

European Research Council

Importance sampling with free energies and autoencoders for multimodal probability distributions

Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

Joint work with Z. Belkacemi (Sanofi & ENPC), P. Gkeka, M. Bianciotto, H. Minoux (Sanofi), T. Pigeon (Inria & IFPEN), Wei Zhang (FU Berlin) and T. Lelièvre (ENPC & Inria)

Mostly Monte Carlo seminar, May 2024

Outline

• Free energy importance sampling

- Multimodal probability measures in Bayesian statistics
- Importance sampling
- Reaction coordinates and free energy
- Finding good reaction coordinates using autoencoders
 - Preliminaries: definitions, training, etc.
 - An interpretation in terms of conditional expectations
 - Iterative learning of free energy and RC

Chopin, T. Lelièvre and G. Stoltz, Free energy methods for efficient exploration of mixture posterior densities, *Stat. Comput.* **22**(4) (2012) 897-916

Z. Belkacemi, P. Gkeka, T. Lelièvre and G. Stoltz, Chasing collective variables using autoencoders and biased trajectories, *J. Chem. Theory Comput.* **18**(1), 59-78 (2022)

Lelièvre, T. Pigeon, G. Stoltz and W. Zhang, Analyzing multimodal probability measures with autoencoders, *J. Phys. Chem. B* **128**(11) 2607-2631 (2024)

Free energy importance sampling

Multimodality in Bayesian inference (1)

- Data points $\{y_i\}_{i=1,\dots,N_{\mathrm{data}}}$
- Elementary likelihood $P(y|\theta)$, with θ parameters of probability measure
- A priori distribution of the parameters p_{prior} (usually not so informative)

Aim

Find the values of the parameters θ describing correctly the data: sample

$$\nu(\theta) \propto p_{\text{prior}}(\theta) \prod_{i=1}^{N_{\text{data}}} P(y_i|\theta)$$

• Example of Gaussian mixture model

Multimodality in Bayesian inference (2)

Elementary likelihood: mixture of K Gaussians

$$P(y \mid \theta) = \sum_{k=1}^{K} a_k \sqrt{\frac{\lambda_k}{2\pi}} \exp\left(-\frac{\lambda_k}{2}(y - \mu_k)^2\right)$$

Parameters $\theta = (a_1, \ldots, a_{K-1}, \mu_1, \ldots, \mu_K, \lambda_1, \ldots, \lambda_K)$ with

 $\mu_k \in \mathbb{R}, \qquad \lambda_k \ge 0, \qquad 0 \le a_k \le 1, \qquad a_1 + \dots + a_K = 1$

Prior distribution: Random beta model \rightarrow additional variable

- uniform distribution of the weights a_k
- $\mu_k \sim \mathcal{N}\left(M, R^2/4\right)$ with M = mean of data, $R = \max y_i \min y_i$
- $\lambda_k \sim \Gamma(\alpha, \beta)$ with $\beta \sim \Gamma(g, h)$, g = 0.2 and $h = 100g/\alpha R^2$

S. Richardson and P. J. Green, *J. Roy. Stat. Soc. B*, 1997. A. Jasra, C. Holmes and D. Stephens, *Statist. Science*, 2005

Multimodality in Bayesian inference (3)

Left: Lengths of snappers ($N_{data} = 256$), and a possible fit for K = 3 using the last configuration from the trajectory plotted in the right picture.

Right: Typical sampling trajectory, Metropolis/Gaussian random walk with $(\sigma_q, \sigma_\mu, \sigma_v, \sigma_\beta) = (0.0005, 0.025, 0.05, 0.005).$

A. J. Izenman and C. J. Sommer, J. Am. Stat. Assoc., 1988. K. Basford et al., J. Appl. Stat., 1997

Multimodality in Bayesian inference (4)

Left: Thickness of Mexican stamps ("Hidalgo stamp data", $N_{\text{data}} = 485$), and two possible fits for K = 3 ("genuine multimodality", solid line: dominant mode).

