
ERRATUM: NONEQUILIBRIUM SHEAR VISCOSITY

COMPUTATIONS WITH LANGEVIN DYNAMICS
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Abstract. This short note is an erratum to the article [R. Joubaud and G. Stoltz, Nonequi-
librium shear viscosity computations with Langevin dynamics, Multiscale Model. Sim., 10 (2012),
pp. 191–216]. We present required modifications in the proofs of Theorem 2 and 3.
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There were two mistakes in the proofs of Theorems 2 and 3 in [3]:
• first, we used an incorrect property from [6], namely that A−1

0 is a bounded
operator from L2(ψ0) to H1(ψ0) (see the proof of Proposition 2.1 in [6,
page 1645]). This property was used in [6] to prove that A−1

0 is compact
on L2(ψ0). The latter result can however be proved using for instance the
techniques from [1], see the correction in [5].

• second, some commutator terms were missing in the uniform hypocoercivity
estimate (5.7). In fact, the uniform coercivity property is true only for func-
tions whose average with respect to the Gibbs distribution in the velocity
variable py (for Theorem 2) or px (for Theorem 3) vanishes.

We show here how to correct the proof of [3, Theorem 2], the corrections in the proof
of Theorem 3 being similar. We refer to [4] for a full corrected proof.

We first need to modify the formal solutions in the ansatz fγy = f0 + γ−1
y f1 +

γ−2
y f2 + · · · and consider in fact

f1(q, p) = py · ∇qyf
0(q, p) + f̃1(q, px),

where f̃1 is made precise below (see (0.6)).
Uniform hypocoercivity estimates. We show that

−〈〈u,Ay,thmu〉〉 ≥ 0 (0.1)

for functions u in an appropriate subspace of H1(ψ0). Using the commutation rela-
tions [∂pα,i

, ∂∗pα′,j
] = βδα,α′δij (α, α

′ ∈ {x, y}), a simple computation shows
〈〈

u,

N∑

i=1

(
∂pyi

)∗
∂pyi

u

〉〉
=

N∑

i=1

(a+ βb)‖∂pyiu‖
2 + b‖∇p∂pyi

u‖2

+ b‖∇q∂pyi
u‖2 + 2〈∇q∂pyi

u,∇p∂pyi
u〉+ β〈∂qyi

u, ∂pyi
u〉

≥

N∑

i=1

(
a+ β

(
b−

1

2

))
‖∂pyiu‖

2 + (b− 1)‖∇p∂pyi
u‖2

+ (b− 1)‖∇q∂pyi
u‖2 −

β

2
‖∂qyi

u‖2.

∗ANDRA, DRD/EAP, Parc de la croix blanche, 1,7 rue Jean Monnet, 92298 Châtenay-Malabry
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Summing on i ∈ {1, . . . , N}, the quantity (0.1) is seen to be non-negative for an
appropriate choice of constants a ≫ b ≫ 1 provided there exists a constant A > 0
such that, for all i = 1, . . . , N ,

‖∂qyi
u‖ ≤ A‖∇p∂qyi

u‖. (0.2)

This indeed implies

N∑

i=1

‖∂qyi
u‖2 ≤ A

N∑

i,j=1

‖∂pyj
∂qyi

u‖2 = A

N∑

j=1

‖∇qy∂pyj
‖2 ≤ A

N∑

j=1

‖∇q∂pyj
‖2.

Since the Gaussian measure satisfies a Poincaré inequality, the inequalities (0.2) hold
provided

∀i = 1, . . . , N,

∫

RN

∂qyi
u(q, p) exp

(
−β

p2y

2

)
dpy = 0.

Defining the closed subspace of L2(ψ0) ∩ {1}⊥

H0 =

{
v ∈ H1(ψ0)

∣∣∣∣∣ v(q, px) =
(
2π

β

)−N/2 ∫

RN

v(q, p) exp

(
−β

p2y

2

)
dpy = 0

}
⊂ H,

(0.3)
we conclude that, for any u ∈ H0 ∩H

2(ψ0),

C ‖u‖
2
H1(ψ0)

≤ −〈〈u,A0(γy)u〉〉 . (0.4)

In particular, there exists a constant K > 0 such that, for any γy ≥ γx and for any
u ∈ H0 ∩H

2(ψ0),

∥∥A0(γ)
−1u

∥∥
H1(ψ0)

≤ K‖u‖H1(ψ0).

In fact, this inequality can be extended to functions in H0.

Proof of the limit (3.13). A simple computation shows that

−A0(γy)
(
fγy − f0 − γ−1

y f1
)
=

1

γy
T0f

1,

so that

fγy − f0 − γ−1
y f1 = −

1

γy
A0(γy)

−1T0f
1. (0.5)

Since A0(γy)
−1 is bounded on H0, uniformly in γy (see (0.4)), it is sufficient to show

that T0f
1 ∈ H0. In view of the definition of f0, the proof is then concluded by setting

φi(q, p) = −T −1
qy (pxi).

Let us first show that T0f1(q, px) = 0 (where v is defined in (0.3)). This can be

ensured by an appropriate choice of f̃1. Note first that

T0f
1 = py · ∇qy f̃

1 + Tqyf
1 +

(
py · ∇qy −∇qyV · ∇py

)
f1 + Tqy f̃

1.
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The first two terms have a vanishing average with respect to (2π)−N/2 exp
(
−β

p2y
2

)
dpy.

Introducing

g(q, px) = −(2π)−N/2
∫

RN

(
py · ∇qy −∇qyV · ∇py

)
f1 exp

(
−β

p2y

2

)
dpy,

the condition T0f1 = 0 is satisfied provided

Tqy f̃
1 = g(q, px),

Seeing the function on the right-hand side as a function of (qx, px) indexed by qy

allows to define f̃1 pointwise in qy as

f̃1 = −(2π)−N/2T −1
qy g. (0.6)

Let us now study the regularity of T0f
1. We only treat the term T0(f

1 − f̃1)

since the regularity of T0f̃
1 can be proved similarly. Recall that all the functions

under consideration are C∞ by hypoellipticity. Therefore, only the derivates in the p
variables have to be considered because the position space is compact. Now,

f1 − f̃1 =−
∑

i

pyiG
′(qyi)T

−1
qy (pxi)

−
∑

i,j,k

pyiG(qyj)
{(

T −1
qy

) [
∂2qyi,qxk

V (qx, qy)∂pxk

] (
T −1
qy

)
pxj

}
.

(0.7)

The py dependence is trivial in the above expression, so that only derivatives in px re-
quire some attention. Since T0 = Ay,ham+Tqy where Ay,ham = py ·∇qy−∇qyV (qx, qy)·
∇py is an operator in the qy, py variables (parameterized by qx), it suffices to consider
Tqyf

1. This function is, in turn, a linear combination of terms of the form pyipxi (cf.
the first term in the right-hand side of (0.7)) and pyi∂pxk

T −1
qy pxj (second term in the

right-hand side of (0.7)). To prove that the latter functions are in H1(ψ0), we use the
results of [7, 2], which show that T −1

qy is a bounded operator on the Hilbert spaces
{
f ∈ Hm(Ψqy )

∣∣∣∣∣

∫

(LxT)N×RN

f(qx, px)Ψqy (qx, px) dqx dpx

}
⊂ L2(Ψqy )

for any m ≥ 0, with a bound uniform in qy.
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