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1 Overall structure
The source �les are in the directoty src/, the input �les are in the directory input/, the
output �les are in the directory output/, and the present documentation is in doc/. The
codes should be compiled and run within the src/ directory as they stand. The input �le
read by the executable should be self-explanatory, otherwise the user should have a look at
the corresponding �le input_METHOD.cpp which has been compiled depending on the method
(see the makefile command �le for a list of �les required for the compilation).

Besides header �les (extension .hpp), the source �les include gaussian.cpp which is used
to produce gaussian random numbers; vector.cpp and matrix.cpp which are simple vector
and matrix classes de�ned in order to require the least amount of C++ libraries; main.cpp
which is the (concise) main �les, in which a call to the function load is performed. This is the
master function in the codes, which is de�ned in a �le whose name depends on the method at
hand; �nally, forces and energy computations are performed with hamiltonian.cpp.

2 Model and input �les
2.1 Microscopic interactions and thermodynamic conditions
The parameters describing the microscopic interactions and the thermodynamic state of the
system are the same for all input �les:

• Friction coefficient γ used in the Langevin dynamics;

• Inverse temperature β;

• Number of particles n, the total number being then N = n2, and the number of
solvent particles is N − 2;

• Elementary cell size a, so that the density of solvent is ρ = (1− 2/N)a−2;

• WCA equilibrium distance σ;

• WCA energy epsilon ε;

• Dimer barrier height h;

• Dimer bond length w.

Besides, time step ∆t (see the �eld Time step) is needed in all input �les.
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2.2 Canonical sampling
A simple canonical sampling can be obtained by make sampling, which produces sampling++.
The output �les are: energy gives the energy as a function of time; coord is the instantaneous
distribution of the values of the reaction coordinate; xmakemol.xyz is a movie of the system
readable with the software XMakeMol (see www.nongnu.org/xmakemol/).

The additional parameters are

• Dynamics (0=Ovrdmpd, 1=Lngvn) depending on whether Langevin dynamics or over-
damped dynamics should be used;

• Number of iterations;

• Xmakemol output frequency is the number of steps before a new con�gurations is writ-
ten down;

• Other outputs frequency is the frequency at which the energy and the value of the
reaction coordinate are saved.

2.3 Extended bridge sampling
The code is compiled with the instruction make mbar, which produces mbar++. The additional
parameters for the production part are

• Number config. / restraint is the required number of con�gurations per restraining
center;

• Preliminary thermalization is the number of steps of the dynamics before con�gura-
tions are acquired;

• Number of subsampling steps is the number of steps before a new con�guration is
saved;

• Restraining potential K is spring constant for the restraining potential;

• Lower restraint center zmin is the opsition of the lowest center;

• Upper restraint center zmax is the position of the largest center;

• Number of restraint cent. gives the number Nz of centers considered;

while the parameters for the post-processing part are

• Lower value of RC ξmin and

• Upper value of RC ξmax give the range of values of the reaction coordinate for which
the free energy is required;

• Number of PMF RC values Nξ gives the number of bins in this interval;

• Tolerance for SC convergence is the stopping criterion for the simple �xed-point it-
eration used to solve the nonlinear equation on the ratios of normalizing constants.
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There are several output �les: energy and coord list, in each line, the energies and the values
of the reaction coordinate for the con�gurations sampled at a given value of the restraining
center; ratio gives the �nal ratios of partition functions (Nz values), while PMF is the �nal
potential of mean force pro�le in the interval [xmin, ξmax], obtained by computing the average
of indicator functions of bins of size ∆z = (ξmax − ξmin)/Nξ.

2.4 Thermodynamic integration
The code is compiled with the instruction make ti, which produces ti++. The parameters of
the dynamics are

• Dynamics (0=Ovrdmpd, 1=Lngvn) depending on whether projected Langevin dynamics
or projected overdamped dynamics should be used;

• Number of iterations;

• Number of thermalization steps: number of steps performed each time the value of
the reaction coordinate changes before the computation of the approximation of the
mean force by ergodic averages starts;

• Output frequency is the number of time steps before the outputs are written out (see
below for a list);

• Lower value of RC and Upper value of RC de�ne the biasing region where the mean
force is estimated (the bias being 0 outside this zone);

• Number of PMF RC values gives the number of bins in which the reaction coordinate
space is separated;

The output �les are the following:

• coord lists the values of the reaction coordinate;

• energy gives the total energy and the potential energy;

• current_mean_force is the current ergodic approximation of the mean force. In the
overdamped case, the �rst column is obtained by averaging the local mean force (known
analytically here), the second by averaging the plain Lagrange multipliers, the third by
averaging the Lagrange multipliers with elimination of the martingale part, the fourth
with the variance reduction method using time reversed increments. In the Langevin
case, the �rst column is obtained by averaging the local mean force, the second one by
averaging the Lagrange multipliers used in the Rattle part, the third by computing the
momentum average local mean force, the fourth and �fth ones being the averages of the
Lagrange multipliers of the position and momentum constraints, respectively.

