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3 CEA/DAM Ile-de-Frane, B.P. 12, 91680 Bruyères-le-Châtel, FraneSeptember 7, 2005AbstratWe present a method to enfore thermal boundary onditions in moleular dynamis(MD) simulations. This method onsists in onsidering a stohasti foring that ats onlyon partiles loated near the boundary of the simulated box, with dereasing magnitudeas the distane to the boundary inreases. This allows to preserve the physial Newtoniandynamis in the ore region of the system, while still onserving some NVT foring. Thisapproah gives rise to an e�ient way to ompute dynamial properties suh as thermalondutivities.Most moleular dynamis simulations are performed at �xed temperature. For this pur-pose, the Newton equations assoiated with the miroanonial NVE ensemble are modi�ed insuh a way that they (hopefully) generate an ergodi dynamis with respet to the anonialNVT distribution. This is the ase both for the Langevin approah, where the modi�ationis of stohasti nature, and for the Nosé-like thermostatting methods [5℄, where the modi-�ation is of deterministi nature. Quite often, onstant temperature MD simulations aimat omputing, using the ergodiity of the dynamis, some phase-spae average providing thevalue of some time-independent physial variable at thermal equilibrium. However, it is alsoommon to ompute dynamial properties at onstant temperature by integrating some or-relation funtion along the non-physial Langevin or Nosé-like trajetories. This approah isnot rigorous from a statistial physis point of view, and an even lead to wrong results. Itis for example well-known that the results may depend on the type of the NVT trajetoriesused for the simulation. Some examples are the di�usion oe�ient of a traer partile, orthe response of a system to an inrease of the heat bath temperature [5℄, that depend on themagnitude of the random fore when omputed with the Langevin dynamis.We present here a very simple way to perform onstant temperature dynamis withoutperturbing the �physial� Newton equations in a large part of the simulation box. The methodonsists in oupling NVT dynamis, performed near the boundary of the system, and NVEdynamis, performed in the ore region. The oupling an be done in a smooth way byonsidering a random foring whose magnitude depends on the position of the thermostatedpartile. It an be assumed for instane that the magnitude of the random foring is adereasing funtion of the distane to the boundary, that vanishes beyond some presribedut-o�. This allows for a seamless oupling between NVT and NVE dynamis.



From a more general viewpoint, this paper is a �rst step toward an alternative to periodiboundary onditions for MD in the ondensed phase. The random foring with dereasingmagnitude may indeed be seen as a onvenient way to take into aount the partiles that layoutside the simulation box. It is then natural that the noise vanishes beyond a ut-o� distaneorresponding to the ut-o� radius of the potential. The next step would be to get rid of theperiodi boundary onditions (whih are almost universally used in ondensed phase MD),and replae them by stohasti boundary onditions allowing �utuations of the number ofpartiles in the simulation box. Suh an approah will be arried out in [3℄.This artile is organized as follows. In setion 1, we set the model we onsider here, andestablish some of its properties. We then turn to some appliations, onerning the heating(or ooling) of a Lennard-Jones �uid (setion 2), and show how the thermal ondutivity anbe omputed through a (short) transient non-equilibrium simulation.1 Desription of the modelWe onsider a simulation box Ω ⊂ R
d (d = 2 or 3) with periodi boundary onditions (theon�guration spae therefore has the geometry of a torus). The partiles are indexed by

i = 1, . . . , N . The mass matrix is M = Diag(m1, . . . ,mN ), the on�guration variable is
q = (q1, . . . , qN ) ∈ ΩN , and the momentum variable p = (p1, . . . , pN ) ∈ R

dN . Assuming thatthe partiles interat via the potential V (q), the Hamiltonian assoiated with the system reads
H(q, p) =

1

2
pT M−1p + V (q), (1)and the orresponding Hamiltonian dynamis is de�ned by















dq

dt
= M−1p,

dp

dt
= −∇V (q).