Right: Typical sampling trajectory

D. Titterington et al., Statistical Analysis of Finite Mixture Distributions, 1986.

S. Frühwirth-Schnatter, Finite Mixture and Markov Switching Models, 2006.

Importance sampling

Importance sampling function $\widetilde{V}:\mathbb{R}^D\to\mathbb{R}$

- Target measure $\nu_0(d\theta)=Z_0^{-1}{\rm e}^{-V(\theta)}\,d\theta$
- Sample a modified target measure $\nu_{\widetilde{V}}(d\theta) = Z_{\widetilde{V}}^{-1} e^{-(V+\widetilde{V})(\theta)} d\theta$
- Reweight sample points $\theta^n \sim \pi_{\widetilde{V}}$ by e^V

$$\widehat{\varphi}_{N_{\mathrm{iter}},\widetilde{V}} = \frac{\sum_{n=1}^{N_{\mathrm{iter}}} \varphi(\theta^n) \mathrm{e}^{\widetilde{V}(\theta^n)}}{\sum_{n=1}^{N_{\mathrm{iter}}} \mathrm{e}^{\widetilde{V}(\theta^n)}} \xrightarrow[N_{\mathrm{iter}} \rightarrow +\infty]{\text{a.s.}} \frac{\int \varphi \, \mathrm{e}^{\widetilde{V}} \, d\nu_{\widetilde{V}}}{\int \mathrm{e}^{\widetilde{V}} \, d\nu_{\widetilde{V}}} = \int \varphi \, d\nu_0$$

A good choice of the importance sampling function can improve the performance of the estimator... but a bad choice can degrade it!

Importance sampling in high dimensions

General strategy:

- low-dimensional (nonlinear) function ξ(θ) ∈ ℝ^d with d ≪ D, encoding the metastability of the sampling method (reaction coordinate)
- \bullet bias by the associated free energy: $\widetilde{V}(\theta)=F(\xi(\theta))$ with

$$e^{-F(z)} = \int e^{-V(\theta)} \delta_{\xi(\theta)-z}(d\theta)$$

• Simple case: $\xi(\theta) = \theta_1$, for which

$$F(z) = -\ln\left(\int e^{-V(z,\theta_2,\ldots,\theta_d)} d\theta_2 \ldots d\theta_d\right)$$

Various methods to compute the free energy: thermodynamic integration, umbrella sampling, adaptive methods, ...

Lelièvre/Rousset/Stoltz, Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

Free energy biasing for Bayesian inference

Machine learning approaches for finding reaction coordinates

(A biased perspective on some) References

- ML reviews in MD (biased towards dimensionality reduction, not force fields)
 - A. Gliemlo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, A. Laio, *Chem. Rev.* 121(16), 9722-9758 (2021)
 - P. Gkeka et al., J. Chem. Theory Comput. 16(8), 4757-4775 (2020)
 - F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi, Annu. Rev. Phys. Chem. 71, 361-390 (2020)
 - A.L. Ferguson, J. Phys.: Condens. Matter 30, 04300 (2018)
 - M. Chen, Eur. Phys. J. B 94, 211 (2021)

More general ML references

- P. Mehta, M. Bukov, C.-H. Wang, A.G.R.Day, C. Richardson, C.K. Fisher, D.J. Schwab, A high-bias, low-variance introduction to Machine Learning for physicists, *Physics Reports* 810, 1-124 (2019)
- I. Goodfellow, Y. Bengio, A. Courville *Deep Learning* (MIT Press, 2016) http://www.deeplearningbook.org
- K.P. Murphy, Probabilistic Machine Learning: An Introduction (MIT Press, 2022)

Some representative approaches for finding RC (1)

- Domain knowledge/intuition (log-likelihood, approximate summary statistics, etc)
- Short list of data-oriented approaches (depending on the data at hand...)
 - [supervised learning] separate metastable states
 - [unsupervised/static] distinguish linear models (PCA) and nonlinear ones (e.g. based on autoencoders such as MESA¹)
 - [unsupervised/dynamics] operator based approaches (VAC, EDMD, diffusion maps, MSM; incl. tICA and VAMPNets)

(Huge literature! I am not quoting precise references here because the list would be too long)

 \bullet Other classifications 2,3 possible, e.g. slow vs. high variance RC

¹W. Chen and A.L. Ferguson, *J. Comput. Chem.* 2018; W. Chen, A.R. Tan, and A.L. Ferguson, *J. Chem. Phys.* 2018