• Lagrange gives the instantaneous values of the mean force and Lagrange multipliers
which are averaged in the previous �le (same ordering).

• mean_force and PMF give the �nal mean force and free energy pro�les respectively.
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2.5 Adaptive dynamics
The code is compiled with the instruction make abf, which produces abf++. There are several
output �les: energy gives the energy as a function of time; coord is the instantaneous distri-
bution of the values of the reaction coordinate, while coord_first is the same information
for the �rst system only; mean_force is the current mean force (the values of the reaction
coordinate bins are in the �rst line, and each subsequent line is a pro�le some time later than
the previous one), while PMF is the current associated free energy pro�le obtained by numerical
integration; �nally, histo is the cumulated histogram of visits in a bin.

The parameters of the dynamics are

• Dynamics (0=Ovrdmpd, 1=Lngvn) depending on whether Langevin dynamics or over-
damped dynamics should be used;

• Number of iterations;

• Number of replicas gives the number of systems simulated in parallel but contributing
to the same free energy pro�le;

• Mean force/bias output freq. gives the frequency at which mean force, free energy
pro�les, distribution of reaction coordinates and cumulated histogram are written out
(counted in number of iteration steps)

• Other outputs frequency is the number of time steps before the current energy and
reaction coordinate value of the �rst system are written out;

• Lower value of RC and Upper value of RC de�ne the biasing region where the mean
force is estimated (the bias being 0 outside this zone);

• Number of PMF RC values gives the number of bins in which the reaction coordinate
space is separated;

• Selection is set to 1 when selection is required;

• Section intensity is the prefactor before the selection term (provided selection is
required).

2.6 Nonequilibrium dynamics
The code is compiled with the instruction make jarz, which produces jarz++.

• Number of thermalization steps is the subsampling time used to sample the initial
conditions from a projected dynamics;

• Work distribution output freq. is the number of steps after which the whole work
distribution is written out;

• Other output frequency is the number of steps after which the energies and the value
of the reaction coordinate are saved;

• Lower value of RC is the initial value of the reaction coordinate at the beginning of
the switching;
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• Upper value of RC is the �nal value of the reaction coordinate;

• Switching time gives the time to perform the switching;

• Number of replicas

The output �les are the following:
• coord gives the value of the reaction coordinate of the �rst system as a function of time;

• energy gives the total energy and the potential energies as a function of time;

• PMF gives the free energy pro�le as a function of time, with the estimate using the
local mean force on the second column, and the estimates obtained with the Lagrange
multipliers on the third one;

• Work is the work distribution at the required times, for the works computed with the
local mean force;

• Work_lagrange is the work distributions obtained for the works computed from the
Lagrange multipliers;

• current_work gives the current work for the �rst system, computed using the local mean
force on the �rst column, and the Lagrange multipliers on the second.

3 Useful analytical expressions
Reaction coordinate and derivatives. The chosen reaction coordinate is

ξ(q) =
|q1 − q2| − r0

2w
,

where q1, q2 ∈ Rd, d denoting the dimension of the ambient physical space (d = 2 here). Its
gradient is

∇ξ(q) =
1

2w




q1 − q2

|q1 − q2|
− q1 − q2

|q1 − q2|
0
...
0




,

and
|∇ξ(q)|2 =

1
2w2

.

The local mean force is

f(q) =
∇ξ(q) · ∇V (q)
|∇ξ(q)|2 − 1

β
div

( ∇ξ(q)
|∇ξ(q)|2

)

=
w

|q1 − q2|
[
(q1 − q2) ·

(
∂q1V (q)− ∂q2V (q)

)
− 2(d− 1)

β

]
.

Finally, notice that there is no Fixman term since |∇ξ| is constant.
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Constrained overdamped Langevin processes. The constrained dynamics




dqt = −∇V (qt) dt +
√

2
β

dWt +∇ξ(qt) dΛt,

ξ(qt) = z,

is integrated numerically with the scheme




qn+1 = qn −∇V (qn) ∆t +

√
2∆t

β
Gn +∇ξ(qn+1)∆Λn+1,

ξ(qn+1) = z.

Therefore, (
1− ∆Λn+1

w|qn+1
2 − qn+1

1 |

)
(qn+1

2 − qn+1
1 ) = q̃n

2 − q̃n
1 ,

with

q̃n = qn −∇V (qn)∆t +

√
2∆t

β
Gn.

and Gn = (Gn
1 , Gn

2 , . . . ) with Gn
i ∈ Rd. Since |qn+1

2 − qn+1
1 | = 2wz + r0 is �xed, the lagrange

multiplier reads

∆Λn+1 = w
(
2wz + r0 − |q̃n

2 − q̃n
1 |

)
= 2w2

(
z − ξ(q̃)

)
.

