Thermal transport in one-dimensional systems: Some numerical results

Gabriel STOLTZ

CERMICS & MICMAC project team, Ecole des Ponts ParisTech

http://cermics.enpc.fr/~stoltz/

Anomalous transport properties of one-dimensional systems, studied in two cases:

- Thermal transport in the Toda chain (anharmonic potential but integrable system) with a noise preserving energy and momentum (joint work with A. lacobucci (CEREMADE), F. Legoll (Ecole des Ponts) and S. Olla)
- Quantum thermal transport in harmonic carbon nanotubes with mass disorder

(joint work with F. Mauri, M. Lazzeri (IMPMC, Paris 6&7) and N. Mingo (CEA Grenoble))

Thermal transport in the Toda chain with a noise preserving energy and momentum

Description of the system

- Configuration $\{q_i, p_i, i = 1, ..., n\} \in \mathbb{R}^{2n}$ (q_i displacement with respect to equilibrium, p_i momentum)
- Equal masses, first particle fixed ($q_0 = 0$)

• Hamiltonian
$$\mathcal{H} = \sum_{i=1}^{n} \frac{p_i^2}{2} + \sum_{i=1}^{n} V(q_i - q_{i-1})$$
 with $V(r) = \frac{e^{-br} + br - 1}{b^2}$

- The corresponding Hamiltonian system is completely integrable
- Hamiltonian dynamics + Langevin at the boundaries:

$$\begin{cases} dq_i = p_i \, dt, \\ dp_i = \left(v'(q_{i+1} - q_i) - v'(q_i - q_{i-1}) \right) dt \\ + \delta_{i,1} \left(-\xi p_1 \, dt + \sqrt{2\xi T_{\rm L}} \, dW_{1,t} \right) + \delta_{i,N} \left(-\xi p_N \, dt + \sqrt{2\xi T_{\rm R}} \, dW_{N,t} \right) \end{cases}$$

and the convention $v'(q_{N+1} - q_N) = 0$

Energy and momentum preserving noise

- Additional jump process: random exchanges of momenta between nearest neighbor atoms (at random exponential times, mean time γ^{-1})^a
- Destruction of all invariants except energy and momentum
- Local energies $\mathcal{E}_i = \frac{p_i^2}{2} + \frac{1}{2} \left(V(q_i q_{i-1}) + V(q_{i+1} q_i) \right)$ and total momentum $\sum_{j=1}^N p_j$ preserved
- Energy variations $d\mathcal{E}_i(t) = dJ_{i-1,i}(t) dJ_{i,i+1}(t)$
- Decomposition of the currents as

$$J_{i,i+1}(t) = \int_0^t \left(j_{i,i+1}^{\text{ham}} + \gamma \, j_{i,i+1}^{\text{sto}} \right) ds + M_{i,i+1}^{\gamma}(t) \,,$$

where $M_{i,i+1}^{\gamma}(t)$ is a martingale, and

$$j_{i,i+1}^{\text{ham}} = -\frac{1}{2}(p_i + p_{i+1})V'(q_{i+1} - q_i), \qquad j_{i,i+1}^{\text{sto}} = \frac{1}{2}(p_i^2 - p_{i+1}^2)$$

^aBasile/Bernardin/Olla 2006 & 2009

Question: scaling of the thermal conductivity with the system size n

$$\kappa_n^{\text{ham}}(T,\tau) = \lim_{\substack{T_{\text{L}} - T_{\text{R}} \to 0 \\ T_{\text{R}} \to T}} \frac{n \langle J_n^{\text{ham}} \rangle_{\text{ss}}}{T_{\text{L}} - T_{\text{R}}}, \qquad n J_n^{\text{ham}} = \sum_{i=0}^{n-1} j_{i,i+1}^{\text{ham}}$$

- In general, $\kappa_n \sim n^{\alpha}$ with $0 < \alpha < 1$ when no on-site potential and no stochastic destruction of the momentum conservation
- For the Toda chain with no noise^a ($\gamma = 0$): $\kappa_n \sim n$
- For the noise considered here: theoretical bound $0 \le \kappa_n \le C\sqrt{n}$
- Numerical simulations with $T_{\rm L} = 1.05$ and $T_{\rm R} = 0.95$
- Numerical scheme: splitting between Hamiltonian part (Verlet scheme), thermalization at the boundaries, and random exchanges of momenta
- Time step $\Delta t = 0.025 0.05$ (important parameter: when it is too large, energy accumulation in the middle of the chain)

^aZotos 2002

Large statistical errors...

- Test case n = 16, 384, b = 1, $\gamma = 1$, $\xi = 1$
- Instantaneous current: standard deviation $\sigma \sim 0.02$, average $\mu \sim 10^{-4}$, correlation time $\tau_{\rm corr} \sim 10^3$.
- 1% relative accuracy when $\frac{\sigma}{\sqrt{t_{\rm req}/\tau_{\rm corr}}} = 0.01 \,\mu$, *i.e.* $t_{\rm req} \sim 4 \times 10^{11}$...
- Simulations results not completely reliable since $t_{\rm simu} = 10^6 10^8$

This should motivate some work on variance reduction techniques...

