

# Longtime convergence of some diffusion processes in molecular dynamics

#### Gabriel STOLTZ

(CERMICS, Ecole des Ponts & MATHERIALS team, Inria Paris)

Probability seminar, University of Delaware

# Outline of the talk

#### • Computational statistical physics

- A general perspective
- Langevin dynamics and its overdamped limit
- Longtime convergence of overdamped Langevin dynamics
  - Poincaré inequalities
  - Estimates on the asymptotic variance
- Longtime convergence of "hypocoercive" ODEs
- Longtime convergence of Langevin dynamics
  - The need for a modified scalar product
  - One hypocoercive approach for Langevin dynamics
  - Direct estimates on the variance

# Computational statistical physics

# Computational statistical physics (1)

- Aims of computational statistical physics
  - numerical microscope
  - computation of average properties, static or dynamic



"Given the structure and the laws of interaction of the particles, what are the macroscopic properties of the matter composed of these particles?"

# Computational statistical physics (2)

• Macrostate of the system described by a probability measure

Equilibrium thermodynamic properties (pressure,...)

$$\mathbb{E}_{\mu}(\varphi) = \int_{\mathcal{E}} \varphi(q, p) \, \mu(dq \, dp)$$

- Choice of thermodynamic ensemble
  - least biased measure compatible with the observed macroscopic data
  - Volume, energy, number of particles, ... fixed exactly or in average
  - Equivalence of ensembles (as  $N \to +\infty$ )
- Canonical ensemble = measure on (q, p), average energy fixed H

$$\mu_{\rm NVT}(dq\,dp) = Z_{\rm NVT}^{-1}\,{\rm e}^{-\beta H(q,p)}\,dq\,dp$$

with  $\beta = \frac{1}{k_{\rm B}T}$  the Lagrange multiplier of the constraint  $\int_{\mathcal{E}} H \rho \, dq \, dp = E_0$ Gabriel Stoltz (ENPC/Inria)

# Langevin dynamics (1)

• Positions  $q \in \mathcal{D} = (L\mathbb{T})^d$  or  $\mathbb{R}^d$  and momenta  $p \in \mathbb{R}^d$  $\rightarrow$  phase-space  $\mathcal{E} = \mathcal{D} \times \mathbb{R}^d$ 

• Hamiltonian 
$$H(q, p) = V(q) + \frac{1}{2}p^T M^{-1}p$$

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1} p_t \, dt \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{\frac{2\gamma}{\beta}} \, dW_t \end{cases}$$

• Given (known) friction  $\gamma > 0$  (could be a position-dependent matrix)

# Langevin dynamics (2)

- Evolution semigroup  $\left(e^{t\mathcal{L}}\varphi\right)(q,p) = \mathbb{E}\left[\varphi(q_t,p_t) \left| (q_0,p_0) = (q,p) \right]\right]$
- $\bullet$  Generator of the dynamics  $\mathcal L$

$$\frac{d}{dt}\left(\mathbb{E}\left[\varphi(q_t, p_t) \left| (q_0, p_0) = (q, p) \right]\right) = \mathbb{E}\left[ (\mathcal{L}\varphi)(q_t, p_t) \left| (q_0, p_0) = (q, p) \right] \right]$$

Generator of the Langevin dynamics  $\mathcal{L} = \mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$  $\mathcal{L}_{ham} = p^T M^{-1} \nabla_q - \nabla V^T \nabla_p, \qquad \mathcal{L}_{FD} = -p^T M^{-1} \nabla_p + \frac{1}{\beta} \Delta_p$ 

$$\forall \varphi \in C_0^\infty(\mathcal{E}), \qquad \int_{\mathcal{E}} \mathcal{L} \varphi \, d\mu = 0$$

• Here, canonical measure

$$\mu(dq\,dp) = Z^{-1} \mathrm{e}^{-\beta H(q,p)} \, dq \, dp = \nu(dq) \, \kappa(dp)$$

