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tWe present a method to enfor
e thermal boundary 
onditions in mole
ular dynami
s(MD) simulations. This method 
onsists in 
onsidering a sto
hasti
 for
ing that a
ts onlyon parti
les lo
ated near the boundary of the simulated box, with de
reasing magnitudeas the distan
e to the boundary in
reases. This allows to preserve the physi
al Newtoniandynami
s in the 
ore region of the system, while still 
onserving some NVT for
ing. Thisapproa
h gives rise to an e�
ient way to 
ompute dynami
al properties su
h as thermal
ondu
tivities.Most mole
ular dynami
s simulations are performed at �xed temperature. For this pur-pose, the Newton equations asso
iated with the mi
ro
anoni
al NVE ensemble are modi�ed insu
h a way that they (hopefully) generate an ergodi
 dynami
s with respe
t to the 
anoni
alNVT distribution. This is the 
ase both for the Langevin approa
h, where the modi�
ationis of sto
hasti
 nature, and for the Nosé-like thermostatting methods [5℄, where the modi-�
ation is of deterministi
 nature. Quite often, 
onstant temperature MD simulations aimat 
omputing, using the ergodi
ity of the dynami
s, some phase-spa
e average providing thevalue of some time-independent physi
al variable at thermal equilibrium. However, it is also
ommon to 
ompute dynami
al properties at 
onstant temperature by integrating some 
or-relation fun
tion along the non-physi
al Langevin or Nosé-like traje
tories. This approa
h isnot rigorous from a statisti
al physi
s point of view, and 
an even lead to wrong results. Itis for example well-known that the results may depend on the type of the NVT traje
toriesused for the simulation. Some examples are the di�usion 
oe�
ient of a tra
er parti
le, orthe response of a system to an in
rease of the heat bath temperature [5℄, that depend on themagnitude of the random for
e when 
omputed with the Langevin dynami
s.We present here a very simple way to perform 
onstant temperature dynami
s withoutperturbing the �physi
al� Newton equations in a large part of the simulation box. The method
onsists in 
oupling NVT dynami
s, performed near the boundary of the system, and NVEdynami
s, performed in the 
ore region. The 
oupling 
an be done in a smooth way by
onsidering a random for
ing whose magnitude depends on the position of the thermostatedparti
le. It 
an be assumed for instan
e that the magnitude of the random for
ing is ade
reasing fun
tion of the distan
e to the boundary, that vanishes beyond some pres
ribed
ut-o�. This allows for a seamless 
oupling between NVT and NVE dynami
s.



From a more general viewpoint, this paper is a �rst step toward an alternative to periodi
boundary 
onditions for MD in the 
ondensed phase. The random for
ing with de
reasingmagnitude may indeed be seen as a 
onvenient way to take into a

ount the parti
les that layoutside the simulation box. It is then natural that the noise vanishes beyond a 
ut-o� distan
e
orresponding to the 
ut-o� radius of the potential. The next step would be to get rid of theperiodi
 boundary 
onditions (whi
h are almost universally used in 
ondensed phase MD),and repla
e them by sto
hasti
 boundary 
onditions allowing �u
tuations of the number ofparti
les in the simulation box. Su
h an approa
h will be 
arried out in [3℄.This arti
le is organized as follows. In se
tion 1, we set the model we 
onsider here, andestablish some of its properties. We then turn to some appli
ations, 
on
erning the heating(or 
ooling) of a Lennard-Jones �uid (se
tion 2), and show how the thermal 
ondu
tivity 
anbe 
omputed through a (short) transient non-equilibrium simulation.1 Des
ription of the modelWe 
onsider a simulation box Ω ⊂ R
d (d = 2 or 3) with periodi
 boundary 
onditions (the
on�guration spa
e therefore has the geometry of a torus). The parti
les are indexed by

i = 1, . . . , N . The mass matrix is M = Diag(m1, . . . ,mN ), the 
on�guration variable is
q = (q1, . . . , qN ) ∈ ΩN , and the momentum variable p = (p1, . . . , pN ) ∈ R

dN . Assuming thatthe parti
les intera
t via the potential V (q), the Hamiltonian asso
iated with the system reads
H(q, p) =

1

2
pT M−1p + V (q), (1)and the 
orresponding Hamiltonian dynami
s is de�ned by















dq

dt
= M−1p,

dp

dt
= −∇V (q).

