$\|\mathbf{e}^{t\mathcal{L}}\|_{\mathcal{B}(L_0^2(\nu))} \leqslant \mathbf{e}^{-K_{\nu}^2 t/\beta}.$$

Proof: Gronwall inequality
$$\frac{d}{dt}\left(\frac{1}{2}\left\|\varphi(t)\right\|_{L^{2}(\nu)}^{2}\right)\leqslant -\frac{K_{\nu}^{2}}{\beta}\left\|\varphi(t)\right\|_{L^{2}(\nu)}^{2}$$

Several remarks:

- The prefactor for the exponential convergence is 1
- The convergence rate is not degraded when one adds an antisymmetric part $\mathcal{A} = F \cdot \nabla$ to \mathcal{L} (with $\operatorname{div}(F\mathrm{e}^{-\beta V}) = 0$)

Longtime convergence of hypocoercive ODEs

A paradigmatic example of hypocoercive ODE

ullet ODE $\dot{X}=LX\in\mathbb{R}^2$ with (for $\gamma>0$)

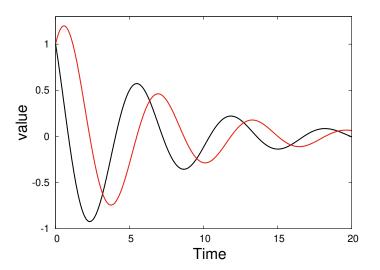
$$-L = A + \gamma S, \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad S = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Structure of -L:
 - Degenerate symmetric part $S \geqslant 0$
 - ullet Antisymmetric part A coupling the kernel and the image of S
 - Smallest real part of eigenvalues (spectral gap) of order $\min(\gamma, \gamma^{-1})$ determinant 1, trace γ , so eigenvalues $\lambda_{\pm} = \frac{\gamma}{2} \pm \left(\frac{\gamma^2}{4} 1\right)^{1/2}$
- Longtime convergence of e^{tL} ? Use $e^{tL} = U^{-1} \begin{pmatrix} e^{-t\lambda_+} & 0 \\ 0 & e^{-t\lambda_-} \end{pmatrix} U$

Decay rate provided by the spectral gap $\lambda = \min\{\operatorname{Re}(\lambda_{-}),\operatorname{Re}(\lambda_{+})\}$

$$X(t) = e^{tL}X(0), |X(t)| \le Ce^{-\lambda t}|X(0)|$$

Longtime convergence of hypocoercive ODE: illustration



Values $X_1(t), X_2(t)$ for X(0) = (1,1) and $\gamma = 0.5$

Longtime convergence of this hypocoercive ODE (1)

• "Elliptic PDE way": $\frac{d}{dt}\left(\frac{1}{2}|X(t)|^2\right) = -\gamma X(t)^T SX(t) = -\gamma X_2(t)^2$

No dissipation in $X_1...$ cannot conclude that |X(t)| converges to 0...

• Change the scalar product with *P* positive definite:

$$|X|_P^2 = X^T P X,$$

$$\frac{d}{dt} \left(|X(t)|_P^2 \right) = X(t)^T \left(P L + L^T P \right) X(t)$$

• Fundamental idea: couple X_1 and X_2 . Start perturbatively:

$$P = \operatorname{Id} - \varepsilon \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

so that
$$-(PL+L^TP)=2\gamma PS+2\varepsilon\begin{pmatrix}1&0\\0&-1\end{pmatrix}\sim2\begin{pmatrix}\varepsilon&0\\0&\gamma\end{pmatrix}$$

This provides some (small...) dissipation in X_1 !

Longtime convergence of this hypocoercive ODE (2)

ullet Optimal choice 10 for P? Think of " $L^TP\geqslant \lambda P$ " and diagonalize L^T

$$P = a_{-}X_{-}\overline{X}_{-}^{T} + a_{+}X_{+}\overline{X}_{+}^{T}, \qquad a_{\pm} > 0, \qquad L^{T}X_{\pm} = \lambda_{\pm}X_{\pm}$$

Then
$$-(PL + L^T P) \geqslant 2\lambda P$$

 \bullet Therefore, $|X(t)|_P^2\leqslant {\rm e}^{-2\lambda t}|X_0|_P^2,$ and so, by equivalence of scalar products,

$$|X(t)| \le \min\left(1, Ce^{-\lambda t}\right) |X_0|$$

Decay rate given by spectral gap + bound from degenerate dissipation

• Prefactor $C\geqslant 1$ really needed! Exponential convergence with C=1 if and only if -L is coercive (i.e. $-X^TLX\geqslant \alpha |X|^2$ with $\alpha>0$)

Gabriel Stoltz (ENPC/Inria) July 2021 20 / 29

 $^{^{10}}$ F. Achleitner, A. Arnold, and D. Stürzer, *Riv. Math. Univ. Parma*, 6(1):1-68, 2015.