Besides, qn+1
1 + qn+1

2 = q̃n
2 + q̃n

1 , so that

qn+1
1 =

1
2

(
1 +

1
1−∆Λn+1/[w(2wz + r0)]

)
q̃n
1 +

1
2

(
1− 1

1−∆Λn+1/[w(2wz + r0)]

)
q̃n
2 ,

and a similar expression for qn+1
2 . Some care is however required to treat correctly the periodic

boundary conditions. With the variance reduction procedure,

∆Λ̃n+1 = ∆Λn+1 +

√
2∆t

β

∇ξ(qn) ·Gn

|∇ξ(qn)|2 = ∆Λn+1 + w
qn
1 − qn

2

|qn
1 − qn

2 |
· (Gn

1 −Gn
2 ).

The expressions in the case of nonequilibrium switching processes are similar. It su�ces to
consider an additional term related to the variation of the constraint:





qn+1 = qn −∇V (qn) ∆t +

√
2∆t

β
Gn +∇ξ(qn+1)∆Λn+1,

ξ(qn+1) = zn+1,

and

∆Λn+1
noneq = ∆Λn+1 +

√
2∆t

β

∇ξ(qn) ·Gn

|∇ξ(qn)|2 = ∆Λn+1 + w
qn
1 − qn

2

|qn
1 − qn

2 |
· (Gn

1 −Gn
2 )− zn+1 − zn

|∇ξ(qn)|2 .
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Constrained Langevin processes. We detail how the Rattle step




pn+1/2 = pn − ∆t

2
∇V (qn) +∇ξ(qn) λn+1/2,

ξ(qn+1) = z, (Cq)

qn+1 = qn + ∆tM−1 pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1) +∇ξ(qn+1) λn+1,

∇ξ(qn+1)T M−1pn+1 = 0, (Cp)

is implemented. In the code, M = Id. Denoting

q̃n = qn + ∆t pn − ∆t2

2
∇V (qn),

the value of λn+1/2 is determined by the condition

ξ
(
q̃n + ∆t λn+1/2∇ξ(qn)

)
= z,

which can be rewritten as ∥∥∥∥q̃n
1 − q̃n

2 +
∆t λn

w
en
12

∥∥∥∥
2

= z2,

with
en
12 ≡ e12(qn) =

qn
1 − qn

2

|qn
1 − qn

2 |
.

This equation is a second-order equation in the ∆t λ variable:

(∆t λ)2 + 2wen
12 · (q̃n

1 − q̃n
2 )∆t λ + w2

(
‖q̃n

1 − q̃n
2 ‖2 − z2

)
= 0,

whose solutions are
λ± =

w

∆t

(
− en

12 · (q̃n
1 − q̃n

2 )±
√

∆
)
,

with
∆ =

[
en
12 · (q̃n

1 − q̃n
2 )

]2
− 4

(
‖q̃n

1 − q̃n
2 ‖2 − z2

)
.

The smallest λ is chosen, so that λn = λ− when en
12 · (q̃n

1 − q̃n
2 ) ≥ 0 and λn = λ+ otherwise.

The Lagrange multiplier λn+1/2 is determined by

∇ξ(qn+1)T M−1pn+1 = 0,

which can be rewritten as

en+1
12 · (pn+1

1 − pn+1
2

)
= en+1

12 ·
(

p̃n+1
1 − p̃n+1

2 +
λn+1

w
en+1
12

)
= 0,

with
p̃n+1 = pn+1/2 − ∆t

2
∇V (qn+1).

Then,
λn+1 = −w en+1

12 · (p̃n+1
1 − p̃n+1

2

)
.
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The comparison with the local rigid mean force (equal to the local mean force) requires
the computation of

frgd(q, p) = G−1
M ∇ξT M−1∇V (q)−G−1

M (q)Hessq(ξ)(M−1p,M−1p).

The �rst term is the same as for the local mean force. For the second term, some straightfor-
ward computations give

G−1
M (q)Hessq(ξ)(M−1p,M−1p) = w∇2ξ(q) : p⊗ p

=
w

|q1 − q2|
[
(p1,x − p2,x)2 + (p1,y − p2,y)2 −

( x1 − x2

|q1 − q2| (p1,x − p2,x) +
y1 − y2

|q1 − q2| (p1,y − p2,y)
)2

]
.

Notice that
x1 − x2

|q1 − q2| (p1,x − p2,x) +
y1 − y2

|q1 − q2| (p1,y − p2,y) = 2w e12 · (p1 − p2).

This quantity is therefore equal to 0 for constrained processes (and in general proportional to
the momentum or velocity constraint).

Nonequilibrium Langevin processes. We describe how the momentum constrained is
handled. It reads, in the nonequilibrium case,

∇ξ(qn+1)T M−1pn+1 =
z(tn+1)− z(tn)

∆t
.

with
pn+1 = pn+1/2 − ∆t

2
∇V (qn+1) +∇ξ(qn+1) λn+1.

Then,
λn+1 = w

[
−en+1

12 · (p̃n+1
1 − p̃n+1

2

)
+

z(tn+1)− z(tn)
∆t

]

with
p̃n+1 = pn+1/2 − ∆t

2
∇V (qn+1).
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