(Non)Equilibrium computation of free energy differences using Langevin dynamics

Gabriel STOLTZ

CERMICS & MICMAC project team, Ecole des Ponts ParisTech

http://cermics.enpc.fr/~stoltz/

Outline of the talk

A brief presentation of methods to compute free energy differences

Thermodynamic integration using Langevin dynamics

Nonequilibrium Langevin dynamics

Computing free energy differences

Microscopic description of a classical system

- Positions q (configuration), momenta $p = M\dot{q}$ (M diagonal mass matrix)
- Microscopic description of a classical system (N particles):

$$(q,p)=(q_1,\ldots,q_N,\ p_1,\ldots,p_N)\in\mathcal{E}$$

- For instance, $\mathcal{E}=T^*\mathcal{D}=\mathcal{D} imes\mathbb{R}^{3N}$ with $\mathcal{D}=\mathbb{R}^{3N}$ or \mathbb{T}^{3N}
- More complicated situations can be considered... (constraints defining submanifolds of the phase space)
- $\qquad \text{Hamiltonian } H(q,p) = \sum_{i=1}^N \frac{p_i^2}{2m_i} + V(q_1,\ldots,q_N)$
- ullet All the physics is contained in V
- Canonical probability measure:

$$\mu(dq \, dp) = Z^{-1} e^{-\beta H(q,p)} \, dq \, dp, \qquad \beta = \frac{1}{k_{\rm B}T}$$

Sampling the canonical measure

The aim is to compute an approximation of the high dimensional integral

$$\langle A \rangle = \int_{T^*\mathcal{D}} A(q, p) \, \mu(dq \, dp)$$

Restated as a one-dimensional integral using ergodic properties of an irreducible dynamics for which the canonical measure is invariant:

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T A(q_t, p_t) dt = \int_{T^*\mathcal{D}} A(q, p) \,\mu(dq \, dp) \qquad \text{a.s.}$$

Overdamped Langevin dynamics (momenta trivial to sample)

$$dq_t = -\nabla V(q_t) dt + \sqrt{\frac{2}{\beta}} dW_t$$

Zero mass limit of the Langevin dynamics or the limit of the Langevin dynamics when the friction goes to infinity (with suitable time rescaling)

Langevin dynamics

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma(q_t) M^{-1}p_t dt + \sigma(q_t) dW_t \end{cases}$$

- Fluctuation/dissipation relation $\sigma\sigma^T=rac{2}{\beta}\gamma$
- Invariance of the canonical measure when it is a stationary solution of the Fokker-Planck equation $\partial_t \psi = \mathcal{L}^* \psi$ with

$$\mathcal{L} = \{\cdot, H\} + \frac{e^{\beta H}}{\beta} \operatorname{div}_p \left(\gamma e^{-\beta H} \nabla_p \cdot \right)$$

and
$$\{A_1, A_2\} = (\nabla A_1)^T J \nabla A_2 = (\nabla_q A_1)^T \nabla_p A_2 - (\nabla_p A_1)^T \nabla_q A_2$$

- Irreducibility amounts to controllability (Hörmander condition)
- Numerical schemes obtained by a splitting strategy for instance (Verlet scheme + partial randomization of momenta)

Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

$$q^{n+1} = q^n - \Delta t \nabla V(q^n) + \sqrt{\frac{2\Delta t}{\beta}} \, \mathcal{G}^n$$

where $\mathcal{G}^n \sim \mathcal{N}(0, \mathrm{Id}_{dN})$ i.i.d.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

Metastability (2)

- Although the trajectory average converges to the phase-space average, the convergence may be slow...
- Slowly evolving macroscopic function of the microscopic degrees of freedom: reaction coordinate $\xi(q) \in \mathbb{R}^m$ with $m \ll N$
- Two origins: energetic or entropic barriers (in fact, free energy barriers)

Metastability (3)

• Assume the free energy F associated with the slow direction x has been computed, and sample the modified potential $\mathcal{V}(x,y) = V(x,y) - F(x)$.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

- Many more transitions! The variable x is uniformly distributed.
- Reweighting with weights $e^{-\beta F(x)}$ to compute canonical averages
- Compute efficiently the free energy?