## Fokker–Planck equations

 $\bullet$  Evolution of the law  $\psi(t,q,p)$  of the process at time  $t \geqslant 0$ 

$$\frac{d}{dt} \left( \int_{\mathcal{E}} \varphi \, \psi(t) \right) = \int_{\mathcal{E}} (\mathcal{L}\varphi) \, \psi(t)$$

• Fokker–Planck equation (with  $\mathcal{L}^{\dagger}$  adjoint of  $\mathcal{L}$  on  $L^{2}(\mathcal{E})$ )

$$\partial_t \psi = \mathcal{L}^\dagger \psi$$

- $\bullet$  It is convenient to work in  $L^2(\mu)$  with  $f(t)=\psi(t)/\mu$ 
  - $\bullet$  denote the adjoint of  ${\mathcal L}$  on  $L^2(\mu)$  by  ${\mathcal L}^*$

$$\mathcal{L}^* = -\mathcal{L}_{ham} + \gamma \mathcal{L}_{FD}$$

• Fokker–Planck equation  $\partial_t f = \mathcal{L}^* f$ 

 $\bullet$  Convergence results for  ${\rm e}^{t{\cal L}}$  on  $L^2(\mu)$  are very similar to the ones for  ${\rm e}^{t{\cal L}^*}$ 

## Hamiltonian and overdamped limits

- $\bullet \, {\rm As} \ \gamma \rightarrow 0,$  the Hamiltonian dynamics is recovered
- Overdamped limit  $\gamma \to +\infty$  (or masses going to 0)

$$q_{\gamma t} - q_0 = -\frac{1}{\gamma} \int_0^{\gamma t} \nabla V(q_s) \, ds + \sqrt{\frac{2}{\gamma \beta}} W_{\gamma t} - \frac{1}{\gamma} \left( p_{\gamma t} - p_0 \right)$$
$$= -\int_0^t \nabla V(q_{\gamma s}) \, ds + \sqrt{2\beta^{-1}} B_t - \frac{1}{\gamma} \left( p_{\gamma t} - p_0 \right)$$

which converges to the solution of  $dQ_t = -\nabla V(Q_t) dt + \sqrt{2\beta^{-1}} dB_t$ 

- In both cases, slow convergence to equilibrium
  - it takes time to change energy levels in the Hamiltonian limit<sup>1</sup>
  - ullet for fixed masses, time has to be rescaled by a factor  $\gamma$

<sup>1</sup>Hairer and Pavliotis, J. Stat. Phys., **131**(1), 175-202 (2008)

# Ergodicity results for Langevin dynamics (1)

- Almost-sure convergence<sup>2</sup> of ergodic averages  $\widehat{\varphi}_t = \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds$
- Asymptotic variance of ergodic averages

$$\sigma_{\varphi}^{2} = \lim_{t \to +\infty} t \mathbb{E} \left[ \widehat{\varphi}_{t}^{2} \right] = 2 \int_{\mathcal{E}} \left( -\mathcal{L}^{-1} \mathscr{P} \varphi \right) \mathscr{P} \varphi \, d\mu$$

where  $\mathscr{P} \varphi = \varphi - \mathbb{E}_{\mu}(\varphi)$ 

 $\bullet\, {\rm A}$  central limit theorem holds  $^3$  when the equation has a solution in  $L^2(\mu)$ 

Poisson equation in  $L^2(\mu)$ 

$$-\mathcal{L}\Phi = \mathscr{P}\varphi$$

• Well-posedness of such equations?

