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Abstract

We present a method to enforce thermal boundary conditions in molecular dynamics
(MD) simulations. This method consists in considering a stochastic forcing that acts only
on particles located near the boundary of the simulated box, with decreasing magnitude
as the distance to the boundary increases. This allows to preserve the physical Newtonian
dynamics in the core region of the system, while still conserving some NVT forcing. This
approach gives rise to an efficient way to compute dynamical properties such as thermal
conductivities.

Most molecular dynamics simulations are performed at fixed temperature. For this pur-
pose, the Newton equations associated with the microcanonical NVE ensemble are modified in
such a way that they (hopefully) generate an ergodic dynamics with respect to the canonical
NVT distribution. This is the case both for the Langevin approach, where the modification
is of stochastic nature, and for the Nosé-like thermostatting methods [5], where the modi-
fication is of deterministic nature. Quite often, constant temperature MD simulations aim
at computing, using the ergodicity of the dynamics, some phase-space average providing the
value of some time-independent physical variable at thermal equilibrium. However, it is also
common to compute dynamical properties at constant temperature by integrating some cor-
relation function along the non-physical Langevin or Nosé-like trajectories. This approach is
not rigorous from a statistical physics point of view, and can even lead to wrong results. It
is for example well-known that the results may depend on the type of the NVT trajectories
used for the simulation. Some examples are the diffusion coefficient of a tracer particle, or
the response of a system to an increase of the heat bath temperature [5], that depend on the
magnitude of the random force when computed with the Langevin dynamics.

We present here a very simple way to perform constant temperature dynamics without
perturbing the “physical” Newton equations in a large part of the simulation box. The method
consists in coupling NVT dynamics, performed near the boundary of the system, and NVE
dynamics, performed in the core region. The coupling can be done in a smooth way by
considering a random forcing whose magnitude depends on the position of the thermostated
particle. It can be assumed for instance that the magnitude of the random forcing is a
decreasing function of the distance to the boundary, that vanishes beyond some prescribed
cut-off. This allows for a seamless coupling between NVT and NVE dynamics.



From a more general viewpoint, this paper is a first step toward an alternative to periodic
boundary conditions for MD in the condensed phase. The random forcing with decreasing
magnitude may indeed be seen as a convenient way to take into account the particles that lay
outside the simulation box. It is then natural that the noise vanishes beyond a cut-off distance
corresponding to the cut-off radius of the potential. The next step would be to get rid of the
periodic boundary conditions (which are almost universally used in condensed phase MD),
and replace them by stochastic boundary conditions allowing fluctuations of the number of
particles in the simulation box. Such an approach will be carried out in [3].

This article is organized as follows. In section 1, we set the model we consider here, and
establish some of its properties. We then turn to some applications, concerning the heating
(or cooling) of a Lennard-Jones fluid (section 2), and show how the thermal conductivity can
be computed through a (short) transient non-equilibrium simulation.

1 Description of the model

We consider a simulation box Q C R? (d = 2 or 3) with periodic boundary conditions (the
configuration space therefore has the geometry of a torus). The particles are indexed by
i = 1,...,N. The mass matrix is M = Diag(mg,...,my), the configuration variable is
q=(q1,...,qn) € QV, and the momentum variable p = (p1,...,pn) € R, Assuming that
the particles interact via the potential V' (g), the Hamiltonian associated with the system reads

1 _
H(q,p) = 50" M~'p+V(9), (1)
and the corresponding Hamiltonian dynamics is defined by
dq —1
A _ M
dt p?
h @)
— = —-VVi(q).
7 (9)

We then decompose the simulation box € into two non-overlapping domains €2; and €,
(see Figure 1), the outer region €0, being for example the set

Qe ={ze€Q|d(z,00) <r.},

where d(z,09) is the distance from x € Q to the boundary 99, and r. some positive cut-off
radius.

The dynamics we propose is as follows. The particles that are located in §2; are only
subjected to the forces that derive from the interaction potential V', whereas the particles
that are located in €. also experience some random forcing. More precisely, we consider the
dynamics

{ dgy = M~ 'p,dt, (3)
dpy = —=VV(q:)dt —T(g) M~ 'p;dt + (qz) dWr,

where (W;)¢>0 is a dN-dimensional Wiener process, and where the matrices ¥ and I represent
the magnitude of the fluctuations and of the dissipation respectively. They are linked by the
fluctuation-dissipation relation:

Z@W@F:%Nm. (4)



PBC

PBC

PBC

PBC

Figure 1: Decomposition of the simulation box 2 into two non-overlapping domains €2; and

Q..