Convergence of Langevin dynamics

Direct $L^2(\mu)$ approach: lack of coercivity

- ullet The generator, considered on $L^2(\mu)$, is the sum of...
 - ullet a degenerate symmetric part $\mathcal{L}_{\mathrm{FD}} = -p^T M^{-1}
 abla_p + rac{1}{eta} \Delta_p$
 - ullet an antisymmetric part $\mathcal{L}_{\mathrm{ham}} = p^T M^{-1}
 abla_q
 abla V^T
 abla_p$
- \bullet Standard strategy for coercive generators: consider φ with average 0 with respect to μ and compute

$$\frac{d}{dt} \left(\left\| e^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \right) = \left\langle e^{t\mathcal{L}} \varphi, \mathcal{L} e^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)} = \left\langle e^{t\mathcal{L}} \varphi, \mathcal{L}_{FD} e^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)}
= -\frac{1}{\beta} \left\| \nabla_{p} e^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \le 0,$$

but no control of $\|\phi\|_{L^2(\mu)}$ by $\|\nabla_p\phi\|_{L^2(\mu)}$ for a Gronwall estimate...

• Change of scalar product in order to use the antisymmetric part

Almost direct $L^2(\mu)$ approach: convergence result

- Assume that the potential V is smooth and 11,12
 - ullet the marginal measure u satisfies a Poincaré inequality

$$\|\mathscr{P}\varphi\|_{L^2(\nu)} \leqslant \frac{1}{K_{\nu}} \|\nabla_q \varphi\|_{L^2(\nu)}$$

ullet there exist $c_1>0$, $c_2\in[0,1)$ and $c_3>0$ such that V satisfies

$$\Delta V \leqslant c_1 + \frac{c_2}{2} |\nabla V|^2, \qquad |\nabla^2 V| \leqslant c_3 (1 + |\nabla V|)$$

There exist C>0 and $\lambda_{\gamma}>0$ such that, for any $\varphi\in L^2_0(\mu)$,

$$\forall t \geqslant 0, \qquad \left\| e^{t\mathcal{L}} \varphi \right\|_{L^2(\mu)} \leqslant C e^{-\lambda_{\gamma} t} \|\varphi\|_{L^2(\mu)}$$

with convergence rate of order $\min(\gamma, \gamma^{-1})$: there exists $\overline{\lambda} > 0$ such that

$$\lambda_{\gamma} \geqslant \overline{\lambda} \min(\gamma, \gamma^{-1})$$

¹¹Dolbeault, Mouhot and Schmeiser, C. R. Math. Acad. Sci. Paris (2009)

¹²Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015)

Sketch of proof (1)

- ullet Change of scalar product to use the antisymmetric part $\mathcal{L}_{\mathrm{ham}}$:
 - $\bullet \ \ \text{bilinear form} \ \mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|_{L^2(\mu)}^2 \varepsilon \, \langle R\varphi, \varphi \rangle \ \ \text{with}^{13}$

$$R = \left(1 + (\mathcal{L}_{\text{ham}}\Pi_0)^* (\mathcal{L}_{\text{ham}}\Pi_0)\right)^{-1} (\mathcal{L}_{\text{ham}}\Pi_0)^*, \qquad \Pi_0 \varphi = \int_{v \in \mathbb{R}^d} \varphi \, d\kappa$$

- $R = \Pi_0 R (1 \Pi_0)$ and $\mathcal{L}_{\mathrm{ham}} R$ are bounded
- modified square norm $\mathcal{H} \sim \|\cdot\|_{L^2(\mu)}^2$ for $\varepsilon \in (-1,1)$
- Approach not fully quantitative (optimize scalar product)
- Interest: $(\mathcal{L}_{\text{ham}}\Pi_0)^*(\mathcal{L}_{\text{ham}}\Pi_0) = \beta^{-1}\nabla_q^*\nabla_q$ coercive in q, and

$$R\mathcal{L}_{\text{ham}}\Pi_0 = \frac{(\mathcal{L}_{\text{ham}}\Pi_0)^*(\mathcal{L}_{\text{ham}}\Pi_0)}{1 + (\mathcal{L}_{\text{ham}}\Pi_0)^*(\mathcal{L}_{\text{ham}}\Pi_0)}$$

¹³Hérau (2006), Dolbeault/Mouhot/Schmeiser (2009, 2015), ...