- ²P. Gkeka et al., J. Chem. Theory Comput. (2020)
- ³A. Gliemlo et al., Annu. Rev. Phys. Chem. (2021)

Some representative approaches for finding CV (2)

Constructing CVs with autoencoders

Bottleneck autoencoders (1)

Bottleneck autoencoders (2)

• Input space $\Theta \subseteq \mathbb{R}^D$, bottleneck space $\mathcal{B} \subseteq \mathbb{R}^d$ with d < D

$$f(\theta) = f_{\mathsf{dec}}\Big(f_{\mathsf{enc}}(\theta)\Big)$$

where $f_{enc}: \Theta \to \mathcal{B}$ and $f_{dec}: \mathcal{B} \to \Theta$

Collective variable = encoder part

$$\xi = f_{\rm enc}$$

 \bullet Fully connected neural network, symmetrical structure, 2L layers

• Parameters $\mathbf{p} = \{p_k\}_{k=1,\dots,K}$ (bias vectors b_ℓ and weights matrices W_ℓ)

$$f_{\mathbf{p}}(\theta) = g_{2L} \left[b_{2L} + W_{2L} \dots g_1 (b_1 + W_1 \theta) \right]$$
 ,

with activation functions g_ℓ

(examples: tanh(a), ReLU max(0, a), sigmoid $\sigma(a) = 1/(1 + e^{-a})$, etc)

Training autoencoders

• Theoretically: minimization problem in $\mathcal{P} \subset \mathbb{R}^K$

$$\mathbf{p}_{\nu} \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{P}} \mathcal{L}(\nu, \mathbf{p}),$$

with cost function

$$\mathcal{L}(\nu, \mathbf{p}) = \mathbb{E}_{\nu}(\|\theta - f_{\mathbf{p}}(\theta)\|^2) = \int_{\Theta} \|\theta - f_{\mathbf{p}}(\theta)\|^2 \nu(d\theta)$$

• In practice, access only to a sample: minimization of empirical cost

$$\mathcal{L}(\hat{\nu}, \mathbf{p}) = \frac{1}{N} \sum_{i=1}^{N} \|\theta^i - f_{\mathbf{p}}(\theta^i)\|^2, \qquad \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^i}$$

• Actual training: Adam + early stopping; possibly add some regularization

Some properties of autoencoders

Three viewpoints on the loss function (1/2)

Idealized setting: $f_{enc} : \Theta \to \mathcal{Z}$ and $f_{dec} : \mathcal{Z} \to \Theta$ measurable $\mathcal{F} = \{f = f_{dec} \circ f_{enc}, f_{enc} \in \mathcal{F}_{enc}, f_{dec} \in \mathcal{F}_{dec}\}$ Usual loss: $\inf_{f \in \mathcal{F}} \mathbb{E} \left[\|\theta - f(\theta)\|^2 \right]$

Principal manifold formulation: fix decoder, minimize over encoders

$$\inf_{f \in \mathcal{F}} \mathbb{E} \left[\|\theta - f(\theta)\|^2 \right] = \inf_{f_{dec} \in \mathcal{F}_{dec}} \left\{ \inf_{f_{enc} \in \mathcal{F}_{enc}} \mathbb{E} \left[\|\theta - f_{dec} \circ f_{enc}(\theta)\|^2 \right] \right\}$$
$$= \inf_{f_{dec} \in \mathcal{F}_{dec}} \mathbb{E} \left[\|\theta - f_{dec} \circ h^{\star}_{f_{dec}}(\theta)\|^2 \right]$$

with ideal encoder $h^{\star}_{f_{\mathrm{dec}}}(\theta) \in \operatorname*{argmin}_{z \in \mathcal{Z}} \|\theta - f_{\mathrm{dec}}(z)\|$

Hastie/Stützle (1986), Tibshirani (1992) Venturoli/Vanden–Eijnden (2009) Gerber/Whitaker, *J. Mach. Learn. Res.* (2013); Gerber, *arXiv preprint* **2104.05000**

Three viewpoints on the loss function (2/2)