(2)We then de
ompose the simulation box Ω into two non-overlapping domains Ωi and Ωe(see Figure 1), the outer region Ωe being for example the set
Ωe = {x ∈ Ω | d(x, ∂Ω) < rc},where d(x, ∂Ω) is the distan
e from x ∈ Ω to the boundary ∂Ω, and rc some positive 
ut-o�radius.The dynami
s we propose is as follows. The parti
les that are lo
ated in Ωi are onlysubje
ted to the for
es that derive from the intera
tion potential V , whereas the parti
lesthat are lo
ated in Ωe also experien
e some random for
ing. More pre
isely, we 
onsider thedynami
s

{

dqt = M−1pt dt,
dpt = −∇V (qt) dt − Γ(qt)M

−1pt dt + Σ(qt) dWt,
(3)where (Wt)t≥0 is a dN -dimensional Wiener pro
ess, and where the matri
es Σ and Γ representthe magnitude of the �u
tuations and of the dissipation respe
tively. They are linked by the�u
tuation-dissipation relation:

Σ(qt)Σ(qt)
T =

2

β
Γ(qt). (4)2



Ωe

ΩiPBC
PBC

PBC
PBC

Figure 1: De
omposition of the simulation box Ω into two non-overlapping domains Ωi and
Ωe.In this expression, β = (kBT )−1 is the inverse temperature of the bath. In the sequel, we
hoose a diagonal matrix for Γ(q):

Γ(q) = Diag(γ(q1), . . . , γ(qN )),where the fun
tion γ is taken to be a smooth de
reasing fun
tion of d(x, ∂Ω) su
h that γ(x) = 0in Ωi and γ(x) > 0 in Ωe. We also 
onsider
Σ(q) = Diag(σ(q1), . . . , σ(qN ))with

σ(·) =

√

2γ(·)
β

. (5)It is easy to 
he
k that the 
anoni
al probability measure
dµ(q, p) = Z−1 exp (−βH(q, p)) dq dp (6)with
Z =

∫

ΩN×RdN

exp (−βH(q, p)) dq dp,is an invariant probability measure for (3). Indeed, the in�nitesimal generator A asso
iatedwith (3) is
Af(q, p) = M−1p · ∇qf − (∇V (q) + Γ(q)M−1p) · ∇pf +

1

2
Σ(q)Σ(q)T ∆pf,and the 
orresponding Fokker-Plan
k equation therefore reads

∂tf + A∗f = 0,3



where A∗ is the adjoint of A. A straightforward 
omputation shows that
f(q, p) = exp (−βH(q, p)) (7)is an invariant density when (4) holds, sin
e A∗f = 0 in this 
ase.It is not 
lear whether the sto
hasti
 di�erential equation (3) is ergodi
 sin
e Σ = 0 in Ωi.However, we have observed in numeri
al simulations that, whatever the starting distribution,the 
orre
t kineti
 temperature is qui
kly attained.In the numeri
al examples presented in se
tion 2 we have used the following numeri
alimplementation of (3), inspired from the 
lassi
al BBK s
heme used to integrate the Langevinequation [1℄:































p
n+1/2
i = pn

i +
∆t

2

(

−∇qi
V (qn) − γ(qn

i )

mi
pn

i +
σ(qn

i )√
∆t

Zn
i

)

qn+1
i = qn

i +
∆t

mi
p

n+1/2
i

pn+1
i = p

n+1/2
i +

∆t

2

(

−∇qi
V (qn+1) − γ(qn+1

i )

mi
pn+1

i +
σ(qn+1

i )√
∆t

Zn+1
i

)

(8)where σ is still given by (5), and {Zn
i }1≤i≤N, n∈N are identi
al and independently distributed(i.i.d.) standard gaussian random variables.2 Thermal 
ondu
tivity of Lennard-Jones systemsIn se
tion 2.1, we des
ribe the Lennard-Jones system and the thermalization pro
edure we have
onsidered. The NVE-NVT heating and 
ooling pro
esses are then dealt with in se
tion 2.2,and alternative approa
hes to determine the thermal 
ondu
tivity are brie�y reviewed. Somesimulation results are �nally provided in se
tion 2.3.2.1 Des
ription of the systemWe 
onsider a three-dimensional (d = 3) Lennard-Jones system, with standard periodi
 bound-ary 
onditions (we refer to [3℄ for a more general approa
h of the sto
hasti
 for
ing at theboundaries). The potential energy is given by

V (q) =
∑

1≤i<j≤N

VLJ(|qi − qj|) +
1

2

N
∑

i,j=1

∑

k∈R\{0}

VLJ(|qi − qj + k|), (9)where R is the Bravais latti
e and VLJ the usual Lennard-Jones potential
VLJ(r) = 4ǫ

(

(a

r

)12
−

(a

r

)6
)