Sketch of proof (2)

ullet Recall Poincaré inequalities: $abla_p^*
abla_p \geqslant K_\kappa^2 (1 - \Pi_0)$ and $abla_q^*
abla_q \geqslant K_
u^2 \Pi_0$

Coercivity in the scalar product $\langle\langle\cdot,\cdot\rangle\rangle$ induced by ${\mathcal H}$

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \lambda \|\varphi\|^2$$

• Upon controlling the remainder terms (some elliptic estimates)

$$\begin{split} \mathscr{D}[\varphi] &= \gamma \left\langle -\mathcal{L}_{\mathrm{FD}} \varphi, \varphi \right\rangle + \varepsilon \left\langle R \mathcal{L}_{\mathrm{ham}} \Pi_{0} \varphi, \varphi \right\rangle + \mathrm{O}(\gamma \varepsilon) \\ &= \frac{\gamma}{\beta} \|\nabla_{p} \varphi\|_{L^{2}(\mu)}^{2} + \varepsilon \left\langle \frac{\nabla_{q}^{*} \nabla_{q}}{\beta + \nabla_{q}^{*} \nabla_{q}} \Pi_{0} \varphi, \Pi_{0} \varphi \right\rangle + \mathrm{O}(\gamma \varepsilon) \\ &\geqslant \frac{\gamma K_{\kappa}^{2}}{\beta} \|(1 - \Pi_{0}) \varphi\|_{L^{2}(\mu)}^{2} + \frac{\varepsilon K_{\nu}^{2}}{\beta + K_{\nu}^{2}} \|\Pi_{0} \varphi\|_{L^{2}(\mu)}^{2} + \mathrm{O}(\gamma \varepsilon) \end{split}$$

• Gronwall inequality $\frac{d}{dt} \left(\mathcal{H} \left[e^{t\mathcal{L}} \varphi \right] \right) = -\mathscr{D} \left[e^{t\mathcal{L}} \varphi \right] \leqslant -\frac{2\lambda}{1+\varepsilon} \mathcal{H} \left[e^{t\mathcal{L}} \varphi \right]$

Obtaining directly bounds on the resolvent (1)

 \bullet "Saddle-point like" structure for typical hypocoercive operators on $L^2_0(\mu)$

$$\mathcal{L} = \begin{pmatrix} 0 & \mathcal{A}_{0+} \\ \mathcal{A}_{+0} & \mathcal{L}_{++} \end{pmatrix}, \qquad \mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_+, \qquad \mathcal{H}_0 = \Pi_0 \mathcal{H}, \qquad \mathcal{A} = \mathcal{L}_{ham}$$

Formal inverse with Schur complement $\mathfrak{S}_0=\mathcal{A}_{+0}^*\mathcal{L}_{++}^{-1}\mathcal{A}_{+0}$

$$\mathcal{L}^{-1} = \begin{pmatrix} \mathfrak{S}_0^{-1} & -\mathfrak{S}_0^{-1} \mathcal{A}_{0+} \mathcal{L}_{++}^{-1} \\ -\mathcal{L}_{++}^{-1} \mathcal{A}_{+0} \mathfrak{S}_0^{-1} & \mathcal{L}_{++}^{-1} + \mathcal{L}_{++}^{-1} \mathcal{A}_{+0} \mathfrak{S}_0^{-1} \mathcal{A}_{0+} \mathcal{L}_{++}^{-1} \end{pmatrix}$$

- Invertibility of \mathfrak{S}_0 is the crucial element: two ingredients
 - $-\frac{1}{2}(\mathcal{L}+\mathcal{L}^*)\geqslant s\Pi_+=s(1-\Pi_0)$ (Poincaré on $\kappa(dp)$ for Langevin)
 - "macroscopic coercivity" $\|\mathcal{A}_{+0}\varphi\|_{L^2(\mu)}\geqslant a\|\Pi_0\varphi\|_{L^2(\mu)}$ Amounts to $\mathcal{A}_{+0}^*\mathcal{A}_{+0}\geqslant a^2\Pi_0$ Guaranteed here by a Poincaré inequality for $\nu(dq)$, with $a^2=K_{\nu}^2/\beta$

Obtaining directly bounds on the resolvent (2)

