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Outline

Numerical computation of static properties
@ Ergodic averages using Langevin dynamics
@ Error estimates

@ The overdamped limit

Numerical computation of transport properties
@ Examples and general formulas for continuous dynamics
@ Error estimates for Green-Kubo formulas

@ Error estimates for the linear response of nonequilibrium dynamics

B. Leimkuhler, Ch. Matthews and G. Stoltz, The computation of averages from equilibrium and
nonequilibrium Langevin molecular dynamics, arXiv preprint 1308.5814 (2013)
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General perspective (1)

e Aims of computational statistical physics:
@ numerical microscope

@ computation of average properties, static or dynamic

e Orders of magnitude
o distances ~1 A =10"1"m
@ energy per particle ~ kgT ~ 4 x 1072! J at room temperature
@ atomic masses ~ 10726 kg
o time ~ 1075 s
@ number of particles ~ Ny = 6.02 x 10
e “Standard” simulations
@ 10° particles [“world records”: around 109 particles]
@ integration time: (fraction of) ns [“world records”: (fraction of) us]
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General perspective (2)

What is the equation of state of argon?
What is its thermal conductivity or shear viscosity?

(a) Solid argon (low temperature)
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(b) Liquid argon (high temperature)
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General perspective (3)

“Given the structure and the laws of interaction of the particles, what are

the macroscopic properties of the matter composed of these particles?”
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Equation of state (pressure/density diagram) for argon at T' = 300 K
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Microscopic description of physical systems: unknowns
e Microstate of a classical system of N particles:
(¢,p) = (q1,---,4N; P1,--.,PN) €E
Positions ¢ (configuration), momenta p (to be thought of as M¢)
e Here, periodic boundary conditions: £ = D x R3N with M = (LT)*"

e More complicated situations can be considered: molecular constraints
defining submanifolds of the phase space

e Hamiltonian H(q,p) = Exin(p) + V(q), where the kinetic energy is

mq Id3 0

1 _
Eyin(p) = §pTM p, M=

0 my Idg
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Microscopic description: interaction laws

e All the physics is contained in V

@ ideally derived from quantum mechanical computations
@ in practice, empirical potentials for large scale calculations

e An example: Lennard-Jones pair interactions to describe noble gases

V(ql, e

1<i<j<N

o =1 [(2)*- (0]

o=3.405x%x 10" m

Argon:
& {e/k:B =119.8 K
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Numerical computation of static
properties
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Average properties

e Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,. .. )

(A)p =Eu(4) = /gA(q,p)u(dqdp)

e Examples of observables:

N
@ Pressure A(q,p) = 3‘1)‘ Z <IDZ —qi- Vg V(g ))
—1

N
>0
3N]<3B i—1 my;

e Canonical ensemble = measure on (g, p) (average energy fixed)

o Kinetic temperature A(q,p) =

L
kT

pnvr(dgdp) = Zdbp e PP dgdp, B =

Gabriel Stoltz (ENPC/INRIA) october 2013

9/31



Computing average properties

Main issue

Computation of high-dimensional integrals... Ergodic averages

1 t
(A), = lim /0 A(qs, ps) ds

t——+oo t

e One possible choice: Langevin dynamics with friction parameter v > 0
= Stochastic perturbation of the Hamiltonian dynamics

dgr = M 'p, dt
)
dpy = —VV (qp) dt—yM~'p, dt + | /% AW,

e Denote by ¥(t,q,p) the law of (g¢, pr)
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Convergence and properties of the Langevin dynamics (1)

e Irreducibility (control problem/Stroock-Varadhan support theorem)
e Smoothness of the transition probabilities (hypoellipticity)

e Invariance of the canonical measure

o Fokker-Planck equation dy1) = £y (adjoints taken on L2(dq dp))
o Generator £ = Lpam + Linm With

1
Lham = : vq - VV(Q) : vp7 Lihm = <_TI;L : vp + Ap)

g

P
m

@ A simple computation shows that £f (e_ﬂH) =0
e This already implies ergodicity

@ Convergence of averages along one trajectory (LLN)

