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Outline of the talk

» A brief presentation of methods to compute free energy differences

# Thermodynamic integration using Langevin dynamics

# Nonequilibrium Langevin dynamics
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Computing free energy differences
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Microscopic description of a classical system

# Positions ¢ (configuration), momenta p = M ¢ (M diagonal mass matrix)

# Microscopic description of a classical system (/N particles):

(¢,p) = (¢1,---,qn, P1,---,DN) €EE

# Forinstance, £ = T*D = D x R3Y with D = R3Y or T3V

#» More complicated situations can be considered... (constraints defining
submanifolds of the phase space)

o Hamiltonian H(q,p) = Z p" +V (q1,---,qN)

# All the physics is contalned inV

# Canonical probability measure:

1
kT
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Sampling the canonical measure

o

The aim is to compute an approximation of the high dimensional integral

(4) I/*DA(q,p)u(dqdp)

Restated as a one-dimensional integral using ergodic properties of an
irreducible dynamics for which the canonical measure is invariant:

1
lim ?/ A(qs, pe) dt :/ A(q,p) u(dqdp) a.s.
0 D

T — 400

Overdamped Langevin dynamics (momenta trivial to sample)

2

Zero mass limit of the Langevin dynamics or the limit of the Langevin
dynamics when the friction goes to infinity (with suitable time rescaling)
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Langevin dynamics

o

Stochastic perturbation of the Hamiltonian dynamics
dgr = M~ 'p, dt
dp; = —VV (q) dt—~(q:)M ~p; dt + o(q;) dW;

. L . 2
Fluctuation/dissipation relation oo = =

~
5
Invariance of the canonical measure when it is a stationary solution of the
Fokker-Planck equation 0y = L*v with

BH

L={ H+ %divp (ve PHY, )

and {A;, Ay} = (VA)TJIV Ay = (VA1) VA5 — (VA1) VA
Irreducibility amounts to controllability (Hérmander condition)

Numerical schemes obtained by a splitting strategy for instance (Verlet
scheme + partial randomization of momenta)
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Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

2At
" =" - AtVV (") + \ 6 '

where G"™ ~ N(O, IddN) 1.1.d.
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Projected trajectory in the x variable for At = 0.01, g = 8.
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Metastability (2)

# Although the trajectory average converges to the phase-space average,
the convergence may be slow...

# Slowly evolving macroscopic function of the microscopic degrees of
freedom: reaction coordinate £(q) € R™ with m < N

# Two origins : energetic or entropic barriers (in fact, free energy barriers)

s

e
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y coordinate
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(@) Entropic barrier. (b) Associated trajectory.
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Metastability (3)

o Assume the free energy F' associated with the slow direction x has been
computed, and sample the modified potential V(z,y) = V(x,y) — F(x).

5

y coordinate
X coordinate

I I I I I I I ] I T T T T T T T T T 1
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X coordinate Time

Projected trajectory in the x variable for At = 0.01, g = 8.

o Many more transitions! The variable z is uniformly distributed.
» Reweighting with weights ¢=#F(*) to compute canonical averages

» Compute efficiently the free energy?
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Computation of free energy differences

» Alchemical transition: indexed by an external parameter X\ (force field
parameter, magnetic field,...)

*D

/ o—BHo(q,p) dq dp
*D

AF = -3 1In

)

Typically, Hy = (1 — A\)Hy + AH;. Other parametrizations possible (see
Gelman and Meng, Stat. Sci., 1998)
# (given) reaction coordinate ¢ : R3Y — R™ (angle, length,...):

/E( ) xR3N e @) 55(61)—21 (dq) dp
zZ) X

/z:( ) xRN e PHEP) 6y (dg) dp
zZ )X

AF = —3"11n

with 3(z) = {q €D | £(q) = z}
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Cartoon comparison of the methods (reaction coordinate case)

(

(b) Thermodynamic integration

(C) Nonequilibrium switching dynamics (d) Adaptive dynamics
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Some elements on the scientific landscape

# We focus on the reaction coordinate case
# Histogram methods: WHAM (Kumar et al.), MBAR (Chodera/Shirts)

# Thermodynamic integration in the Hamiltonian case (Carter et al., den
Otter/Briels, Sprik/Ciccotti) and HMC (Hartmann/Schdtte) or for
overdamped Langevin dynamics (Ciccotti/Lelievre/Vanden-Eijnden)

# Nonequilibrium methods: overdamped case (Lelievre/Rousset/Stoltz) or
steered versions (potentials V) (q) = V(q) + K(£(q) — M)?)