Computation of free energy differences

 Alchemical transition: indexed by an external parameter λ (force field parameter, magnetic field,...)

$$\Delta F = -\beta^{-1} \ln \left(\frac{\int_{T^*\mathcal{D}} e^{-\beta H_1(q,p)} dq dp}{\int_{T^*\mathcal{D}} e^{-\beta H_0(q,p)} dq dp} \right) ;$$

Typically, $H_{\lambda} = (1 - \lambda)H_0 + \lambda H_1$. Other parametrizations possible (see Gelman and Meng, *Stat. Sci.*, 1998)

• (given) reaction coordinate $\xi : \mathbb{R}^{3N} \to \mathbb{R}^m$ (angle, length,...):

$$\Delta F = -\beta^{-1} \ln \left(\frac{\int_{\Sigma(z) \times \mathbb{R}^{3N}} e^{-\beta H(q,p)} \, \delta_{\xi(q)-z_1}(dq) \, dp}{\int_{\Sigma(z) \times \mathbb{R}^{3N}} e^{-\beta H(q,p)} \, \delta_{\xi(q)-z_0}(dq) \, dp} \right).$$

with
$$\Sigma(z) = \left\{ q \in \mathcal{D} \mid \xi(q) = z \right\}$$

Cartoon comparison of the methods (reaction coordinate case)

Some elements on the scientific landscape

- We focus on the reaction coordinate case
- Histogram methods: WHAM (Kumar et al.), MBAR (Chodera/Shirts)
- Thermodynamic integration in the Hamiltonian case (Carter et al., den Otter/Briels, Sprik/Ciccotti) and HMC (Hartmann/Schütte) or for overdamped Langevin dynamics (Ciccotti/Lelièvre/Vanden-Eijnden)
- Nonequilibrium methods: overdamped case (Lelièvre/Rousset/Stoltz) or steered versions (potentials $V_{\lambda}(q) = V(q) + K(\xi(q) \lambda)^2$)
- Adpative methods: adaptive biasing force (Darve/Pohorille, Chipot/Hénin), nonequilibrium metadynamics (Bussi/Laio/Parrinello), Wang-Landau, self-healing umbrella sampling (Marsili et al., Dickson et al.), etc
- Aims of this work:
 - Thermodynamic integration with Langevin dynamics
 - Nonequilibrium Langevin dynamics

Thermodynamic integration with Langevin dynamics

Constrained Langevin dynamics (1)

Consider the following Langevin process:

$$\begin{cases} dq_t = M^{-1}p_t dt, \\ dp_t = -\nabla V(q_t) dt - \gamma(q_t) M^{-1}p_t dt + \sigma(q_t) dW_t + \nabla \xi(q_t) d\lambda_t, \\ \xi(q_t) = z \end{cases}$$

- ullet Standard fluctuation/dissipation relation $\sigma\sigma^T=rac{2}{eta}\gamma$
- Hidden velocity constraint: $\frac{d\xi(q_t)}{dt} = v_\xi(q_t, p_t) = \nabla \xi(q_t)^T M^{-1} p_t = 0$
- The corresponding phase-space is $\Sigma_{\xi,v_{\xi}}(z,0)$ where

$$\Sigma_{\xi, v_{\xi}}(z, v_z) = \left\{ (q, p) \in \mathbb{R}^{6N} \mid \xi(q) = z, \ v_{\xi}(q, p) = v_z \right\}$$

 An explicit expression of the Lagrange multiplier can be found by computing the second derivative in time of the constraint

Constrained Langevin dynamics (2)

 Invariant measure (reversibility and detailed balance up to momentum reversal, ergodicity)

$$\mu_{\Sigma_{\xi,v_{\xi}}(z,0)}(dq\,dp) = Z_{z,0}^{-1} e^{-\beta H(q,p)} \,\sigma_{\Sigma_{\xi,v_{\xi}}(z,0)}(dq\,dp),$$

where $\sigma_{\Sigma_{\xi,v_{\xi}}(z,v_z)}(dq\,dp)$ is the phase space Liouville measure of $\Sigma_{\xi,v_{\xi}}(z,v_z)$ induced by the symplectic matrix J