, (10)with ǫ > 0 and a > 0.The system is �rst thermalized at an inverse temperature β as follows. Starting from anequilibrium position su
h as a FCC latti
e for solid state simulations, or a square latti
e for4



liquid phase simulations1, the momenta of the parti
les are generated from the kineti
 part ofthe 
anoni
al measure, that is a

ording to the probability density
dκ(p) =

(

β

2π

)3N/2

|Det M |−1/2 exp(−βpT M−1p/2) dp.The system is then simulated until the time tinit using the full Langevin dynami
s, whi
hamounts to taking Γ(q) = γ0I3N in (3), where I3N is the identity matrix on R
3N . In thisthermalization pro
ess, γ0 > 0 is a given positive 
onstant, and all the parti
les in Ω experien
esto
hasti
 for
ing. The numeri
al implementation makes use of (8) with γ(·) = γ0 and

σ(qi) =

√

2γ0

β

(

1 +
γ0∆t

2mi

)

.The 
orre
tion term γ0∆t
2mi

in the above formula ensures that the kineti
 temperature is 
orre
t,even for large fri
tions. A theoreti
al justi�
ation in a simpli�ed 
ase, together with numeri
alarguments in more general 
ases, 
an be read in [2℄. Noti
e that su
h a 
orre
tion term 
annotbe derived theoreti
ally for the NVE-NVT model (3), and that numeri
al simulations showthat 
onsidering a 
orre
tion to the random for
ing magnitude in (5) leads to a bias in thekineti
 temperature in the inner region Ωi.Under suitable 
onditions (see [2℄ for a short introdu
tion to the subje
t), it 
an be shownthat the Langevin sto
hasti
 pro
ess 
onverges in law toward the 
anoni
al measure (6).For tinit large enough, the 
on�guration of the systen 
an therefore be taken as an initial
on�guration with inverse temperature β.2.2 Computation of the thermal 
ondu
tivityThe thermal 
ondu
tivity λ of a system 
an be 
omputed either at equilibrium, using a Green-Kubo formula [5℄, or in a non-equilibrium setting. The former method relies on the integrationof the heat �ux 
orrelation fun
tion, and often requires long simulation times for the timeintegral to 
onverge. Non-equilibrium mole
ular dynami
s (NEMD) approa
hes assume alinear response regime, so that the heat �ux depends linearly on the temperature gradient.To spe
ify this linear relation, external �
titious me
hani
al for
es 
an be added [4, 6℄ tothe NVE dynami
s, or a temperature gradient 
an be spe
i�ed, while the heat �ux is thenmeasured. Sin
e these methods also su�er from slow 
onvergen
e, a di�erent approa
h hasbeen proposed, where the heat �ux is spe
i�ed, and the temperature �eld is measured [8℄.A re
ent interesting alternative method [7℄ relies on transient simulations. A small fra
tionof the system is instantaneously heated, and the kineti
 temperature relaxation is monitored.The thermal 
ondu
tivity 
an then be 
omputed by 
omparison with the Fourier law. However,the approa
h of [7℄ is based on NVE simulations of relatively small systems, so that 
ompleterelaxation toward the 
anoni
al ensemble 
annot be observed.We will now show that the NVE-NVT model (3) is fairly suited for thermal 
ondu
tivity
omputations. Let us 
onsider a Lennard-Jones system modeled by (3) initially at thermalequilibrium with temperature T1 (su
h an equilibrium state is obtained as des
ribed in se
-tion 2.1) and let us suddently 
hange the temperature of the thermostat to T2. The inner1This initial 
on�guration is mu
h less stable than a FCC latti
e, and thermalization is therefore expe
tedto o

ur faster. 5



system Ωi is then heated or 
ooled down through energy ex
hanges with Ωe, itself thermostatedby the environing heat-bath, and the kineti
 temperature of Ωi as a fun
tion of time 
an bemonitored. To redu
e statisti
al errors, several independent relaxations must be performed,starting from initial 
on�gurations sampled independently from the 
anoni
al measure.The thermal 
ondu
tivity 
an then be re
overed as follows. Assuming that the Fourier lawholds in the domain Ωi =]0, L[3, the lo
al temperature obeys the heat equation
ρCv∂tT = λ∆T,where ρ denotes the density of the system (expressed in mol/m3), Cv the spe
i�
 heat 
a-pa
ity (in J/K/mol), and λ the thermal 
ondu
tivity (in W/m/K). For variations in a smalltemperature range, it 
an indeed be assumed that Cv and λ remain 
onstant in spa
e andtime. The spe
i�
 heat 
apa
ity 
an be found in thermodynami
 tables, or 
omputed as atime-independent 
anoni
al average a

ording to

Cv =
Na

NkBT 2
(〈H2〉 − 〈H〉2),where Na is the Avogadro number and 〈·〉 denotes a 
anoni
al average.Setting σ =

λ

ρCv
, it follows

∂tT = σ∆T.Consider the heating or 
ooling of the sytem from T1 to T2 = T1 + δT with |δT | ≪ T1, T2.Setting u = (T2 − T )/δT , the evolution of u is governed by the Cau
hy problem