# Adpative methods: adaptive biasing force (Darve/Pohorille, Chipot/Hénin),
nonequilibrium metadynamics (Bussi/Laio/Parrinello), Wang-Landau,
self-healing umbrella sampling (Marsili et al., Dickson et al.), etc

o Aims of this work:
s Thermodynamic integration with Langevin dynamics
s Nonequilibrium Langevin dynamics
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Thermodynamic integration with
Langevin dynamics
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Constrained Langevin dynamics (1)

# Consider the following Langevin process:

(th = M 'p, dt,

/"

dpy = —VV (q) dt — v(q)M  p, dt + o(qe) AWy + VE(qr) d)y,

\5(%&) =z

. . . 2
» Standard fluctuation/dissipation relation oo’ = ny

d
i(lft) = ve(qe,pt) = VE(@) ' M~ 'p, =0

» The corresponding phase-space is ¥¢ ,, (z,0) where

# Hidden velocity constraint:

Ng v (2,02) = {(qap) e RN | &(q) = 2, velq,p) = Uz}

# An explicit expression of the Lagrange multiplier can be found by
computing the second derivative in time of the constraint
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Constrained Langevin dynamics (2)

# Invariant measure (reversibility and detailed balance up to momentum
reversal, ergodicity)

—1 _—BH(

b o, (-0 (dadp) = Z g e PHEP gy (o) (dg dp),

where OS¢, (2v.)(dqdp) is the phase space Liouville measure of
Y ve (2,v2) Induced by the symplectic matrix J

# The free energy can be estimated from constrained samplings as

1
F(2) = FM(2) - = In (det Gar) ™ 2dus, , (z0) +C
B Jseu 20 e
. 1
with rigid free energy F¥,(z) = 3 In ( )e_ﬁH(q’mduzg,%(z,o)
Zg,vg Z,O

o Thermodynamic integration through the computation of the mean force

V.Fhy(z) = / froa(a,p) Hse ,, (2,0)(dq dp)
Eg,vg (Z,O)
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Numerical discretization

# Splitting into Hamiltonian part + constrained Ornstein-Uhlenbeck process

# Midpoint scheme for the momenta (reversible for the canonical measure
with constraints)

At At
p" Tt = pn -y M +p”“/4)+\/709”+V§(Q”)A”“/4,

with the constraint V&(¢™)T M~ 1pnt1/4 =0

#» RATTLE scheme (symplectic)

( At ny \n
pn—|-1/2 pn—|—1/4 o —VV( n) +V€(q ))\ —|—1/27
At
\ pn—|—3/4 _ pn—i—1/2 VV( n—l—l) —|-V€( n—l—l))\n—l—3/4

with £(¢g™+1) = z and vg(q”H)TM Lpn+3/4 — @

_ . At
o Overdamped limit obtained when 2= M x Id

# Metropolization of the RATTLE part to eliminate the time-step error
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Thermodynamic integration

o

Longtime (a.s.) convergence

I M
TErJrrloo —/0 dA\i = V. Fl.q(2)

No second order derivatives of £ needed!
Variance reduction: keep only the Hamiltonian part of \;

Numerical discretization: approximate the mean force using only the
Lagrange multipliers from the RATTLE part:

N—-1 N—-1
1 1
M ~ M/ n ,n\ ~ n+1/2 n+3/4
szrgd(z)— N;frgd(q y D )— NAt?;)()\ +>\ )

Consistency result

)\n—|—1/2_|_)\n—|—3/4: %( I:lg(:l(qn’pn—l—l/él)_|_ 1A]{g{i(qn—l—l7pn—|—3/4)> —I—O(Atg)
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Application: Solvatation effects on conformational changes (1)

. . . (r —rg —w)? ’
# Two particules (q1,q2) interacting through Vs(r) = h |1 — 2
# Solvent: particules interacting through the purely repulsive potential
o\ 12 AN . :
Vivea (r) = 4e [(;) — (;) ] +eifr <rg, 0ifr > rg
» Reaction coordinate £(g) = L _zqil — 70 compact state £-1(0),
stretched state ¢71(1)
s o = - =
=
x s x S
g ¢ = s ©
= . e = s s
s S < = = €
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Application: Solvatation effects on conformational changes (2)
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Reaction coordinate Reaction coordinate

Left: Estimated mean force. Right: Corresponding potential of mean force.