The free energy can be estimated from constrained samplings as

$$F(z) = F_{\text{rgd}}^{M}(z) - \frac{1}{\beta} \ln \int_{\Sigma_{\xi, v_{\xi}}(z, 0)} (\det G_{M})^{-1/2} d\mu_{\Sigma_{\xi, v_{\xi}}(z, 0)} + C$$

with rigid free energy
$$F^M_{\mathrm{rgd}}(z) = -\frac{1}{\beta} \ln \int_{\Sigma_{\xi,v_{\xi}}(z,0)} \mathrm{e}^{-\beta H(q,p)} d\mu_{\Sigma_{\xi,v_{\xi}}(z,0)}$$

Thermodynamic integration through the computation of the mean force

$$\nabla_z F_{\text{rgd}}^M(z) = \int_{\Sigma_{\xi, v_{\xi}}(z, 0)} f_{\text{rgd}}^M(q, p) \, \mu_{\Sigma_{\xi, v_{\xi}}(z, 0)}(dq \, dp)$$

Numerical discretization

- Splitting into Hamiltonian part + constrained Ornstein-Uhlenbeck process
- Midpoint scheme for the momenta (reversible for the canonical measure with constraints)

$$p^{n+1/4} = p^n - \frac{\Delta t}{4} \gamma M^{-1} (p^n + p^{n+1/4}) + \sqrt{\frac{\Delta t}{2}} \sigma \mathcal{G}^n + \nabla \xi(q^n) \lambda^{n+1/4},$$

with the constraint $\nabla \xi(q^n)^T M^{-1} p^{n+1/4} = 0$

RATTLE scheme (symplectic)

$$\begin{cases} p^{n+1/2} &= p^{n+1/4} - \frac{\Delta t}{2} \nabla V(q^n) + \nabla \xi(q^n) \lambda^{n+1/2}, \\ q^{n+1} &= q^n + \Delta t M^{-1} p^{n+1/2}, \\ p^{n+3/4} &= p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}) + \nabla \xi(q^{n+1}) \lambda^{n+3/4}, \end{cases}$$

with $\xi(q^{n+1}) = z$ and $\nabla \xi(q^{n+1})^T M^{-1} p^{n+3/4} = 0$

- Overdamped limit obtained when $\dfrac{\Delta t}{4} \gamma = M \propto \mathrm{Id}$
- Metropolization of the RATTLE part to eliminate the time-step error

Thermodynamic integration

Longtime (a.s.) convergence

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T d\lambda_t = \nabla_z F_{\text{rgd}}^M(z)$$

- No second order derivatives of ξ needed!
- Variance reduction: keep only the Hamiltonian part of λ_t
- Numerical discretization: approximate the mean force using only the Lagrange multipliers from the RATTLE part:

$$\nabla_z F_{\text{rgd}}^M(z) \simeq \frac{1}{N} \sum_{n=0}^{N-1} f_{\text{rgd}}^M(q^n, p^n) \simeq \frac{1}{N\Delta t} \sum_{n=0}^{N-1} (\lambda^{n+1/2} + \lambda^{n+3/4})$$

Consistency result

$$\lambda^{n+1/2} + \lambda^{n+3/4} = \frac{\Delta t}{2} \left(f_{\text{rgd}}^M(q^n, p^{n+1/4}) + f_{\text{rgd}}^M(q^{n+1}, p^{n+3/4}) \right) + \mathcal{O}(\Delta t^3)$$

Application: Solvatation effects on conformational changes (1)

- ullet Two particules (q_1 , q_2) interacting through $V_{
 m S}(r)=h\left[1-rac{(r-r_0-w)^2}{w^2}
 ight]^2$
- Solvent: particules interacting through the purely repulsive potential $V_{\text{WCA}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \left(\frac{\sigma}{r} \right)^{6} \right] + \epsilon \text{ if } r \leq r_0, \ 0 \text{ if } r > r_0$
- Reaction coordinate $\xi(q)=\frac{|q_1-q_2|-r_0}{2w}$, compact state $\xi^{-1}(0)$, stretched state $\xi^{-1}(1)$

Application: Solvatation effects on conformational changes (2)

Left: Estimated mean force. Right: Corresponding potential of mean force.