@ Convergence of 9 (t) to u in total variation

e Convergence rates? functional estimates HewhH < Ce M|l
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Convergence and properties of the Langevin dynamics (2)

e Two “standard” functional settings
@ Hypocoercivity! H*(u)\Ker(£L)
(use L5,y = —Lham, Lthm = Z@;i(‘)pi and commutator properties)

)

@ Lyapunov condition? LW < —aW + b

: o £ (g, p)|
W > 1 going to infinity at infinity, norm || f||pec = sup —=
( £z = sup 20

e Pointwise estimates on derivatives,3 with W, (¢, p) = 1 + |p|*"
For any k£ > 1, there exists C' > 0 and integers n,m, N > 1 such that

|D*L7 f(q,p)] < CWi(q,p)  sup ||5erL%
reN2d |r|<N m

LEckmann,/Hairer (2003), Hérau/Nier (2004), Villani (2009), ...
2|. Rey-Bellet, Lecture Notes in Mathematics (2006)

3D. Talay, SPA (2002), M. Kopec arXiv (2013)

Gabriel Stoltz (ENPC/INRIA) october 2013 12 /31



Practical computation of average properties

e Numerical scheme = Markov chain characterized by evolution operator
Pai(q,p) = E(w (g™ ™) ’(q”,p") = (q,p)>

where (¢",p™) is an approximation of (¢nAt, PnAt)

e (Infinitely) Many possibilities! Numerical analysis allows to discriminate

e Here: discretization using a splitting strategy
1

A=M"'p.-V,, B=-VV(¢)-V,, C=-M'p-V,+ 5

Ap

e First order splitting schemes: Trotter splitting

PEYX = oAIZAY (AIX L (AL

e Second order schemes: Strang splitting

pEYXYZ _ GALZ[2 ALY [2 ALX ALY /2 ALZ/2

e Other category: Geometric Langevin algorithms, e.g. PX?’A’B’A
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Examples of splitting schemes

Pt =p" — AtVV ("),

BAAC qn+1 — qn + At M—lﬁn-i—l’

e P\ corresponds to
2

&)
where G™ are i.i.d. Gaussian and aa; = exp(—yM ~1At)

n+1 ~n+1 +

p = QAP MG"

1—oaas
B

At
pn+1/2 — f)’nJrl/Q - 7 VV(q"),
° PgtcyB,A,B,’YC for qn+1 — qn + At M_lpn+1/2,

~n+1/2

p = apaep" + MG",

At
ﬁﬂ-i-l _ pn+1/2 _ 7 VV(q"+1)

vt = am/ﬂ;nﬂ 4 /1 —ﬂaAtMGnH/z
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Error estimates on the computation of average properties

e The ergodicity of numerical schemes can be proved (M bounded):

Niter
1
A(q",p") —— | Alg, dqd
Niter ; (¢"9") 72 | Al:p) i.anldg dp)

e Uniform-in-At rate convergence rate*
’Pgtf - /gfd:u%At

e Statistical errors (CLT /variance) vs. systematic errors (bias)

< K™ fllpg
L%m

Systematic error estimates: « order of the splitting scheme

/¢(q,p) tiry,A¢(dg dp) =/¢(q7p)u(dqdp)
£ £

4 A /g (g, ) farr (0, ) pi(dq dp) + O(AE*HY)

with £*f, = g, (adjoints taken on L?(p1), g, depends on the scheme)

-

*M. Hairer and J. Mattingly, Progr. Probab. (2011)
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Proof for the first-order scheme PVCB 4(1)

e By definition of the invariant measure, /
£

1d — Pa, B
(55 efaman=

e In view of the BCH formula eft4seAtA2gAtAL — oAtA \yith

Parp dpiy e = / @ dpiy Aty SO
&

At
A= Av+ Ay + Ag+ 5 (145, s+ Ag] + (A, A1) +

A

it holds PP = 1d + AtL + = (£% 4 81) + At Ry a¢ with

1 1
Si=CA+BI+BAL Riai= [ (1-0PRosdo,
0

e Not a standard perturbative expansion: the order of the derivatives
increases in the higher order terms!
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Proof for the first-order scheme PXtC’B’A (2)

e The correction function f1, is chosen so that

/ 1d — PS54
. At 4

This requirement can be rewritten as

1 1
/ (25190 + (ﬁ@)f1,~/> dp = / 2 [2511 =+ E*flﬁ] dp,
& &

(14 Atf14) dp = O(A?)