Parameters: 3 = 1, N = 100 particles, solvent density p = 0.436, WCA interactions ¢ = 1 and
e = 1, dimer w = 2 and h = 2. Mean force estimated at the values z; = z,,in + 1Az, With
zmin = —0.2, zmax = 1.2 and Az = 0.014, by ergodic averages obtained with the projected

dynamics with Metropolis correction (time T = 2 x 104, step size At = 0.02, scalar friction v = 1).
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Nonequilibrium Langevin dynamics
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Presentation of the dynamics

# Idea: start at equilibrium and perform a switching from the initial to the
final state in a finite time T’

# Schedule z(t) for ¢t € [0, T] and nonequilibrium dynamics

( dg; = M 'p, dt,

Y/

dps = —V'V(qe) dt —yp(q) M~ pedt + op(qe) AWy + VE(qe) ds,

| &) = =(1), (Cq(1))

with equilibrium initial conditions (qq, pg) ~ M, (2(0),2(0)) (dq dp)

» Projected fluctuation/dissipation relation (op,vp) := (Py o, Py vy Pi;) SO
that the noise act only in the direction orthogonal to V¢

» Hidden constraint on the reaction coordinate velocity v¢ (g, p) = 2(¢)

» A computation shows dA; = f2% (q:, pe) dt + G/ (qr)(t) dt

r

# Not the same dynamics as in Latorre/Hartmann/Schitte
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Generalized free energy and work

. 1
» Rigid free energy FM (2,v.) = —=1n e_mq(q’p)duz:g,v£ (2,0.)

rgd
/8 E&,vg (Za'vz)

# Actual free energy recovered from the difference F(z) — ng’gg (z,v,),
which equals, up to an unimportant additive constant:

1 _ B
[ et Garla) e (GG @0 ) s e (dad)
ﬁ Eg,vg (z,v%) 2 ¢

# Work performed during the switching: several expressions

T
s Force times displacement: Wy 1 ({qt,pt}0<t<T) =/ )T d)y
- 0

T
s Energy variations: Wy r ({qt,pt}0<t<T) :/ w(t, g, py) dt where
- 0

d

wlt,p) = SOTTHE HY (0.0) = (50 B )

the flow of the switched Hamiltonian dynamics

(q,p) with ®
h=0
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Jarzynski-Crooks relation

o

Work fluctuation relation

Zz(T),Z(T) _ T (e—,BWO,T({tht}tG[O’T]))
Z4(0),2(0)

More general result involving backward nonequilibrium dynamics and
path functionals

This leads in particular to the following free energy estimator
E (o DVor({aerdicpn) +O@an])

|2 (e_BC(OaQO))

F((T)) — F(2(0)) = —% In

. 1 1
with the corrector C'(t,q) = 23 In (det GM(q)> ~5 ()G (9)2(t)

Standard methods can then be used (bridge estimators, etc)

Exact time-discrete version (no time error)
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Numerical schemes: splitting strategy

# Fluctuation/dissipation part (no Lagrange multiplier needed)

p A = pn — (") M Lpn T4 4 p )+ 5 or(d")g

» Hamiltonian part for the forward evolution (symplectic map)

(prHl/2 = /e %VV(Q”) + VE(gM)AT2,
"t =g+ At M2,
L&) = 2(tnya), (Cy)
pntI/A = pr /2 %VV(Q”“) + VE(g" AT/,
\vg(qn—l—l)TM—lpn—l—S/ll _ Z(tn+2)A_tZ(tn+l)’ (C,)
» Work update Wt = Wn + H(g"tt pnt3/4) — H(g™, p"TH4)

. A A
# Overdamped limit Zty =M = Ttld
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Discrete Jarzynski-Crooks equality: The reaction coordinate case

» Discrete schedule {z(0),..., z(tn,)}

iy iy 0 0
»# Initial conditions (¢°, p”) ~ MEs,% (z(to),ml)_z(to))(dq dp)

At

» Initial work W° = 0, and work update
Wn—l—l — Wn + H(qn—|—17pn—i—3/4) o H(qn’pn—i—l/él)
# Time discretization error free estimator of the free energy difference:

Z z(tN )—Z(t )
2(Nrp),—~1+1 Ny AN
(NT) At — (e BW )

A 2(t1)—2
Z(to), (tl)At (to)

# Standard free energy upon using a corrector

# More general version with backward dynamics and path functionals

At At . L .
» Overdamped limit 2= M = 7Id: no bias due to the finite time-step In

the estimator (compare to Lelievre/Rousset/Stoltz, 2007)
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Application: Solvatation effects on conformational changes

Free energy

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Reaction coordinate

Estimated free energy profiles for T = 1 with K = 10° realizations (top curve),
T = 10 with K = 10* and T' = 100 with K = 10° (smoothest curve).

Same parameters as before, except At = 0.01. Schedule z(t) = zmin + (Zmax — zmin)% with

Zmin — _O.]. and Zmax — ]..]..
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