<sup>2</sup>Kliemann, Ann. Probab. 15(2), 690-707 (1987)
<sup>3</sup>Bhattacharya, Z. Wahrsch. Verw. Gebiete 60, 185–201 (1982)

# Ergodicity results for Langevin dynamics (2)

• Invertibility of  $\mathcal{L}$  on subsets of  $L_0^2(\mu) = \left\{ \varphi \in L^2(\mu) \mid \int_{\mathcal{E}} \varphi \, d\mu = 0 \right\}$ ?

$$-\mathcal{L}^{-1} = \int_0^{+\infty} \mathrm{e}^{t\mathcal{L}} \, dt$$

- Prove exponential convergence of the semigroup  $e^{t\mathcal{L}}$ 
  - various Banach spaces  $E \cap L^2_0(\mu)$
  - Lyapunov techniques<sup>4</sup>  $B_W^{\infty}(\mathcal{E}) = \left\{ \varphi \text{ measurable, sup } \left| \frac{\varphi}{W} \right| < +\infty \right\}$
  - standard hypocoercive<sup>5</sup> setup  $H^1(\mu)$
  - $E=L^2(\mu)$  after hypoelliptic regularization  $^6$  from  $H^1(\mu)$
  - Directly  $E = L^2(\mu)$  (recently<sup>7</sup> Poincaré using  $\partial_t \mathcal{L}_{ham}$ )
  - coupling arguments<sup>8</sup>

Gabriel Stoltz (ENPC/Inria)

Apr. 2021 11 / 29

 <sup>&</sup>lt;sup>4</sup>Wu ('01); Mattingly/Stuart/Higham ('02); Rey-Bellet ('06); Hairer/Mattingly ('11)
<sup>5</sup>Villani (2009) and before Talay (2002), Eckmann/Hairer (2003), Hérau/Nier (2004)
<sup>6</sup>F. Hérau, *J. Funct. Anal.* 244(1), 95-118 (2007)
<sup>7</sup>Armstrong/Mourrat (2019), Cao/Lu/Wang (2019)
<sup>8</sup>A. Eberle, A. Guillin and R. Zimmer, *Ann. Probab.* 47(4), 1982-2010 (2019)

# Convergence of overdamped Langevin dynamics

## Overdamped Langevin dynamics and its generator

• Generator of Langevin dynamics (advection/diffusion)

$$\mathcal{L}_{\text{ovd}} = -\nabla V(q) \cdot \nabla_q + \frac{1}{\beta} \Delta_q = -\frac{1}{\beta} \sum_{i=1}^d \partial_{q_i}^* \partial_{q_i}$$

hence self-adjoint on  $L^2(\nu)$  with  $\nu(dq)=Z_{\nu}^{-1}{\rm e}^{-\beta V(q)}\,dq.$  Indeed,

$$\int_{\mathcal{D}} \left( \partial_{q_i} \varphi \right) \phi \, d\nu = - \int_{\mathcal{D}} \varphi \left( \partial_{q_i} \phi \right) d\nu - \int_{\mathcal{D}} \varphi \phi \, \partial_{q_i} \nu$$

so that  $\partial_{q_i}^* = -\partial_{q_i} + \beta \partial_{q_i} V$ 

• Generator unitarily equivalent to a Schrödinger operator on  $L^2(\mathbb{R}^d)$ 

$$-\widetilde{\mathcal{L}}_{\text{ovd}} = \frac{1}{\beta}\Delta + \mathcal{V}, \qquad \mathcal{V} = \frac{1}{2}\left(\frac{\beta}{2}|\nabla V|^2 - \Delta V\right)$$

by considering  $\widetilde{\mathcal{L}}_{\mathrm{ovd}}g = \nu^{1/2}\mathcal{L}_{\mathrm{ovd}}(\nu^{-1/2}g)$ 

#### Time evolution and decay estimates

• Solution  $\varphi(t) = e^{t\mathcal{L}_{ovd}}\varphi_0$  to  $\partial_t\varphi(t) = \mathcal{L}_{ovd}\varphi(t)$ : mass preservation

$$\frac{d}{dt} \left( \int_{\mathcal{D}} \varphi(t) \, \nu \right) = \int_{\mathcal{D}} \mathcal{L}_{\text{ovd}} \varphi(t) \, \nu = \int_{\mathcal{D}} \varphi(t) \left( \mathcal{L}_{\text{ovd}} \mathbf{1} \right) \nu = 0$$