1
which suggests to choose L f , = —551‘1 (well posed equation)

1d — PY¢BA

e Replace ¢ by ( At

-1
) 1?7 No control on the derivatives...

At
e Introduce pseudo-inverse Q1 Ar = L 4+ ?(Id + L_lSlﬁ_l) with
(m — pyoBA

At ) Quar =1d+ A7y

and replace ¢ by Q1 A%
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Estimating the correction

e Standard procedure: Romberg extrapolation from the a priori estimate

/ ¥(q, p) py,at(dg dp) ~ / Y(q,p) p(dgdp) + CAt®
£ £

e Estimate the leading order correction term /w(q,p)faﬁ(q,p) w(dqdp)?
&

e Use the operator identity (valid on H'(u)\Ker(L) for instance)
+o0
L= —/ et dt
0

to rewrite the correction as integrated correlation (recall f,, = (£*)71g,)

+0o0
/¢(q7p)fa,7(q,p)u(dqdp) = —/ E(w(Qtypt)gfy(%va))dt
£ 0

e We will see later how to compute approximations of such quantities!
Gabriel Stoltz (ENPC/INRIA) october 2013 18 / 31



Numerical results
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Potential V(z,y) = 2 cos(2z) + cos(y), scheme PX?’B’A’B”C with =~ =1.

Left: Error on the integrated velocity auto-correlation.
Right: Error on the average energy.
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The overdamped limit (1)

e Limit 7 — oo with M = Id: solution (gy,s, Dy,vs)s>0 pathwise
converges (finite times) to solution of overdamped Langevin dynamics

dQ, = —VV(Qy) dt + \/gth

1
with generator Lovq = —VV(q) - V4 + BA

e Introduce (m¢)(q) = (8/2m)*/? \/det(M / e BT M p/2 g,

Uniform hypocoercivity estimates
There exists a constant K > 0 such that, for any v > 1,

L5t —vLohm —p" VLo + Lo m(A+ B)CT (Id -« <

)HB(Hl)

= [ =

Where’}-ll:{feHl(,u) ’/fduzO}.
&
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The overdamped limit (2)

e Invariant measure fi(dq) e V(9 dq for the continuous dynamics

e Overdamped limit well defined only for certain second order splitting
schemes (A and B not intertwinned with C)

Error estimates in the overdamped limit

/M $(Q) Ty pe(da) = /M B d + A /M ¥ oo dE + gty

with remainder of order At* up to terms exponentially small in yAt:

"yt < aAt? + pe 1AL

Hl(u

f2oo

AI}SI—%O 'ygrfoo At2 </ ¥ dufy At /M v d'u> - 'ygrfoo Alg—r:[)
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Sketch of proof for PJ¥4547¢

e Reduction to a limiting operator up to exponentially small terms

€7 =7l g0y < K™, Wigp) =1+ |p

e Error estimates for the limiting operator Pog At = TFPham, AtT:

PooAt_erhﬁovdJr (52 4+ D) T+ h*Rog At h=—""
corresponding to the limiting numerical scheme

At
n+1/2 _ n n
q +—= 5 5G

ptl = \/EG" — AtVV <q"+1/2)

n+l _ qn+1/2 + %pn+1

(
aq

q
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Practical computation of transport
properties
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Definition of transport coefficients (1)

e Nonequilibrium dynamics: generator £ + 772, invariant measure p;u
(L:* + nZt*) fy=0
~\—1 ™= ~n
e Formally, p, = (Id+n(£*)_1£*) 1= Z(—n)” [(ﬁ*)_lﬁ*] 1
n=0
e To make such computations rigorous (for n small): prove e.g. that
o Ker(£*) =1 and L£* is invertible on H = L?(u) N1+
@ (weak perturbation) ||Ly|| < al|Le|| + b]|¢]]

e Example: non-gradient force F' € R3", invariant measure 1, ,(dg dp)