In this expression, 3 = (kgT)~! is the inverse temperature of the bath. In the sequel, we

choose a diagonal matrix for I'(q):

['(q) = Diag(y(q1),---,7(an)),

where the function + is taken to be a smooth decreasing function of d(z, 9€2) such that v(x) = 0

in Q; and y(z) > 0 in .. We also consider

¥(q) = Diag(o(q1),--.,0(qn))

with

It is easy to check that the canonical probability measure

du(q,p) = Z ' exp (—BH(q,p)) dgdp

with
7 = / exp (—BH(q,p)) dq dp,
QN xRN

is an invariant probability measure for (3). Indeed, the infinitesimal generator A associated

with (3) is

Af(a,p) = M'p-Vof = (VV(@) + T(@)M'p) - Vpf + S5(0)(a) Ay,

and the corresponding Fokker-Planck equation therefore reads

Of+Af=0



where A* is the adjoint of A. A straightforward computation shows that

f(q,p) = exp (—=BH(q,p)) (7)

is an invariant density when (4) holds, since A*f = 0 in this case.

It is not clear whether the stochastic differential equation (3) is ergodic since ¥ = 0 in ;.
However, we have observed in numerical simulations that, whatever the starting distribution,
the correct kinetic temperature is quickly attained.

In the numerical examples presented in section 2 we have used the following numerical

implementation of (3), inspired from the classical BBK scheme used to integrate the Langevin
equation [1]:

At n n
Pt =+ 5 <_vqu(qn) - )p? + 2 >Z'n>

A2t m; VAL !
1/2
@t o=+ gp;“ / (8)
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where o is still given by (5), and {Z]'}1<i<n, nen are identical and independently distributed
(ii.d.) standard gaussian random variables.

\

2 Thermal conductivity of Lennard-Jones systems

In section 2.1, we describe the Lennard-Jones system and the thermalization procedure we have
considered. The NVE-NVT heating and cooling processes are then dealt with in section 2.2,
and alternative approaches to determine the thermal conductivity are briefly reviewed. Some
simulation results are finally provided in section 2.3.

2.1 Description of the system

We consider a three-dimensional (d = 3) Lennard-Jones system, with standard periodic bound-
ary conditions (we refer to [3] for a more general approach of the stochastic forcing at the
boundaries). The potential energy is given by

N
V= Y Visla-ah+5 > Y Viala — g+ ), )

1<i<j<N 1,j=1keR\{0}

where R is the Bravais lattice and V1,5 the usual Lennard-Jones potential
12 6
Vig(r) = 4e ((9> - (%) > , (10)
r r
with € > 0 and a > 0.

The system is first thermalized at an inverse temperature § as follows. Starting from an
equilibrium position such as a FCC lattice for solid state simulations, or a square lattice for



liquid phase simulations', the momenta of the particles are generated from the kinetic part of
the canonical measure, that is according to the probability density

_ (B N —-1/2 Tqr—1
ntp) = (3=) Dot M2 expl=" M /2 .
The system is then simulated until the time #i,;; using the full Langevin dynamics, which
amounts to taking I'(¢) = 7Yolsn in (3), where I3y is the identity matrix on R3VN. In this
thermalization process, vy > 0 is a given positive constant, and all the particles in {2 experience
stochastic forcing. The numerical implementation makes use of (8) with v(-) = 70 and

270 YAt
)=1/— (1 .
o(a) \/ 0 (1422
204t

The correction term T in the above formula ensures that the kinetic temperature is correct,
even for large frictions. A theoretical justification in a simplified case, together with numerical
arguments in more general cases, can be read in |2]|. Notice that such a correction term cannot
be derived theoretically for the NVE-NVT model (3), and that numerical simulations show
that considering a correction to the random forcing magnitude in (5) leads to a bias in the
kinetic temperature in the inner region €2;.

Under suitable conditions (see [2| for a short introduction to the subject), it can be shown
that the Langevin stochastic process converges in law toward the canonical measure (6).
For tiniy large enough, the configuration of the systen can therefore be taken as an initial
configuration with inverse temperature .

2.2 Computation of the thermal conductivity

The thermal conductivity A of a system can be computed either at equilibrium, using a Green-
Kubo formula [5], or in a non-equilibrium setting. The former method relies on the integration
of the heat flux correlation function, and often requires long simulation times for the time
integral to converge. Non-equilibrium molecular dynamics (NEMD) approaches assume a
linear response regime, so that the heat flux depends linearly on the temperature gradient.
To specify this linear relation, external fictitious mechanical forces can be added |4, 6] to
the NVE dynamics, or a temperature gradient can be specified, while the heat flux is then
measured. Since these methods also suffer from slow convergence, a different approach has
been proposed, where the heat flux is specified, and the temperature field is measured [8].

A recent interesting alternative method [7] relies on transient simulations. A small fraction
of the system is instantaneously heated, and the kinetic temperature relaxation is monitored.
The thermal conductivity can then be computed by comparison with the Fourier law. However,
the approach of [7] is based on NVE simulations of relatively small systems, so that complete
relaxation toward the canonical ensemble cannot be observed.

We will now show that the NVE-NVT model (3) is fairly suited for thermal conductivity
computations. Let us consider a Lennard-Jones system modeled by (3) initially at thermal
equilibrium with temperature T} (such an equilibrium state is obtained as described in sec-
tion 2.1) and let us suddently change the temperature of the thermostat to T5. The inner

'This initial configuration is much less stable than a FCC lattice, and thermalization is therefore expected
to occur faster.



system (); is then heated or cooled down through energy exchanges with €., itself thermostated
by the environing heat-bath, and the kinetic temperature of €); as a function of time can be
monitored. To reduce statistical errors, several independent relaxations must be performed,
starting from initial configurations sampled independently from the canonical measure.