(2)We then deompose the simulation box Ω into two non-overlapping domains Ωi and Ωe(see Figure 1), the outer region Ωe being for example the set
Ωe = {x ∈ Ω | d(x, ∂Ω) < rc},where d(x, ∂Ω) is the distane from x ∈ Ω to the boundary ∂Ω, and rc some positive ut-o�radius.The dynamis we propose is as follows. The partiles that are loated in Ωi are onlysubjeted to the fores that derive from the interation potential V , whereas the partilesthat are loated in Ωe also experiene some random foring. More preisely, we onsider thedynamis

{

dqt = M−1pt dt,
dpt = −∇V (qt) dt − Γ(qt)M

−1pt dt + Σ(qt) dWt,
(3)where (Wt)t≥0 is a dN -dimensional Wiener proess, and where the matries Σ and Γ representthe magnitude of the �utuations and of the dissipation respetively. They are linked by the�utuation-dissipation relation:

Σ(qt)Σ(qt)
T =

2

β
Γ(qt). (4)2
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Figure 1: Deomposition of the simulation box Ω into two non-overlapping domains Ωi and
Ωe.In this expression, β = (kBT )−1 is the inverse temperature of the bath. In the sequel, wehoose a diagonal matrix for Γ(q):

Γ(q) = Diag(γ(q1), . . . , γ(qN )),where the funtion γ is taken to be a smooth dereasing funtion of d(x, ∂Ω) suh that γ(x) = 0in Ωi and γ(x) > 0 in Ωe. We also onsider
Σ(q) = Diag(σ(q1), . . . , σ(qN ))with

σ(·) =

√

2γ(·)
β

. (5)It is easy to hek that the anonial probability measure
dµ(q, p) = Z−1 exp (−βH(q, p)) dq dp (6)with
Z =

∫

ΩN×RdN

exp (−βH(q, p)) dq dp,is an invariant probability measure for (3). Indeed, the in�nitesimal generator A assoiatedwith (3) is
Af(q, p) = M−1p · ∇qf − (∇V (q) + Γ(q)M−1p) · ∇pf +

1

2
Σ(q)Σ(q)T ∆pf,and the orresponding Fokker-Plank equation therefore reads

∂tf + A∗f = 0,3



where A∗ is the adjoint of A. A straightforward omputation shows that
f(q, p) = exp (−βH(q, p)) (7)is an invariant density when (4) holds, sine A∗f = 0 in this ase.It is not lear whether the stohasti di�erential equation (3) is ergodi sine Σ = 0 in Ωi.However, we have observed in numerial simulations that, whatever the starting distribution,the orret kineti temperature is quikly attained.In the numerial examples presented in setion 2 we have used the following numerialimplementation of (3), inspired from the lassial BBK sheme used to integrate the Langevinequation [1℄:
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(8)where σ is still given by (5), and {Zn
i }1≤i≤N, n∈N are idential and independently distributed(i.i.d.) standard gaussian random variables.2 Thermal ondutivity of Lennard-Jones systemsIn setion 2.1, we desribe the Lennard-Jones system and the thermalization proedure we haveonsidered. The NVE-NVT heating and ooling proesses are then dealt with in setion 2.2,and alternative approahes to determine the thermal ondutivity are brie�y reviewed. Somesimulation results are �nally provided in setion 2.3.2.1 Desription of the systemWe onsider a three-dimensional (d = 3) Lennard-Jones system, with standard periodi bound-ary onditions (we refer to [3℄ for a more general approah of the stohasti foring at theboundaries). The potential energy is given by

V (q) =
∑

1≤i<j≤N

VLJ(|qi − qj|) +
1

2

N
∑

i,j=1

∑

k∈R\{0}

VLJ(|qi − qj + k|), (9)where R is the Bravais lattie and VLJ the usual Lennard-Jones potential
VLJ(r) = 4ǫ

(

(a

r

)12
−

(a

r

)6
)

, (10)with ǫ > 0 and a > 0.The system is �rst thermalized at an inverse temperature β as follows. Starting from anequilibrium position suh as a FCC lattie for solid state simulations, or a square lattie for4



liquid phase simulations1, the momenta of the partiles are generated from the kineti part ofthe anonial measure, that is aording to the probability density
dκ(p) =