• Suggests the longtime limit  $\varphi(t) \xrightarrow[t \to +\infty]{} \int_{\mathcal{D}} \varphi_0 \nu$ 

• Can assume w.l.o.g. that  $\int_{\mathcal{D}} \varphi_0 \, \nu = 0$  (subspace  $L^2_0(\nu)$  of  $L^2(\nu)$ )

• Decay estimate

$$\frac{d}{dt}\left(\frac{1}{2}\left\|\varphi(t)\right\|_{L^{2}(\nu)}^{2}\right) = \langle \mathcal{L}_{\text{ovd}}\varphi(t),\varphi(t)\rangle_{L^{2}(\nu)} = -\frac{1}{\beta}\left\|\nabla_{q}\varphi(t)\right\|_{L^{2}(\nu)}^{2}$$

# Poincaré inequality and convergence of the semigroup

• Assume that a Poincaré inequality holds:

 $\forall \phi \in H^1(\nu) \cap L^2_0(\nu), \qquad \|\phi\|_{L^2(\nu)} \leq \frac{1}{K_{\nu}} \|\nabla_q \phi\|_{L^2(\nu)}$ 

Various sufficient conditions (V uniformly convex,  $\mathcal{V}$  confining, etc)

Exponential decay of the semigroup  $\nu$  satisfies a Poincaré inequality with constant  $K_{\nu} > 0$  if and only if

$$\left\| \mathbf{e}^{t\mathcal{L}} \right\|_{\mathcal{B}(L^2_0(\nu))} \leqslant \mathbf{e}^{-K^2_{\nu}t/\beta}$$

**Proof:** Gronwall inequality  $\frac{d}{dt} \left( \frac{1}{2} \|\varphi(t)\|_{L^2(\nu)}^2 \right) \leq -\frac{K_{\nu}^2}{\beta} \|\varphi(t)\|_{L^2(\nu)}^2$ Several remarks:

- The prefactor for the exponential convergence is 1
- The convergence rate is not degraded when one adds an antisymmetric part A = F · ∇ to L (with div(Fe<sup>-βV</sup>) = 0)

# Longtime convergence of hypocoercive ODEs

# A paradigmatic example of hypocoercive ODE

• ODE 
$$\dot{X} = LX \in \mathbb{R}^2$$
 with (for  $\gamma > 0$ )

$$-L = A + \gamma S, \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad S = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

#### • Structure of -L:

- Degenerate symmetric part  $S \ge 0$
- Antisymmetric part A coupling the kernel and the image of S
- Smallest real part of eigenvalues (spectral gap) of order  $\min(\gamma, \gamma^{-1})$ determinant 1, trace  $\gamma$ , so eigenvalues  $\lambda_{\pm} = \frac{\gamma}{2} \pm \left(\frac{\gamma^2}{4} - 1\right)^{1/2}$
- Longtime convergence of  $e^{tL}$ ? Use  $e^{tL} = U^{-1} \begin{pmatrix} e^{-t\lambda_+} & 0 \\ 0 & e^{-t\lambda_-} \end{pmatrix} U$

Decay rate provided by the spectral gap  $\lambda = \min\{\operatorname{Re}(\lambda_{-}),\operatorname{Re}(\lambda_{+})\}$ 

 $X(t) = e^{tL}X(0), \qquad |X(t)| \le Ce^{-\lambda t}|X(0)|$ 

## Longtime convergence of hypocoercive ODE: illustration



Values  $X_1(t), X_2(t)$  for X(0) = (1,1) and  $\gamma = 0.5$ 

# Longtime convergence of this hypocoercive ODE (1)

# • "Elliptic PDE way": $\frac{d}{dt}\left(\frac{1}{2}|X(t)|^2\right) = -\gamma X(t)^T S X(t) = -\gamma X_2(t)^2$

No dissipation in  $X_1...$  cannot conclude that |X(t)| converges to 0...