• Further decompose \mathcal{L} using $\Pi_1 = \mathcal{A}_{+0} \left(\mathcal{A}_{+0}^* \mathcal{A}_{+0} \right)^{-1} \mathcal{A}_{+0}^*$

$$\mathcal{L} = \begin{pmatrix} 0 & \mathcal{A}_{01} & 0 \\ \mathcal{A}_{10} & \mathcal{L}_{11} & \mathcal{L}_{12} \\ 0 & \mathcal{L}_{21} & \mathcal{L}_{22} \end{pmatrix}, \qquad \mathcal{A}_{01} = -\mathcal{A}_{10}^*.$$

- Additional technical assumptions ($S = \gamma \mathcal{L}_{FD}$ symmetric part):
 - ullet There exists an involution ${\mathcal R}$ on ${\mathcal H}$ such that

$$\mathcal{R}\Pi_0 = \Pi_0 \mathcal{R} = \Pi_0, \qquad \mathcal{R}\mathcal{S}\mathcal{R} = \mathcal{S}, \qquad \mathcal{R}\mathcal{A}\mathcal{R} = -\mathcal{A}$$

• The operators S_{11} and $\mathcal{L}_{21}\mathcal{A}_{10}\left(\mathcal{A}_{+0}^{*}\mathcal{A}_{+0}\right)^{-1}$ are bounded

Abstract resolvent estimates

$$\|\mathcal{L}^{-1}\| \leqslant 2\left(\frac{\|\mathcal{S}_{11}\|}{a^2} + \frac{\|\mathcal{R}_{22}\|\|\mathcal{L}_{21}\mathcal{A}_{10}(\mathcal{A}_{+0}^*\mathcal{A}_{+0})^{-1}\|^2}{s}\right) + \frac{3}{s}$$

Scaling with the friction and the dimension

• Final estimate for Fokker–Planck operators: scaling $\max(\gamma, \gamma^{-1})$

$$\left\| \mathcal{L}^{-1} \right\|_{\mathcal{B}(L_0^2(\mu))} \leqslant \frac{2\beta\gamma}{K_{\nu}^2} + \frac{4}{\gamma} \left(\frac{3}{4} + \left\| \Pi_{+} \mathcal{L}_{ham}^2 \Pi_0 \left(\mathcal{A}_{+0}^* \mathcal{A}_{+0} \right)^{-1} \right\|^2 \right)$$

- ullet Estimate $2\left(C+C^{\prime}K_{
 u}^{-2}
 ight)$ for operator norm on r.h.s.
 - C=1 and $C^{\prime}=0$ when V is convex;
 - C=1 and C'=K when $\nabla_q^2 V\geqslant -K\mathrm{Id}$ for some $K\geqslant 0$;
 - C=2 and $C'=\mathrm{O}(\sqrt{d})$ when $\Delta V\leqslant c_1d+\frac{c_2\beta}{2}|\nabla V|^2$ (with $c_2\leqslant 1$) and $\left|\nabla^2 V\right|^2\leqslant c_3^2\left(d+|\nabla V|^2\right)$
- ullet Better scaling $C' = O(\log d)$ when logarithmic Sobolev inequality and

$$\forall x \in \mathbb{R}^d$$
, $\|\nabla^2 V(q)\|_{\mathcal{B}(\ell^2)} \le c_3 (1 + |\nabla V(q)|_{\infty})$

Generalizations/perspectives

- Approach works for other hypocoercive dynamics¹⁴
 - non-quadratic kinetic energies
 - linear Boltzmann/randomized HMC
 - adaptive Langevin dynamics (additional Nosé–Hoover part)
- Some work needed to extend it to...
 - more degenerate dynamics: generalized Langevin, chains of oscillators
 - non-gradient forcings
- Current work also on obtaining...
 - resolvent estimates $(i\omega \mathcal{L})^{-1}$
 - space-time Poincaré inequalities à la Armstrong-Mourrat

$$\left\| f - \langle f, \mathbf{1} \rangle_{L^{2}(\widetilde{\mu}_{T})} \right\|_{L^{2}(\widetilde{\mu}_{T})} \leqslant C_{1,T} \| (1 - \Pi) f \|_{L^{2}(\widetilde{\mu}_{T})} + C_{2,T} \| (1 - \mathcal{S})^{-1/2} \left(-\partial_{t} + \mathcal{A} \right) f \|_{L^{2}(\widetilde{\mu}_{T})}$$

Gabriel Stoltz (ENPC/Inria) July 2021 29/29

¹⁴E. Bernard, M. Fathi, A. Levitt, G. Stoltz, arXiv preprint 2003.00726