(

β

2π

)3N/2

|Det M |−1/2 exp(−βpT M−1p/2) dp.The system is then simulated until the time tinit using the full Langevin dynamis, whihamounts to taking Γ(q) = γ0I3N in (3), where I3N is the identity matrix on R
3N . In thisthermalization proess, γ0 > 0 is a given positive onstant, and all the partiles in Ω experienestohasti foring. The numerial implementation makes use of (8) with γ(·) = γ0 and

σ(qi) =

√

2γ0

β

(

1 +
γ0∆t

2mi

)

.The orretion term γ0∆t
2mi

in the above formula ensures that the kineti temperature is orret,even for large fritions. A theoretial justi�ation in a simpli�ed ase, together with numerialarguments in more general ases, an be read in [2℄. Notie that suh a orretion term annotbe derived theoretially for the NVE-NVT model (3), and that numerial simulations showthat onsidering a orretion to the random foring magnitude in (5) leads to a bias in thekineti temperature in the inner region Ωi.Under suitable onditions (see [2℄ for a short introdution to the subjet), it an be shownthat the Langevin stohasti proess onverges in law toward the anonial measure (6).For tinit large enough, the on�guration of the systen an therefore be taken as an initialon�guration with inverse temperature β.2.2 Computation of the thermal ondutivityThe thermal ondutivity λ of a system an be omputed either at equilibrium, using a Green-Kubo formula [5℄, or in a non-equilibrium setting. The former method relies on the integrationof the heat �ux orrelation funtion, and often requires long simulation times for the timeintegral to onverge. Non-equilibrium moleular dynamis (NEMD) approahes assume alinear response regime, so that the heat �ux depends linearly on the temperature gradient.To speify this linear relation, external �titious mehanial fores an be added [4, 6℄ tothe NVE dynamis, or a temperature gradient an be spei�ed, while the heat �ux is thenmeasured. Sine these methods also su�er from slow onvergene, a di�erent approah hasbeen proposed, where the heat �ux is spei�ed, and the temperature �eld is measured [8℄.A reent interesting alternative method [7℄ relies on transient simulations. A small frationof the system is instantaneously heated, and the kineti temperature relaxation is monitored.The thermal ondutivity an then be omputed by omparison with the Fourier law. However,the approah of [7℄ is based on NVE simulations of relatively small systems, so that ompleterelaxation toward the anonial ensemble annot be observed.We will now show that the NVE-NVT model (3) is fairly suited for thermal ondutivityomputations. Let us onsider a Lennard-Jones system modeled by (3) initially at thermalequilibrium with temperature T1 (suh an equilibrium state is obtained as desribed in se-tion 2.1) and let us suddently hange the temperature of the thermostat to T2. The inner1This initial on�guration is muh less stable than a FCC lattie, and thermalization is therefore expetedto our faster. 5



system Ωi is then heated or ooled down through energy exhanges with Ωe, itself thermostatedby the environing heat-bath, and the kineti temperature of Ωi as a funtion of time an bemonitored. To redue statistial errors, several independent relaxations must be performed,starting from initial on�gurations sampled independently from the anonial measure.The thermal ondutivity an then be reovered as follows. Assuming that the Fourier lawholds in the domain Ωi =]0, L[3, the loal temperature obeys the heat equation
ρCv∂tT = λ∆T,where ρ denotes the density of the system (expressed in mol/m3), Cv the spei� heat a-paity (in J/K/mol), and λ the thermal ondutivity (in W/m/K). For variations in a smalltemperature range, it an indeed be assumed that Cv and λ remain onstant in spae andtime. The spei� heat apaity an be found in thermodynami tables, or omputed as atime-independent anonial average aording to

Cv =
Na

NkBT 2
(〈H2〉 − 〈H〉2),where Na is the Avogadro number and 〈·〉 denotes a anonial average.Setting σ =

λ

ρCv
, it follows

∂tT = σ∆T.Consider the heating or ooling of the sytem from T1 to T2 = T1 + δT with |δT | ≪ T1, T2.Setting u = (T2 − T )/δT , the evolution of u is governed by the Cauhy problem