Case $b = 1, \xi = 1$

 $\log_2(\kappa)$

Case $b = 1, \xi = 0.1$

 $\log_2(\kappa)$

Case $b = 10, \xi = 1$

 $\log_2(\kappa)$

Oberwolfach, november 2010

Discussion of the results

γ	$ \qquad \alpha$	lpha	lpha
	$(b=1,\xi=1)$	$(b = 1, \xi = 0.1)$	$(b = 10, \xi = 0.1)$
0.001	0.10	—	—
0.01	0.11	0.17	0.25
0.1	0.32	0.30	0.32
1	0.44	0.44	0.43

Conclusions:^a

- Destruction of the ballistic transport (although the asymptotic regimes are difficult to obtain when $\gamma \rightarrow 0$)
- No universality of α (depends on γ)
- The value of α seems to depend on the noise strength γ in a monotonically increasing way. Counter-intuitive! (suppression of some scattering effects of the nonlinearities)

^alacobucci/Legoll/Olla/Stoltz 2010

Quantum thermal transport in harmonic carbon nanotubes with mass disorder

Description of the system

- N degrees of freedom in the geometric unit cell, infinite system
- Displacements $q = (\dots, q_{i,1}, \dots, q_{i,N}, q_{i+1,1}, \dots)^t$ and momenta $p = (\dots, p_{i,1}, \dots, p_{i,N}, p_{i+1,1}, \dots)^t$
- Harmonic system $H(q,p) = \frac{1}{2}q^t Kq + \frac{1}{2}p^t M^{-1}p$
- *K* estimated from quantum mechanical computations
- Harmonic matrix $A = M^{-1/2}KM^{-1/2}$ where M diagonal mass matrix

Conduction channels for the perfect system

• For perfect systems, the harmonic matrix reads ($a_j = a_j^T \in \mathbb{R}^{N \times N}$)

- Dynamical matrix $D(k) = \sum_{j=-K}^{K} a_j e^{ijk}$ for $k \in [0, \pi]$ (phonons)
- (Generalized) Eigenvalues $\omega_n(k)^2$ ($1 \le n \le N$)
- The number of conduction channels at a given pulsation ω is defined as

$$T(\omega) = \operatorname{Card}\left\{ (k, n) \in [0, \pi] \times \{1, \dots, N\} \mid \omega_n(k)^2 = \omega^2 \right\}.$$

Computation of the thermal current (exact)

• Decomposition
$$A = \begin{pmatrix} A_L & \mathfrak{T}_L & 0 \\ \mathfrak{T}_L^t & A_{\text{sys}} & \mathfrak{T}_R \\ 0 & \mathfrak{T}_R^t & A_R \end{pmatrix}$$
 since $M = \begin{pmatrix} M & 0 & 0 \\ 0 & M_{\text{sys}} & 0 \\ 0 & 0 & M \end{pmatrix}$

Effective Green function

$$G^+_{\mathsf{sys}}(\omega) = \lim_{\eta \to 0} \left(\omega^2 + i\eta - A_{\mathsf{sys}} - \Sigma^+_L(\omega) - \Sigma^+_R(\omega) \right)^{-1}$$

where the self-energies are $\Sigma_{\alpha}^{+}(\omega) = \lim_{\eta \to 0} \mathfrak{T}_{\alpha}^{t} (\omega^{2} + i\eta - A_{\alpha})^{-1} \mathfrak{T}_{\alpha}$

• Transmission function $(\Gamma^+_{\alpha}(\omega) = -2 \operatorname{Im}(\Sigma^+_{\alpha}(\omega)))$

$$0 \leq \mathcal{T}(\omega) = \operatorname{Tr}\left[\Gamma_L^+(\omega)G^+_{\mathsf{sys}}(\omega)\Gamma_R^+(\omega)\left(G^+_{\mathsf{sys}}(\omega)\right)^\dagger\right] \leq T(\omega)$$

J Landauer-Büttiker formula (f_T Bose-Einstein distributions)

$$J(T_L, T_R) = \int_0^{+\infty} \frac{\hbar\omega}{2\pi} \mathcal{T}(\omega) (f_{T_L}(\omega) - f_{T_R}(\omega)) \, d\omega$$

Results for the one-dimensional chain

- Isotopic disorder: replacing with probability 0 < c < 1 the mass of a particle by $1 + \delta$
- It can be shown^a that $T_L(\omega) \simeq \exp\left(-\frac{\operatorname{Var}(m)}{\langle m \rangle^2}L\omega^2\right)$, which motivates the scaling of the thermal current $J \sim L^{-1/2}$

^aMatsuda/Ishi'70, Rubin/Greer'70, O'Connor/Lebowitz'74, Dhar'01

Results for carbon nanotubes

- (5,5) armchair nanotube (metallic properties), isotopic disorder does not change the electronic properties
- Four acoustic modes since the flexural mode (starting with a k² dispersion law) is doubly degenerate
- Isotopic disorder: replacing ¹²C by ¹³C at random (50% proportion), for tubes of lengths L = 25 nm, L = 249 nm and $L = 2.49 \ \mu$ m
- Phonon engineering possible^a

^aStoltz/Lazzeri/Mauri 2009, Stoltz/Mingo/Mauri 2009

Reduction in thermal conductance

- Left: Variation of the normalized conductance for temperatures T = 50 K (black curves), T = 300 K (red curves), T = 1000 K (blue curves).
 Estimated scalings of the thermal current: J ~ L^{-α} with α = 0.43 at T = 300 K and α = 0.55 at T = 1000 K.
- Right: reduction compared to ballistic current