Computation of free energy differences

Gabriel STOLTZ

CERMICS & MICMAC project team, ENPC (Marne-la-Vallée, France) IMPMC, Université Paris 6 et 7 (France)

http://cermics.enpc.fr/~stoltz/

- Positions q (configuration), momenta $p = M\dot{q}$ (M diagonal mass matrix)
- Microscopic description of a classical system (N particles):

$$(q,p) = (q_1,\ldots,q_N, p_1,\ldots,p_N) \in \mathcal{E}$$

- For instance, $\mathcal{E} = \mathcal{M} \times \mathbb{R}^{3N}$ with $\mathcal{M} = \mathbb{R}^{3N}$ or \mathbb{T}^{3N}
- More complicated situations can be considered... (constraints defining submanifolds of the phase space)
- Hamiltonian

$$H(q,p) = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(q_1, \dots, q_N)$$

- All the physics is contained in V
- For instance, pair interactions $V(q_1, \ldots, q_N) = \sum_{1 \le i < j \le N} V_0(|q_j q_i|)$

Extracting macroscopic properties: Statistical physics

- Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?
- Equilibrium thermodynamic properties (pressure,...):

$$\langle A \rangle = \int_{\mathcal{E}} A(q, p) \, d\mu(q, p)$$

- Integral in a high dimensional space...
- Choice of thermodynamic ensemble \equiv choice of probability measure $d\mu$:
 - microcanonical (NVE, constant energy);
 - canonical (NVT, "constant temperature") : Boltzmann measure

$$d\mu_{\rm NVT} = \frac{1}{Z_{\rm NVT}} \exp(-\beta H(q, p)) \, dq \, dp, \quad \beta = 1/(k_B T)$$

- Other choices are possible (grand-canonical, constant pressure,...)
- Certain properties can not be computed this way (free energy, entropy)!

Sampling the canonical ensemble: Overdamped Langevin dynamics

SDE on the configurational part only (momenta trivial to sample)

$$dq_t = -\nabla V(q_t)dt + \sigma dW_t,$$

where $(W_t)_{t\geq 0}$ is a standard Wiener process of dimension dN

Invariance of the canonical measure

$$d\pi(q) = Z^{-1} e^{-\beta V(q)} dq, \qquad Z = \int_{\mathcal{M}} e^{-\beta V(q)} dq$$

if steady state of Fokker-Planck equation $\partial_t \psi_t = \operatorname{div} \left(\nabla V \psi_t + \frac{\sigma^2}{2} \nabla \psi_t \right)$

- Fluctuation/dissipation relation $\sigma = (2/\beta)^{1/2}$
- Invariance + irreducibility (elliptic process):

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T A(q_t^x) \, dt = \int_{\mathcal{M}} A(q) d\pi \quad \text{a.s.}$$

Numerical discretization of the overdamped Langevin dynamics:

$$q^{n+1} = q^n - \Delta t \nabla V(q^n) + \sigma \sqrt{\Delta t} \, U^n$$

where $U^n \sim \mathcal{N}(0, 1)$ i.i.d.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

- Although the trajectory average converges to the phase-space average, the convergence may be slow...
- Slowly evolving macroscopic function of the microscopic degrees of freedom
- Two origins : energetic or entropic barriers (in fact, free energy barrier)

• Assume the free energy *F* associated with the slow direction *x* has been computed, and sample the modified potential $\mathcal{V}(x, y) = V(x, y) - F(x)$.

Projected trajectory in the x variable for $\Delta t = 0.01$, $\beta = 8$.

- Many more transitions! The variable x is uniformly distributed.
- Reweighting with weights $e^{-\beta F(x)}$ to compute canonical averages

Absolute free energy

$$F = -\frac{1}{\beta} \ln Z, \qquad Z = \int_{\mathcal{E}} e^{-\beta H(q,p)} dq dp$$

- Motivation (Gibbs, 1902):
 - canonical measure $\mu(q, p) = Z^{-1} \exp(-\beta H(q, p))$
 - start from the thermodynamic identity F = U TS
 - average energy $U = \int H\mu$

• entropy
$$S = -k_{\rm B} \int \mu \ln \mu$$

- Can be computed for ideal gases, and solids at low temperature
- Usually only free energy differences matter!