∂tu = σ ∆u in Ωi,
u|t=0 = u0 ≡ 1 in Ωi,

u = 0 on ∂Ωi.
(11)The initial ondition u0 an be expanded on the Fourier modes

φklm(x, y, z) =

(

2

L

)3/2

sin

(

kπx

L

)

sin

(

lπy

L

)

sin
(mπz

L

)as
u0(x, y, z) =

16
√

2L3/2

π3

∑

k,l,m≥0

1

(2k + 1)(2l + 1)(2m + 1)
φ2k+1,2l+1,2m+1(x, y, z).Let us denote by

h(t, x) =
∑

k≥0

1

(2k + 1)
exp

(

−σ
(2k + 1)2π2

L2
t

)

sin

(

(2k + 1)πx

L

)

.Sine ∆φklm = −(k2 + l2 + m2)π2

L2
φklm, it follows,

u(t, x, y, z) =
64

π3
h(t, x)h(t, y)h(t, z).The deviation to the target temperature T2 is therefore, on average on the domain Ωi,

ū(t) =
1

L3

∫

]0,L[3
u(t, x, y, z) dx dy dz =

512

π6
k(t)3,6



where, setting A = σπ2L−2,
k(t) =

∑

k≥0

1

(2k + 1)2
exp

(

−σ
(2k + 1)2π2

L2
t

)

= e−At

(

1 +
1

9
e−8At +

1

25
e−24At + . . .

)

. (12)It then holds
ū(t)

ū(t0)
=

(

k(t)

k(t0)

)3

∼ e−3A(t−t0)for t ≥ t0 and t0 large enough. Therefore, the value of A (and thus of λ provided Cv is known)an be omputed by �tting ū(t)/ū(t0) to an exponential funtion.2.3 Numerial resultsThe kineti temperature for a given number Ni of partiles is de�ned as
Tkin =

2

3NikB

Ni
∑

n=1

p2
n

2mn
.We also de�ne, in analogy with the previous setion, ukin = (T2 − Tkin)/δT .Figure 2 shows a plot of the instantaneous kineti temperature in Ωi in the ase of aheating proess for �uid Argon from T1 to T2, and the orresponding plot of ū(t)/ū(t0) (with

t0 = 5 ps), averaged over 30 realizations of the heating proess onduted from independentinitial onditions. The parameters of the model are N = 64000, ǫ/kB = 119.8 K, a =
3.405 × 10−10 m, T1 = 400 K, T2 = 420 K, ∆t = 2.5 × 10−15 s. We use a trunated Lennard-Jones potential with a ut-o� radius rc = 2.5 a. The molar mass is M = 39.95× 10−3 kg/mol,and the density is ρ = 35044 mol/m3. The simulation ell Ω is then a ubi box of edgelength L = 37.51 a. The parameters used for the thermalization are γ0/m = 1012 s−1 and
tinit = 20 ps. Then, the independent initial on�gurations are obtained from this thermalizedon�guration by running an additional Langevin dynamis for 15 ps before eah realization ofthe heating proess.For the oupled NVE/NVT dynamis, we have used

γ(·) = γ1 cos

(

π·
2rc

) (13)with γ1/m = 5 × 1012 s−1. We have heked that the thermal response is not sensitive to thespei� shape of the frition funtion nor to the value of γ1 in a broad range.As an be seen from Figure 2 (Left), the kineti temperature in the inner region of thesystem onverges toward the target value determined by the temperature of the thermostat.The funtion ū(t)/ū(t0) is plotted on the time interval [t0, t1] with t0 = 5 ps and t1 = 75 ps.Notie that, as we disard the initial relaxation, the higher order exponential terms in (12)an be negleted, so that we an indeed approximate ū(t)/ū(t0) by e−3A(t−t0). A least-square�t gives A = 0.01438 s−1. A numerial omputation of Cv at T = 400 K (using a LangevinNVT sampling with 6× 105 time-step as desribed in [2℄) gives Cv = 18.01 J/K/mol, in goodagreement with the experimental value Cv = 18.12 J/K/mol [9℄. Therefore, the omputedvalue of λ is λ = 0.1509 W/m/K, whih is in good agreement with the experimental value [9℄
λ = 0.1557 W/m/K at T = 400 K. 7
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