Formulation with conditional expectation: fix encoder, minimize over decoders

$$\inf_{f \in \mathcal{F}} \mathbb{E}\left[\left\| \theta - f(\theta) \right\|^2 \right] = \inf_{f_{\text{enc}} \in \mathcal{F}_{\text{enc}}} \left\{ \inf_{f_{\text{dec}} \in \mathcal{F}_{\text{dec}}} \mathbb{E}\left[\left\| \theta - f_{\text{dec}} \circ f_{\text{enc}}(\theta) \right\|^2 \right] \right\}$$
$$= \inf_{f_{\text{enc}} \in \mathcal{F}_{\text{enc}}} \mathbb{E}\left[\left\| \theta - g_{f_{\text{enc}}}^{\star} \circ f_{\text{enc}}(\theta) \right\|^2 \right]$$

with ideal decoder $g^{\star}_{f_{\rm enc}}(z) = \mathbb{E}[\,\theta\,|\,f_{\rm enc}(\theta) = z]$

Alternative interpretations of the reconstruction error

$$\mathbb{E}\left[\left\|\theta - g_{f_{\text{enc}}}^{\star} \circ f_{\text{enc}}(\theta)\right\|^{2}\right] = \operatorname{Var}(\theta) - \operatorname{Var}\left[\mathbb{E}(\theta|f_{\text{enc}}(\theta))\right]$$
$$= \mathbb{E}\left[\operatorname{Var}(\theta|f_{\text{enc}}(\theta))\right]$$

First equality by developing square, second by conditioning on $f_{\rm enc}(\theta)$

Numerical illustration

Practical implication: minimizing reconstruction loss amounts to...

minimizing intraclass dispersion

(small spread of data points for $f_{
m enc}$ given around the mean)

maximizing interclass dispersion

(the mean values associated with f_{enc} given should be as spread out as possible)

Left: topology (2, 5, 5, 1, 5, 5, 2). Right: topology (2, 5, 5, 1, 20, 20, 2)

Additional properties

 \bullet Necessary condition for critical points of the loss functional on $f_{\rm enc}$

 $\left[\theta - g_{f_{\text{enc}}}^{\star}(f_{\text{enc}}(\theta))\right]^{\top} \partial_{z_j} g_{f_{\text{enc}}}^{\star}(f_{\text{enc}}(\theta)) = 0, \qquad 1 \leqslant j \leqslant d, \ \theta \in \text{Supp}(\mu)$

Low temperature limit: $\{g^{\star}_{f_{\mathrm{enc}}}(z)\}_{z\in[z_A,z_B]}$ minimum energy path⁴

- Formulation with conditional expectations for other models:
 - clustering
 - PCA (= autoencoders with identity activation functions)

• Various extensions:

- change reference measure to better take transition states into account
- multiple transition paths: single encoder and several decoders
- possibly add some regularization terms

⁴Venturoli/Vanden–Eijnden (2009)

Free energy biasing and iterative learning

Training on modified target measures

• Interesting systems are metastable (no spontaneous exploration of phase space) Sample according to a biased distribution $\tilde{\nu}$

• Need for reweighting to learn the correct encoding!

$$w(\theta) = rac{
u(\theta)}{\widetilde{
u}(\theta)}$$

• Minimization problem: theoretical cost function

$$\mathcal{L}(\nu, \mathbf{p}) = \int_{\Theta} \|\theta - f_{\mathbf{p}}(\theta)\|^2 w(\theta) \,\widetilde{\nu}(d\theta)$$

actual cost function

$$\mathcal{L}(\widehat{\nu}_{\mathsf{wght}}, \mathbf{p}) = \sum_{i=1}^{N} \widehat{w}_{i} \|\theta^{i} - f_{\mathbf{p}}(\theta^{i})\|^{2}, \qquad \widehat{w}_{i} = \frac{\nu(\theta^{i})/\widetilde{\nu}(\theta^{i})}{\sum_{j=1}^{N} \nu(\theta^{j})/\widetilde{\nu}(\theta^{j})}$$

 \bullet Only requires the knowledge of ν and $\widetilde{\nu}$ up to a multiplicative constant

• Stochastic gradients in training: sampling with replacement according to multinomial distribution