• Change the scalar product with P positive definite:

$$|X|_{P}^{2} = X^{T}PX, \qquad \frac{d}{dt} \left( |X(t)|_{P}^{2} \right) = X(t)^{T} (PL + L^{T}P)X(t)$$

• Fundamental idea: couple  $X_1$  and  $X_2$ . Start perturbatively:

$$P = \mathrm{Id} - \varepsilon \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

so that  $-(PL + L^TP) = 2\gamma PS + 2\varepsilon \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sim 2 \begin{pmatrix} \varepsilon & 0 \\ 0 & \gamma \end{pmatrix}$ 

This provides some (small...) dissipation in  $X_1$ !

# Longtime convergence of this hypocoercive ODE (2)

• Optimal choice<sup>9</sup> for P? Think of " $L^T P \ge \lambda P$ " and diagonalize  $L^T$ 

$$\begin{split} P &= a_- X_- \overline{X}_-^T + a_+ X_+ \overline{X}_+^T, \qquad a_\pm > 0, \qquad L^T X_\pm = \lambda_\pm X_\pm \end{split}$$
 Then  $-(PL + L^T P) \geqslant 2\lambda P$ 

 $\bullet$  Therefore,  $|X(t)|_P^2 \leqslant {\rm e}^{-2\lambda t} |X_0|_P^2,$  and so, by equivalence of scalar products,

$$|X(t)| \leq \min\left(1, Ce^{-\lambda t}\right) |X_0|$$

Decay rate given by spectral gap + bound from degenerate dissipation

• Prefactor  $C \ge 1$  really needed! Exponential convergence with C = 1 if and only if -L is coercive (*i.e.*  $-X^T L X \ge \alpha |X|^2$  with  $\alpha > 0$ )

<sup>&</sup>lt;sup>9</sup>F. Achleitner, A. Arnold, and D. Stürzer, *Riv. Math. Univ. Parma*, 6(1):1–68, 2015. Gabriel Stoltz (ENPC/Inria) Apr. 2021 20/29

# Convergence of Langevin dynamics

# Direct $L^2(\mu)$ approach: lack of coercivity

- The generator, considered on  $L^2(\mu)$ , is the sum of...
  - a degenerate symmetric part  $\mathcal{L}_{\mathrm{FD}} = -p^T M^{-1} \nabla_p + \frac{1}{\beta} \Delta_p$
  - an antisymmetric part  $\mathcal{L}_{ham} = p^T M^{-1} \nabla_q \nabla V^T \nabla_p$

 $\bullet$  Standard strategy for coercive generators: consider  $\varphi$  with average 0 with respect to  $\mu$  and compute

$$\frac{d}{dt} \left( \left\| e^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \right) = \left\langle e^{t\mathcal{L}} \varphi, \mathcal{L} e^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)} = \left\langle e^{t\mathcal{L}} \varphi, \mathcal{L}_{\text{FD}} e^{t\mathcal{L}} \right\rangle_{L^{2}(\mu)} = -\frac{1}{\beta} \left\| \nabla_{p} e^{t\mathcal{L}} \varphi \right\|_{L^{2}(\mu)}^{2} \leq 0,$$

but no control of  $\|\phi\|_{L^2(\mu)}$  by  $\|\nabla_p \phi\|_{L^2(\mu)}$  for a Gronwall estimate...

• Change of scalar product in order to use the antisymmetric part

# Almost direct $L^2(\mu)$ approach: convergence result

• Assume that the potential V is smooth and  $^{10,11}$ 

 $\bullet$  the marginal measure  $\nu$  satisfies a Poincaré inequality

$$\|\mathscr{P}\varphi\|_{L^{2}(\nu)} \leq \frac{1}{K_{\nu}} \|\nabla_{q}\varphi\|_{L^{2}(\nu)}$$

• there exist  $c_1 > 0$ ,  $c_2 \in [0, 1)$  and  $c_3 > 0$  such that V satisfies  $\Delta V \leqslant c_1 + \frac{c_2}{2} |\nabla V|^2, \qquad \left| \nabla^2 V \right| \leqslant c_3 \left( 1 + |\nabla V| \right)$ 