The thermal conductivity can then be recovered as follows. Assuming that the Fourier law
holds in the domain €; =]0, L[?, the local temperature obeys the heat equation

pCvatT = )\AT,

where p denotes the density of the system (expressed in mol/m3), C, the specific heat ca-
pacity (in J/K/mol), and A the thermal conductivity (in W/m/K). For variations in a small
temperature range, it can indeed be assumed that C, and A remain constant in space and
time. The specific heat capacity can be found in thermodynamic tables, or computed as a
time-independent canonical average according to

Na
Cy = Nk’BT2(<H2> - <H>2)?

where N, is the Avogadro number and (-) denotes a canonical average.

Setting o = , it follows

: &T = oAT.
Consider the heating or cooling of the sytem from Ty to Ty = Ty + §T with |0T| < Ty, T5.
Setting u = (T — T') /6T, the evolution of u is governed by the Cauchy problem

Ou = oAu in €,
u‘t:() = Uy = 1 in Qi7 (11)
u = 0 on 0€);.

The initial condition ug can be expanded on the Fourier modes

2 3/2 . krx\ . lmy\ . /mrwz
Okim(2,Y, 2) = (z) sin <T> sin (T) sin (<)

 16v2L3/2

1
UO(xaya Z) - 3 . l;>0 (2]{5 + 1)(2l + 1)(2m + 1)¢2k+1,2l+1,2m+1($7y7 Z)'

as

Let us denote by

W)=Y m exp <—UL 2?2”2 t) sin (L +Ll)”> .

Okim, it follows,

4
u(t, 2,y 2) = S3hit, ) hit,9) h(t, =)

The deviation to the target temperature 75 is therefore, on average on the domain €2,

1 012

_ _ = _ 212 3
u(t) = 73 /}0,L[3 u(t,x,y, z) dedydz - k(t)°,

6



where, setting A = om?L 2,

1 (2k +1)*n —At L o gar 1 _oqm
— = 1+ + +... ). (12
k(t) ,;>0 2E+ 1) exp < o Iz t e 9° T (12)

It then holds

u(t) [ k() 3Nef3A(t7to)
u(to) <k(to)>

for t > to and tg large enough. Therefore, the value of A (and thus of A provided C,, is known)
can be computed by fitting u(t)/u(to) to an exponential function.
2.3 Numerical results

The kinetic temperature for a given number N; of particles is defined as

N;
. 2 P
kin = g\ kg £~ 2m,,

We also define, in analogy with the previous section, uyy, = (To — Tkin) /0T .

Figure 2 shows a plot of the instantaneous kinetic temperature in €); in the case of a
heating process for fluid Argon from 7 to T3, and the corresponding plot of u(t)/u(to) (with
to = 5 ps), averaged over 30 realizations of the heating process conducted from independent
initial conditions. The parameters of the model are N = 64000, ¢/kg = 119.8 K, a =
3.405 x 10719 m, Ty =400 K, T, = 420 K, At = 2.5 x 10715 s. We use a truncated Lennard-
Jones potential with a cut-off radius 7. = 2.5a. The molar mass is M = 39.95 x 1073 kg/mol,
and the density is p = 35044 mol/m?3. The simulation cell € is then a cubic box of edge
length L = 37.51a. The parameters used for the thermalization are vo/m = 102 s~! and
tinit = 20 ps. Then, the independent initial configurations are obtained from this thermalized
configuration by running an additional Langevin dynamics for 15 ps before each realization of
the heating process.

For the coupled NVE/NVT dynamics, we have used

1) = meos () (13

27

with 41 /m =5 x 102 s71. We have checked that the thermal response is not sensitive to the
specific shape of the friction function nor to the value of ~; in a broad range.

As can be seen from Figure 2 (Left), the kinetic temperature in the inner region of the
system converges toward the target value determined by the temperature of the thermostat.
The function u(t)/u(ty) is plotted on the time interval [tg,t1] with ¢g =5 ps and ¢; = 75 ps.
Notice that, as we discard the initial relaxation, the higher order exponential terms in (12)
can be neglected, so that we can indeed approximate (t)/a(tg) by e 34(¢=%) A least-square
fit gives A = 0.01438 s~!. A numerical computation of C, at 7' = 400 K (using a Langevin
NVT sampling with 6 x 10° time-step as described in [2]) gives C, = 18.01 J/K/mol, in good
agreement with the experimental value C,, = 18.12 J/K/mol [9]. Therefore, the computed
value of A is A = 0.1509 W/m /K, which is in good agreement with the experimental value [9]
A =0.1557 W/m/K at T"= 400 K.
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Figure 2: Left: Kinetic temperature in §); as a function of time. Right: Plot of iy, /txin (to)
as a function of time with ¢y = 5 ps (solid line), as well as its exponential fitting function

Y

(dashed line). Notice that the exponential approximation seems to be justified.
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