Proof of concept (1)

• Gaussian distributions $\mu_i = \mathcal{N}(0, \Sigma_i)$ with

$$\Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0.01 \end{pmatrix}, \qquad \Sigma_2 = \begin{pmatrix} 0.01 & 0 \\ 0 & 1 \end{pmatrix}$$

Datasets \mathcal{D}_i of $N = 10^6$ i.i.d. points

- \bullet Autoencoders with 2 layers of resp. 1 and 2 nodes, linear activation functions (\simeq PCA)
- Training on:
 - D_1
 - \mathcal{D}_2
 - \mathcal{D}_2 with reweighting $\widehat{w}_i \propto \mu_1/\mu_2$

Proof of concept (2)

Heat maps of $f_{\rm enc}$

Third encoder very similar to the first one: projection on θ_1 Second encoder projects on a direction close to θ_2

Proof of concept with free energy biasing (1)

Two dimensional potential ("entropic switch")⁵

$$V(\theta_1, \theta_2) = 3e^{-\theta_1^2} \left(e^{-(\theta_2 - 1/3)^2} - e^{-(\theta_2 - 5/3)^2} \right) - 5e^{-\theta_2^2} \left(e^{-(\theta_1 - 1)^2} + e^{-(\theta_1 + 1)^2} \right) + 0.2\theta_1^4 + 0.2(\theta_2 - 1/3)^4$$

Trajectory from $\theta^{j+1} = \theta^j - \nabla V(\theta^j)\Delta t + \sqrt{2\beta^{-1}\Delta t}G^j$ for $\beta = 4$ and $\Delta t = 10^{-3} \longrightarrow$ metastability in the θ_1 direction

⁵S. Park, M.K. Sener, D. Lu, and K. Schulten (2003)

Proof of concept with free energy biasing (2)

• Free energy biasing: distributions $Z_i^{-1} \exp \left(-V(\theta) + F_i(\xi_i(\theta))\right)$

$$F_1(\theta_1) = -\ln\left(\int_{\mathbb{R}} e^{-V(\theta_1, \theta_2)} d\theta_2\right), \qquad F_2(\theta_2) = -\ln\left(\int_{\mathbb{R}} \dots d\theta_1\right)$$

Three datasets: unbiased trajectory, trajectories biased using F_1 and F_2 (free energy biased trajectories are shorter but same number of data points $N = 10^6$)

 \bullet Autoencoders: 2-1-2 topology, activation functions \tanh (so that CV is in [-1,1]) then identity

• Five training scenarios:

- training on long unbiased trajectory (reference CV)
- ξ_1 -biased trajectory, with or without reweighting
- ξ_2 -biased trajectory, with or without reweighting

Proof of concept with free energy biasing (3)

Iterative training/exploration

Interesting systems are metastable (no spontaneous exploration of phase space) Iterate between exploration and update of RC based on new data points

Basic strategy: Metropolis targeting $\tilde{\nu}$, free energy on a grid

$$\forall z \in [z_i, z_{i+1}], \qquad e^{-F(z)} \propto \sum_{n=1}^{N_{\text{iter}}} \mathbf{1}_{z_i \leqslant \xi(\theta^n) \leqslant z_{i+1}}$$

More advanced strategies: **adaptive methods** (Wang–Landau, Self-Healing Umbrella Sampling, well-tempered metadynamics, ...)

Convergence criterion: based on stabilization of RC (up to transformation)

G. Fort, B. Jourdain, T. Lelièvre and G. Stoltz, J. Stat. Phys. (2018)
G. Fort, B. Jourdain, T. Lelièvre and G. Stoltz, Stat. Comput. (2017)
G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz, Math. Comput. (2015)

The iterative algorithm on the toy 2D example

Left: with reweighting Convergence to $CV \simeq \theta_1$

Right: without reweighting No convergence (cycles between two CVs)

Gabriel Stoltz (ENPC/Inria)

Conclusion and perspectives

Methodology well established in molecular dynamics

- importance sampling with the free energy associated with a reaction coordinate
- find the reaction coordinate using ML approaches (here, autoencoders)
- iterate between update of the RC/recomputation of the free energy

Test the approach for problems in statistics?