There exist C > 0 and  $\lambda_{\gamma} > 0$  such that, for any  $\varphi \in L^2_0(\mu)$ ,  $\forall t \ge 0$ ,  $\| e^{t\mathcal{L}} \varphi \|_{L^2(\mu)} \le C e^{-\lambda_{\gamma} t} \| \varphi \|_{L^2(\mu)}$ 

with convergence rate of order  $\min(\gamma, \gamma^{-1})$ : there exists  $\overline{\lambda} > 0$  such that  $\lambda_{\gamma} \geqslant \overline{\lambda} \min(\gamma, \gamma^{-1})$ 

<sup>10</sup>Dolbeault, Mouhot and Schmeiser, *C. R. Math. Acad. Sci. Paris* (2009)
<sup>11</sup>Dolbeault, Mouhot and Schmeiser, *Trans. AMS*, **367**, 3807–3828 (2015)
Gabriel Stoltz (ENPC/Inria)

# Sketch of proof (1)

- $\bullet$  Change of scalar product to use the antisymmetric part  $\mathcal{L}_{ham}:$ 
  - bilinear form  $\mathcal{H}[\varphi] = \frac{1}{2} \|\varphi\|_{L^2(\mu)}^2 \varepsilon \langle R\varphi, \varphi \rangle$  with<sup>12</sup>

$$R = \left(1 + (\mathcal{L}_{\mathrm{ham}} \Pi_0)^* (\mathcal{L}_{\mathrm{ham}} \Pi_0)\right)^{-1} (\mathcal{L}_{\mathrm{ham}} \Pi_0)^*, \qquad \Pi_0 \varphi = \int_{v \in \mathbb{R}^d} \varphi \, d\kappa$$

• 
$$R = \Pi_0 R (1 - \Pi_0)$$
 and  $\mathcal{L}_{ ext{ham}} R$  are bounded

- modified square norm  $\mathcal{H} \sim \| \cdot \|_{L^2(\mu)}^2$  for  $\varepsilon \in (-1, 1)$
- Approach less quantitative (optimize scalar product)
- Interest:  $(\mathcal{L}_{ham}\Pi_0)^*(\mathcal{L}_{ham}\Pi_0) = \beta^{-1} \nabla_q^* \nabla_q$  coercive in q, and

$$R\mathcal{L}_{\text{ham}}\Pi_0 = \frac{(\mathcal{L}_{\text{ham}}\Pi_0)^*(\mathcal{L}_{\text{ham}}\Pi_0)}{1 + (\mathcal{L}_{\text{ham}}\Pi_0)^*(\mathcal{L}_{\text{ham}}\Pi_0)}$$

<sup>12</sup>Hérau (2006), Dolbeault/Mouhot/Schmeiser (2009, 2015), ...

# Sketch of proof (2)

• Recall Poincaré inequalities:  $\nabla_p^* \nabla_p \ge K_\kappa^2 (1 - \Pi_0)$  and  $\nabla_q^* \nabla_q \ge K_\nu^2 \Pi_0$ 

Coercivity in the scalar product  $\langle \langle \cdot, \cdot \rangle \rangle$  induced by  $\mathcal{H}$ 

$$\mathscr{D}[\varphi] := \langle \langle -\mathcal{L}\varphi, \varphi \rangle \rangle \geqslant \lambda \|\varphi\|^2$$