Parameters: $\beta=1$, N=100 particles, solvent density $\rho=0.436$, WCA interactions $\sigma=1$ and $\varepsilon=1$, dimer w=2 and h=2. Mean force estimated at the values $z_i=z_{\min}+i\Delta z$, with $z_{\min}=-0.2$, $z_{\max}=1.2$ and $\Delta z=0.014$, by ergodic averages obtained with the projected dynamics with Metropolis correction (time $T=2\times 10^4$, step size $\Delta t=0.02$, scalar friction $\gamma=1$).

Nonequilibrium Langevin dynamics

Presentation of the dynamics

- Idea: start at equilibrium and perform a switching from the initial to the final state in a finite time T
- Schedule z(t) for $t \in [0,T]$ and nonequilibrium dynamics

$$\begin{cases} dq_t = M^{-1}p_t dt, \\ dp_t = -\nabla V(q_t) dt - \gamma_P(q_t) M^{-1}p_t dt + \sigma_P(q_t) dW_t + \nabla \xi(q_t) d\lambda_t, \\ \xi(q_t) = \mathbf{z}(t), \end{cases}$$

$$(C_q(t))$$

with equilibrium initial conditions $(q_0, p_0) \sim \mu_{\Sigma_{\xi, v_{\xi}}(z(0), \dot{z}(0))}(dq \, dp)$

- Projected fluctuation/dissipation relation $(\sigma_P, \gamma_P) := (P_M \, \sigma, P_M \, \gamma \, P_M^T)$ so that the noise act only in the direction orthogonal to $\nabla \xi$
- Hidden constraint on the reaction coordinate velocity $v_{\xi}(q,p) = \dot{z}(t)$
- A computation shows $d\lambda_t = f_{\text{rgd}}^M(q_t, p_t) dt + G_M^{-1}(q_t) \ddot{z}(t) dt$
- Not the same dynamics as in Latorre/Hartmann/Schütte

Generalized free energy and work

- Actual free energy recovered from the difference $F(z) F_{\text{rgd}}^{\xi, v_{\xi}}(z, v_{z})$, which equals, up to an unimportant additive constant:

$$-\frac{1}{\beta} \ln \int_{\Sigma_{\xi,v_{\xi}}(z,v_{z})} (\det G_{M}(q))^{-1/2} \exp \left(\frac{\beta}{2} v_{z}^{T} G_{M}^{-1}(q) v_{z}\right) \mu_{\Sigma_{\xi,v_{\xi}}(z,v_{z})} (dq \, dp)$$

- Work performed during the switching: several expressions
 - Force times displacement: $\mathcal{W}_{0,T}\left(\{q_t,p_t\}_{0\leq t\leq T}\right)=\int_0^T\dot{z}(t)^Td\lambda_t$
 - Energy variations: $\mathcal{W}_{0,T}\left(\{q_t,p_t\}_{0\leq t\leq T}\right)=\int_0^T w(t,q_t,p_t)\,dt$ where $w(t,q,p)=\dot{\zeta}(t)^T\Gamma^{-1}\left\{\Xi,H\right\}(q,p)=\left.\left(\frac{d}{dh}H\circ\Phi_{t,t+h}\right)\right|_{h=0}(q,p)$ with Φ the flow of the switched Hamiltonian dynamics

Jarzynski-Crooks relation

Work fluctuation relation

$$\frac{Z_{z(T),\dot{z}(T)}}{Z_{z(0),\dot{z}(0)}} = \mathbb{E}\left(e^{-\beta \mathcal{W}_{0,T}\left(\left\{q_t,p_t\right\}_{t\in[0,T]}\right)}\right)$$

- More general result involving backward nonequilibrium dynamics and path functionals
- This leads in particular to the following free energy estimator

$$F(z(T)) - F(z(0)) = -\frac{1}{\beta} \ln \frac{\mathbb{E}\left(e^{-\beta \left[W_{0,T}\left(\{q_t, p_t\}_{t \in [0,T]}\right) + C(T, q_T)\right]\right)}}{\mathbb{E}\left(e^{-\beta C(0, q_0)}\right)}$$

with the corrector
$$C(t,q)=rac{1}{2eta}\ln\Big(\det G_M(q)\Big)-rac{1}{2}\dot{z}(t)^TG_M^{-1}(q)\dot{z}(t)$$