 Alchemical transition: indexed by an external parameter λ (force field parameter, magnetic field,...)

$$\Delta F = -\beta^{-1} \ln \left(\frac{\int_{\mathcal{E}} e^{-\beta H_1(q,p)} \, dq \, dp}{\int_{\mathcal{E}} e^{-\beta H_0(q,p)} \, dq \, dp} \right) ;$$

Typically, $H_{\lambda} = (1 - \lambda)H_0 + \lambda H_1$

• (given) reaction coordinate $\xi : \mathbb{R}^{3N} \to \mathbb{R}^m$ (angle, length,...):

$$\Delta F = -\beta^{-1} \ln \left(\frac{\int_{\mathcal{E}} e^{-\beta H(q,p)} \,\delta_{\xi(q)-z_1} \,dq \,dp}{\int_{\mathcal{E}} e^{-\beta H(q,p)} \,\delta_{\xi(q)-z_0} \,dq \,dp} \right)$$

Recall $\delta_{\xi(q)-z} = |\nabla \xi|^{-1} d\sigma_{\Sigma_z}$.

Cartoon comparison of the methods

• Express ΔF as an average^a

$$\Delta F(\lambda) = -\beta^{-1} \ln \frac{\int_{\mathcal{M}} e^{-\beta(V_{\lambda}(q) - V_{0}(q))} d\pi_{0}(q)}{\int_{\mathcal{M}} d\pi_{0}(q)} = -\beta^{-1} \ln \frac{\int_{\mathcal{M}} e^{-\beta(V_{\lambda} - W)} d\pi_{W}}{\int_{\mathcal{M}} e^{-\beta(V_{0} - W)} d\pi_{W}},$$

with $d\pi_0(q) = Z^{-1} e^{-\beta V_0(q)} dq$

- All usual sampling techniques can be used to sample from $d\pi_0$ (or $d\pi_W$)
- Many extensions and refinements to deal with the numerical issues (in particular, Umbrella sampling^b = importance sampling)
- Restricted to alchemical transitions...

^aZwanzig, *J. Chem. Phys.* **22**, 1420 (1954)

^bG.M. Torrie and J.P. Valleau, *J. Comp. Phys.* **23**, 187 (1977)

Thermodynamic integration

Free energy = integral of an average force ^a

$$\Delta F = \int_0^1 F'(\lambda) \, d\lambda \simeq \sum_{i=1}^M (\lambda_i - \lambda_{i-1}) \, \left(\frac{F'(\lambda_{i-1}) + F'(\lambda_i)}{2} \right)$$

where the average force is

$$F'(\lambda) = \left\langle \frac{\partial V}{\partial \lambda} \right\rangle_{\lambda} = \frac{\int_{\mathcal{M}} \partial_{\lambda} V_{\lambda}(q) e^{-\beta V_{\lambda}(q)} dq}{\int_{\mathcal{M}} e^{-\beta V_{\lambda}(q)} dq} \simeq \frac{1}{n} \sum_{i=0}^{n} \frac{\partial V_{\lambda}}{\partial \lambda}(q_{\lambda}^{n})$$

Extension to the case of reaction coordinates using projected SDEs, mean force = average Lagrange multiplier of the constraint^b

^b Ciccotti, Lelièvre, Vanden-Eijnden, Comm. Pure Appl. Math. **61**(3) 371-408 (2008)

^aKirkwood, *J. Chem. Phys.* **3**, 300 (1935)

Nonequilibrium dynamics (1)

• Hamiltonian case: a priori evolution $\Lambda(t)$ of the alchemical parameter ($\Lambda(0) = 0$, $\Lambda(T) = 1$)

$$\begin{cases} \dot{q}_i(t) = \frac{\partial H_{\Lambda(t)}}{\partial p_i}(q(t), p(t)), \\ \dot{p}_i(t) = -\frac{\partial H_{\Lambda(t)}}{\partial q_i}(q(t), p(t)). \end{cases}$$

• Work
$$W(q,p) = \int_0^T \frac{\partial H_{\Lambda(t)}}{\partial \Lambda} (\Phi_t^T(q,p)) \Lambda'(t) dt = H_1(\Phi_T^T(q,p)) - H_0(q,p)$$

Then

$$\int_{\mathcal{E}} e^{-\beta W(q,p)} d\mu_0(q,p) = Z_0^{-1} \int_{\mathcal{E}} e^{-\beta H_1(\Phi_T^T(q,p))} dq \, dp$$

so that finally

$$\frac{Z_1}{Z_0} = \mathrm{e}^{-\beta\Delta F} = \int_{\mathcal{E}} \mathrm{e}^{-\beta W(q,p)} \, d\mu_0(q,p).$$