• Upon controlling the remainder terms (some elliptic estimates)

$$\begin{aligned} \mathscr{D}[\varphi] &= \gamma \left\langle -\mathcal{L}_{\mathrm{FD}}\varphi, \varphi \right\rangle + \varepsilon \left\langle R\mathcal{L}_{\mathrm{ham}}\Pi_{0}\varphi, \varphi \right\rangle + \mathcal{O}(\gamma\varepsilon) \\ &= \frac{\gamma}{\beta} \|\nabla_{p}\varphi\|_{L^{2}(\mu)}^{2} + \varepsilon \left\langle \frac{\nabla_{q}^{*}\nabla_{q}}{\beta + \nabla_{q}^{*}\nabla_{q}}\Pi_{0}\varphi, \Pi_{0}\varphi \right\rangle + \mathcal{O}(\gamma\varepsilon) \\ &\geqslant \frac{\gamma K_{\kappa}^{2}}{\beta} \|(1 - \Pi_{0})\varphi\|_{L^{2}(\mu)}^{2} + \frac{\varepsilon K_{\nu}^{2}}{\beta + K_{\nu}^{2}} \|\Pi_{0}\varphi\|_{L^{2}(\mu)}^{2} + \mathcal{O}(\gamma\varepsilon) \end{aligned}$$

• Gronwall inequality  $\frac{d}{dt} \left( \mathcal{H}\left[ e^{t\mathcal{L}}\varphi \right] \right) = -\mathscr{D}\left[ e^{t\mathcal{L}}\varphi \right] \leqslant -\frac{2\lambda}{1+\varepsilon} \mathcal{H}\left[ e^{t\mathcal{L}}\varphi \right]$ 

# Obtaining directly bounds on the resolvent (1)

• "Saddle-point like" structure for typical hypocoercive operators on  $L^2_0(\mu)$ 

$$\mathcal{L} = \begin{pmatrix} 0 & \mathcal{A}_{0*} \\ \mathcal{A}_{+0} & \mathcal{L}_{+*} \end{pmatrix}, \qquad \mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_*, \qquad \mathcal{H}_0 = \Pi_0 \mathcal{H}, \qquad \mathcal{A} = \mathcal{L}_{ham}$$

Formal inverse with Schur complement  $\mathfrak{S}_0 = \mathcal{A}_{+0}^* \mathcal{L}_{++}^{-1} \mathcal{A}_{+0}$ 

$$\mathcal{L}^{-1} = \begin{pmatrix} \mathfrak{S}_0^{-1} & -\mathfrak{S}_0^{-1}\mathcal{A}_{0*}\mathcal{L}_{**}^{-1} \\ -\mathcal{L}_{**}^{-1}\mathcal{A}_{*0}\mathfrak{S}_0^{-1} & \mathcal{L}_{**}^{-1} + \mathcal{L}_{**}^{-1}\mathcal{A}_{*0}\mathfrak{S}_0^{-1}\mathcal{A}_{0*}\mathcal{L}_{**}^{-1} \end{pmatrix}$$

 $\bullet$  Invertibility of  $\mathfrak{S}_0$  is the crucial element: two ingredients

•  $-\frac{1}{2}(\mathcal{L} + \mathcal{L}^*) \ge s \Pi_{+} = s(1 - \Pi_0)$  (Poincaré on  $\kappa(dp)$  for Langevin)

• "macroscopic coercivity"  $\|\mathcal{A}_{+0}\varphi\|_{L^2(\mu)} \ge a \|\Pi\varphi\|_{L^2(\mu)}$ Amounts to  $\mathcal{A}^*_{+0}\mathcal{A}_{+0} \ge a^2\Pi_0$ Guaranteed here by a Poincaré inequality for  $\nu(dq)$ , with  $a^2 = K_{\nu}^2/\beta$ 

# Obtaining directly bounds on the resolvent (2)

• Further decompose  $\mathcal{L}$  using  $\Pi_1 = \mathcal{A}_{t0} \left( \mathcal{A}_{t0}^* \mathcal{A}_{t0} \right)^{-1} \mathcal{A}_{t0}^*$ 

$$\mathcal{L} = \begin{pmatrix} 0 & \mathcal{A}_{01} & 0 \\ \mathcal{A}_{10} & \mathcal{L}_{11} & \mathcal{L}_{12} \\ 0 & \mathcal{L}_{21} & \mathcal{L}_{22} \end{pmatrix}, \qquad \mathcal{A}_{01} = -\mathcal{A}_{10}^*.$$