- Standard methods can then be used (bridge estimators, etc)
- Exact time-discrete version (no time error)

Numerical schemes: splitting strategy

Fluctuation/dissipation part (no Lagrange multiplier needed)

$$p^{n+1/4} = p^n - \frac{\Delta t}{4} \gamma_P(q^n) M^{-1} (p^{n+1/4} + p^n) + \sqrt{\frac{\Delta t}{2}} \sigma_P(q^n) \mathcal{G}^n$$

Hamiltonian part for the forward evolution (symplectic map)

$$\begin{cases} p^{n+1/2} = p^{n+1/4} - \frac{\Delta t}{2} \nabla V(q^n) + \nabla \xi(q^n) \lambda^{n+1/2}, \\ q^{n+1} = q^n + \Delta t \ M^{-1} p^{n+1/2}, \\ \xi(q^{n+1}) = z(t_{n+1}), \\ p^{n+3/4} = p^{n+1/2} - \frac{\Delta t}{2} \nabla V(q^{n+1}) + \nabla \xi(q^{n+1}) \lambda^{n+3/4}, \\ \nabla \xi(q^{n+1})^T M^{-1} p^{n+3/4} = \frac{z(t_{n+2}) - z(t_{n+1})}{\Delta t}, \end{cases}$$

$$(C_p)$$

- Work update $\mathcal{W}^{n+1}=\mathcal{W}^n+H(q^{n+1},p^{n+3/4})-H(q^n,p^{n+1/4})$
- Overdamped limit $\frac{\Delta t}{4}\gamma = M = \frac{\Delta t}{2} \mathrm{Id}$

Discrete Jarzynski-Crooks equality: The reaction coordinate case

- Discrete schedule $\{z(0), \ldots, z(t_{N_T})\}$
- Initial conditions $(q^0,p^0)\sim \mu_{\Sigma_{\xi,v_\xi}\left(z(t_0),\frac{z(t_1)-z(t_0)}{\Delta t}\right)}(dq\,dp)$
- Initial work $\mathcal{W}^0 = 0$, and work update

$$\mathcal{W}^{n+1} = \mathcal{W}^n + H(q^{n+1}, p^{n+3/4}) - H(q^n, p^{n+1/4})$$

Time discretization error free estimator of the free energy difference:

$$\frac{Z_{z(N_T),\frac{z(t_{N_T+1})-z(t_{N_T})}{\Delta t}}}{Z_{z(t_0),\frac{z(t_1)-z(t_0)}{\Delta t}}} = \mathbb{E}\left(e^{-\beta \mathcal{W}^{N_T}}\right)$$

- Standard free energy upon using a corrector
- More general version with backward dynamics and path functionals
- Overdamped limit $\frac{\Delta t}{4}\gamma=M=\frac{\Delta t}{2} \text{Id}$: no bias due to the finite time-step in the estimator (compare to Lelièvre/Rousset/Stoltz, 2007)

Application: Solvatation effects on conformational changes

Estimated free energy profiles for T=1 with $K=10^5$ realizations (top curve), T=10 with $K=10^4$ and T=100 with $K=10^3$ (smoothest curve).

Same parameters as before, except $\Delta t = 0.01$. Schedule $z(t) = z_{\min} + (z_{\max} - z_{\min}) \frac{t}{T}$ with $z_{\min} = -0.1$ and $z_{\max} = 1.1$.

References

References

- The main references for this work:
 - T. LELIÈVRE, M. ROUSSET AND G. STOLTZ, Langevin dynamics with constraints and computation of free energy differences, arXiv preprint 1006.4914 (2010)
 - T. Lelièvre, M. Rousset and G. Stoltz Free energy computations: A Mathematical Perspective, Imperial College Press (2010).
- Other recent works on adaptive computation of free energy differences:
 - N. CHOPIN, T. LELIÈVRE AND G. STOLTZ, Free energy methods for efficient exploration of mixture posterior densities, accepted for publication in *J. Stat. Comput.* (2011)
 - B. DICKSON, F. LEGOLL, T. LELIÈVRE, G. STOLTZ AND P. FLEURAT-LESSARD, Free energy calculations: An efficient adaptive biasing potential method, J. Phys. Chem. B 114(17), 5823-5830 (2010)