∂tu = σ ∆u in Ωi,
u|t=0 = u0 ≡ 1 in Ωi,

u = 0 on ∂Ωi.
(11)The initial 
ondition u0 
an be expanded on the Fourier modes

φklm(x, y, z) =

(

2

L

)3/2

sin

(

kπx

L

)

sin

(

lπy

L

)

sin
(mπz

L

)as
u0(x, y, z) =

16
√

2L3/2

π3

∑

k,l,m≥0

1

(2k + 1)(2l + 1)(2m + 1)
φ2k+1,2l+1,2m+1(x, y, z).Let us denote by

h(t, x) =
∑

k≥0

1

(2k + 1)
exp

(

−σ
(2k + 1)2π2

L2
t

)

sin

(

(2k + 1)πx

L

)

.Sin
e ∆φklm = −(k2 + l2 + m2)π2

L2
φklm, it follows,

u(t, x, y, z) =
64

π3
h(t, x)h(t, y)h(t, z).The deviation to the target temperature T2 is therefore, on average on the domain Ωi,

ū(t) =
1

L3

∫

]0,L[3
u(t, x, y, z) dx dy dz =

512

π6
k(t)3,6



where, setting A = σπ2L−2,
k(t) =

∑

k≥0

1

(2k + 1)2
exp

(

−σ
(2k + 1)2π2

L2
t

)

= e−At

(

1 +
1

9
e−8At +

1

25
e−24At + . . .

)

. (12)It then holds
ū(t)

ū(t0)
=

(

k(t)

k(t0)

)3

∼ e−3A(t−t0)for t ≥ t0 and t0 large enough. Therefore, the value of A (and thus of λ provided Cv is known)
an be 
omputed by �tting ū(t)/ū(t0) to an exponential fun
tion.2.3 Numeri
al resultsThe kineti
 temperature for a given number Ni of parti
les is de�ned as
Tkin =

2

3NikB

Ni
∑

n=1

p2
n

2mn
.We also de�ne, in analogy with the previous se
tion, ukin = (T2 − Tkin)/δT .Figure 2 shows a plot of the instantaneous kineti
 temperature in Ωi in the 
ase of aheating pro
ess for �uid Argon from T1 to T2, and the 
orresponding plot of ū(t)/ū(t0) (with

t0 = 5 ps), averaged over 30 realizations of the heating pro
ess 
ondu
ted from independentinitial 
onditions. The parameters of the model are N = 64000, ǫ/kB = 119.8 K, a =
3.405 × 10−10 m, T1 = 400 K, T2 = 420 K, ∆t = 2.5 × 10−15 s. We use a trun
ated Lennard-Jones potential with a 
ut-o� radius rc = 2.5 a. The molar mass is M = 39.95× 10−3 kg/mol,and the density is ρ = 35044 mol/m3. The simulation 
ell Ω is then a 
ubi
 box of edgelength L = 37.51 a. The parameters used for the thermalization are γ0/m = 1012 s−1 and
tinit = 20 ps. Then, the independent initial 
on�gurations are obtained from this thermalized
on�guration by running an additional Langevin dynami
s for 15 ps before ea
h realization ofthe heating pro
ess.For the 
oupled NVE/NVT dynami
s, we have used

γ(·) = γ1 cos

(

π·
2rc

) (13)with γ1/m = 5 × 1012 s−1. We have 
he
ked that the thermal response is not sensitive to thespe
i�
 shape of the fri
tion fun
tion nor to the value of γ1 in a broad range.As 
an be seen from Figure 2 (Left), the kineti
 temperature in the inner region of thesystem 
onverges toward the target value determined by the temperature of the thermostat.The fun
tion ū(t)/ū(t0) is plotted on the time interval [t0, t1] with t0 = 5 ps and t1 = 75 ps.Noti
e that, as we dis
ard the initial relaxation, the higher order exponential terms in (12)
an be negle
ted, so that we 
an indeed approximate ū(t)/ū(t0) by e−3A(t−t0). A least-square�t gives A = 0.01438 s−1. A numeri
al 
omputation of Cv at T = 400 K (using a LangevinNVT sampling with 6× 105 time-step as des
ribed in [2℄) gives Cv = 18.01 J/K/mol, in goodagreement with the experimental value Cv = 18.12 J/K/mol [9℄. Therefore, the 
omputedvalue of λ is λ = 0.1509 W/m/K, whi
h is in good agreement with the experimental value [9℄
λ = 0.1557 W/m/K at T = 400 K. 7
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Figure 2: Left: Kineti
 temperature in Ωi as a fun
tion of time. Right: Plot of ūkin/ūkin(t0)as a fun
tion of time with t0 = 5 ps (solid line), as well as its exponential �tting fun
tion(dashed line). Noti
e that the exponential approximation seems to be justi�ed.A
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