- Additional technical assumptions ( $S = \gamma \mathcal{L}_{FD}$  symmetric part):
  - $\bullet$  There exists an involution  ${\mathcal R}$  on  ${\mathcal H}$  such that

$$\mathcal{R}\Pi_0 = \Pi_0 \mathcal{R} = \Pi_0, \qquad \mathcal{RSR} = \mathcal{S}, \qquad \mathcal{RAR} = -\mathcal{A}$$

• The operators  $S_{11}$  and  $\mathcal{L}_{21}\mathcal{A}_{10}\left(\mathcal{A}_{+0}^*\mathcal{A}_{+0}\right)^{-1}$  are bounded

#### Abstract resolvent estimates

$$\|\mathcal{L}^{-1}\| \leq 2\left(\frac{\|\mathcal{S}_{11}\|}{a^2} + \frac{\|\mathcal{R}_{22}\|\|\mathcal{L}_{21}\mathcal{A}_{10}(\mathcal{A}_{+0}^*\mathcal{A}_{+0})^{-1}\|^2}{s}\right) + \frac{3}{s}$$

## Scaling with the friction and the dimension

• Final estimate for Fokker–Planck operators: scaling  $\max(\gamma, \gamma^{-1})$ 

$$\left\|\mathcal{L}^{-1}\right\|_{\mathcal{B}(L^{2}_{0}(\mu))} \leq \frac{2\beta\gamma}{K^{2}_{\nu}} + \frac{4}{\gamma} \left(\frac{3}{4} + \left\|\Pi_{+}\mathcal{L}^{2}_{\mathrm{ham}}\Pi_{0} \left(\mathcal{A}^{*}_{+0}\mathcal{A}_{+0}\right)^{-1}\right\|^{2}\right)$$

• Estimate  $2\left(C+C'K_{\nu}^{-2}\right)$  for operator norm on r.h.s.

• 
$$C = 1$$
 and  $C' = 0$  when V is convex;

• 
$$C = 1$$
 and  $C' = K$  when  $\nabla_q^2 V \ge -K \mathrm{Id}$  for some  $K \ge 0$ ;

• 
$$C = 2$$
 and  $C' = O(\sqrt{d})$  when  $\Delta V \leq c_1 d + \frac{c_2 \beta}{2} |\nabla V|^2$  (with  $c_2 \leq 1$ )  
and  $|\nabla^2 V|^2 \leq c_3^2 (d + |\nabla V|^2)$ 

 $\bullet$  Better scaling  $C' = \mathrm{O}(\log d)$  when logarithmic Sobolev inequality and

$$\forall x \in \mathbb{R}^d, \qquad \left\| \nabla^2 V(q) \right\|_{\mathcal{B}(\ell^2)} \leqslant c_3 \left( 1 + |\nabla V(q)|_{\infty} \right)$$

# Generalizations/perspectives for direct resolvent estimates

- Approach works for other hypocoercive dynamics<sup>13</sup>
  - non-quadratic kinetic energies
  - linear Boltzmann/randomized HMC
  - adaptive Langevin dynamics (additional Nosé-Hoover part)

#### • Some work needed to extend it to more degenerate dynamics

- generalized Langevin dynamics
- chains of oscillators

#### • Current work also on obtaining...

- resolvent estimates  $(i\omega \mathcal{L})^{-1}$
- space-time Poincaré inequalities with our algebraic framework

$$\left\| f - \langle f, \mathbf{1} \rangle_{L^{2}(\tilde{\mu}_{T})} \right\|_{L^{2}(\tilde{\mu}_{T})} \leqslant C_{1,T} \| (1 - \Pi) f \|_{L^{2}(\tilde{\mu}_{T})} + C_{2,T} \| (1 - \mathcal{S})^{-1/2} (-\partial_{t} + \mathcal{A}) f \|_{L^{2}(\tilde{\mu}_{T})}$$

<sup>13</sup>E. Bernard, M. Fathi, A. Levitt, G. Stoltz, arXiv preprint 2003.00726