dgs = M~ py dt
2
dp; = ( YV (q) + nF) dt — yMpydt + | /% AW,
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Definition of transport coefficients (2)

e Response property R € H, conjugated response S = L£*1:

e @ B 1 <, B +o0
o = lim = —/ [E R] [E 1] u—/ E(R(qt,pt)S(qO,po)>dt
n—=0 1 £ 0
e In practice:
@ Identify the response function
@ Construct a physically meaningful perturbation
@ Obtain the transport coefficient @ (thermal cond., shear viscosity,...)
@ It is then possible to construct non physical perturbations allowing to
compute the same transport coefficient (“Synthetic NEMD")

e For the previous example, definition of mobility with R(q,p) = FTM~'p
(FTM~1p)

lim— " = 8FTDF
n—0 n

+oo
with effective diffusion D = / E((M “Ip) @ (M _1p0)> dt
0
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Error estimates on the Green-Kubo formula

PAt -

Assume = L+ AtS) + -+ At*71S, 1 + At*R, ar and

H Id PAt

<C [ vduse= [wdut niory s
£ £

Error estimates on the Green-Kubo formula
For v, ¢ with average 0 w.r.t. p,

/0+g<¢(Qt,pt)¢(QO,p0)> dt = At Zi)Em (JN (¢"p") ¢ (qo,po)) +O(AtY)

with da; = (Id FAESA T 44 Ata*ISa,lA_l)z/J — i)

e Reduces to trapezoidal rule for second order schemes
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Error estimates on linear response

e Splitting schemes obtained by replacing B with B, = B +n[" -V,
— invariant measures [t , A¢
¢"t = q" + Atp",

+1 _ +1
pABHLAC P =p"+ At( - VV (") + nF),
At

for
2
pn+1 _ @Atﬁn+1 + / 1 _BaAt aqn

e Discard schemes obtained by replacing C' with C' + 772 since they do not
perform well in the overdamped limit

e For instance,

e Recall that the mobility is defined as

1 _ _
vp, = lim — [ FTM'pp., ,(dgdp) z/FTM 'p foa~(q,p) u(dg dp)
n—0 nJe £

where the correction function satisfies £* fo 1., = —BFTM~1p
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Error estimates on the mobility

Error estimates for nonequilibrium dynamics

There exists a function fo1, € H' (1) such that

/ Y dpypat = / (0 (1 +nfo1y+ Atafa,ory + ﬁAtafa,lﬁ) dpp+ Ty 4 m,At
E £

where the remainder is compatible with linear response

Irp vl < K77 4+ Atet), Pgymat — Teyo.at] < Kn(n 4+ At

e Corollary: error estimates on the numerically computed mobility
1 _ _

Vrry.ar = lim — < / FTM™'p iy ar(dg dp) — / F'M 1pu7,o,m(dqdp))
n—0mn £ £

= vpy + At / FTap—1p Ja1,dp+ AtO‘HT%At
E
e Results in the overdamped limit
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Numerical results

fitted linear responsé ‘ ‘ ‘ ‘
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Left: Linear response of the average velocity as a function of 7 for the scheme
16 B A B and At =0.01,y = 1.

Right: Scaling of the mobility vr, A+ for the first order scheme P,
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the second order scheme P
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In conclusion...
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The full content of this work

e Standard but systematic error estimates a la Talay-Tubaro for splitting
schemes of the equilibrium Langevin dynamics, spectral approach

e Alternative way to estimate the correction, on-the-fly, for a single
simulation (using some integrated correlation)

e Overdamped limit fully treated (uniform hypocoercivity estimates),
Hamiltonian limit only partially
e Error estimates on blue transport coefficients, computed either

@ through a Green-Kubo formula (general)

@ or with the linear response of an appropriate nonequilibrium dynamics
(demonstrated on a specific case)

e Any result for splitting schemes on unbounded position spaces? Need for
an appropriate Lyapunov function...

B. Leimkuhler, Ch. Matthews and G. Stoltz, The computation of averages from equilibrium and
nonequilibrium Langevin molecular dynamics, arXiv preprint 1308.5814 (2013)
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