Nonequilibrium dynamics (2)

Jarzynski equality^a

$$\mathbb{E}(\mathrm{e}^{-\beta W}) = \mathrm{e}^{-\beta \Delta F}$$

(starting from equilibrium)

- Average taken over initial conditions and realizations of the noise
- Proof: Feynman-Kac formula in the stochastic case
- An interesting consequence: $\mathbb{E}(W) \ge \Delta F$ (second principle of thermodynamics)
- Various extensions/improvements :
 - Variance reduction using interacting particle systems^b = reequilibration to avoid degeneracy of weights
 - Reaction coordinate case using switched projected SDEs^c (average the Lagrange multipliers along the trajectory, up to some correction)
 - Path sampling strategies

^aJarzynski, *Phys. Rev. Lett.* (1997)

^bM. Rousset and G. Stoltz, *J. Stat. Phys.* (2006)

^cT. Lelièvre, M. Rousset and G. Stoltz, J. Comput. Phys. (2007)

Adaptive dynamics (1)

- Adaptive methods (Adaptive biasing force^a, nonequilibrium metadynamics^b, etc)
 - General framework^c
 - Convergence proof in a limiting case^d
- Simplified setting: $\lambda \in \mathbb{R}/\mathbb{Z}$, $V_{\lambda}(q) \equiv V(q, \lambda)$

$$\begin{cases} dq_t = -\nabla_q V(q_t, \lambda_t) \, dt + \sqrt{2\beta^{-1}} \, dW_t^q \\ d\lambda_t = -\partial_\lambda V(q_t, \lambda_t) \, dt + \sqrt{2\beta^{-1}} \, dW_t^\lambda \end{cases}$$

so that
$$F(\lambda_2) - F(\lambda_1) = -\beta^{-1} \ln \frac{\overline{\psi}_{eq}(\lambda_2)}{\overline{\psi}_{eq}(\lambda_1)}$$
, with $\overline{\psi}_{eq}(\lambda) = \int_{\mathcal{M}} e^{-\beta V(q,\lambda)} dq$

^aDarve and Pohorille, *J. Chem. Phys.* (2001)
^bBussi, Laio and Parrinello, *Phys. Rev. Lett.* (2006)
^cT. Lelièvre, M. Rousset and G. Stoltz, *J. Chem. Phys.* (2007)
^dT. Lelièvre, M. Rousset and G. Stoltz, *Nonlinearity* (2008)

Adaptive dynamics (2)

 Metastable sampling in the λ variable... Introduction of a bias in the dynamics of λ to force the exploration while computing the free energy difference

$$\begin{cases} dq_t = -\nabla_q V(q_t, \lambda_t) dt + \sqrt{2\beta^{-1}} dW_t^q \\ d\lambda_t = -\partial_\lambda \left[V(q_t, \lambda_t) - F_{\text{bias}}(t, \lambda_t) \right] dt + \sqrt{2\beta^{-1}} dW_t^\lambda \end{cases}$$

- Distribution of the configurations $X_t = (q_t, \lambda_t)$ according to $\psi_t(q, \lambda)$
- Variables λ_t distributed according to the marginals $\overline{\psi}_t(\lambda) = \int_{\mathcal{M}} \psi_t(q,\lambda) \, dq$
- If the biasing term $F_{\text{bias}}(t,\lambda)$ converges to $F(\lambda)$, then, at equilibrium,

•
$$X_t \sim \psi_{\infty}(q, \lambda) = Z_{\infty} e^{-\beta(V(q, \lambda) - F(\lambda))},$$

•
$$\lambda_t \sim \overline{\psi}_{\infty}(\lambda) = \int_{\mathcal{M}} \exp(-\beta [V(q,\lambda) - F(\lambda)]) \, dq = 1$$

Update of the bias? (potential or force)

– p. 17/23

Adaptive dynamics (3)

• Assume that the dynamics is instantaneously at equilibrium in the q variable at fixed λ , *i.e.* the conditioned measure

$$\psi_t^{\text{eq}}(q,\lambda) = Z_t^{-1} e^{-\beta \mathcal{V}_t(q,\lambda)} dq, \qquad \mathcal{V}_t(q,\lambda) = V(q) - F_{\text{bias}}(t,\lambda).$$

Then, an update of the form

$$\partial_t F'_{\text{bias}}(t,\lambda) = \frac{1}{\tau} \frac{\int_{\mathcal{M}} \partial_\lambda \mathcal{V}_t(q,\lambda) \,\psi_t^{\text{eq}}(q,\lambda) \,dq}{\int_{\mathcal{M}} \psi_t^{\text{eq}}(q,\lambda) \,dq}$$

implies $\partial_t F'_{\text{bias}}(t,\lambda) = \frac{1}{\tau} \left(F(\lambda) - F'_{\text{bias}}(t,\lambda) \right)$ hence the convergence.

In general,

$$\partial_t F'_{\text{bias}}(t,\lambda) = \frac{1}{\tau} \frac{\int_{\mathcal{M}} \partial_\lambda \mathcal{V}_t(q,\lambda) \,\psi_t(q,\lambda) \,dq}{\int_{\mathcal{M}} \psi_t(q,\lambda) \,dq}$$

Adaptive dynamics (4)

In practice, the following conditional expectation is required for the update of the bias:

$$\mathbb{E}(\partial_{\lambda} V|\lambda) = \frac{\int_{\mathcal{M}} \partial_{\lambda} V(q,\lambda) \,\psi_t(q,\lambda) \,dq}{\int_{\mathcal{M}} \psi_t(q,\lambda) \,dq}$$

- There are two (complementary) strategies to compute it:
 - using a large number of replicas $(Q_t^{i,M}, \lambda_t^{i,M})_{i=1,...,M}$ of the system which all contribute to the same free energy profile

$$\psi_t(q,\lambda) \simeq \frac{1}{M} \sum_{i=1}^M \delta^{\varepsilon}_{(Q_t^{i,M},\lambda_t^{i,M}) - (q,\lambda)};$$

resorting to some time average

$$\psi_t(q,\lambda) \simeq \frac{1}{T} \int_{t-T}^t \delta^{\varepsilon}_{(q_s,\lambda_s)-(q,\lambda)} ds.$$

– p. 19/23

Adaptive dynamics: convergence

• Adaptive biasing force in the limiting regime $\tau \rightarrow 0$ = nonlinear PDE

$$\begin{cases} \partial_t \psi_t = \operatorname{div} \left(\nabla (V - F_{\text{bias}}(t, \lambda)) \psi_t + \beta^{-1} \nabla \psi_t \right), \\ F'_{\text{bias}}(t, \lambda) = \frac{\int_{\mathcal{M}} \partial_\lambda V(q, \lambda) \psi_t(q, \lambda) \, dq}{\int_{\mathcal{M}} \psi_t(q, \lambda) \, dq}. \end{cases}$$

- Simple diffusion for the marginals $\partial_t \overline{\psi}_t = \partial_{\lambda\lambda} \overline{\psi}_t$
- Entropic method: decomposition^a of the total entropy $H(\psi_t | \psi_{\infty}) = \int_{\mathcal{M} \times \mathbb{T}} \ln\left(\frac{\psi_t}{\psi_{\infty}}\right) \psi_t$ into a macroscopic contribution (marginals in λ) and a microscopic one (conditioned measures)
- Convergence of the microscopic entropy provided some uniform logarithmic Sobolev inequality on the conditioned measures holds

^a T. Lelièvre, F. Otto, M. Rousset, G. Stoltz, *arXiv* 0706.1695 (2007)

Application: Solvatation effects on conformational changes (1)

- Two particules (q₁,q₂) interacting through $V_{\rm S}(r) = h \left[1 \frac{(r r_0 w)^2}{w^2} \right]^2$
- Solvent: particules interacting through the purely repulsive potential $V_{\text{WCA}}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \left(\frac{\sigma}{r} \right)^6 \right] + \epsilon \text{ if } r \le r_0, 0 \text{ if } r > r_0$
- Reaction coordinate $\xi(q) = \frac{|q_1 q_2| r_0}{2w}$, compact state $\xi^{-1}(0)$, stretched state $\xi^{-1}(1)$

Blue: without biasing term. Red: adaptive biasing force. Parameters: h = 10, density $\rho = 0.25 \sigma^{-2}$, w = 1, $\beta = 3$, $\epsilon = 1$, $\tau = 0.1$

Free energy perturbation	\rightarrow	Homogeneous MCs and SDEs
Thermodynamic integration	\rightarrow	Projected MCs and SDEs
Nonequilibrium dynamics	\rightarrow	Nonhomogenous MCs and SDEs
Adaptive dynamics	\rightarrow	Nonlinear SDEs and MCs
Selection procedures	\rightarrow	Particle systems and jump processes

Which method is the most efficient in practice...?