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Abstract. We derive here a simplified discrete one-dimensional (1D) model describing

some important features of shock waves. In order to avoid expensive multidimensional

simulations, 1D models are commonly used, but the existing ones often exhibit some

spurious physically irrelevant behavior. Here we build a 1D model with perturbations

arising from mean higher-dimensional behavior. The coupling of the system with a

deterministic heat bath in the Kac-Zwanzig fashion allows us to derive a generalized

Langevin equation for the system, without a priori fixing the temperature in the shocked

region. This deterministic problem with several degrees of freedom is then reduced to

a simpler stochastic problem with memory. Some numerical results are provided, that

illustrate and confirm the qualitative correctness of the model.
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1. Introduction

The aim of this study is to derive and assess the validity of a simplified microscopic

model of shock waves that could help to calibrate parameters for macroscopic descriptions.

Shock waves are intrinsically propagative phenomena. It is thus reasonable to describe

them within a 1D macroscopic theory. In some cases depending on the geometry, this

approximation has proven to be correct [3].

A 1D lattice seems an appropriate model that could, in addition, allow for some

mathematical treatment and thus a better theoretical understanding of the phenomena

and mechanisms at play. Indeed, many mathematical results are known about the behavior

of waves in 1D lattices, concerning the existence of localized waves [10, 26], the form of

those waves in the high-energy limit [8] or in the low-energy limit [9], or the behavior under

shock [6]. There also exist extended results for a particular interaction between sites, the

Toda potential [27] : the structure of a 1D shock is then precisely known, at least in some

regime [23].

We begin in Section 2 with some introduction to 1D lattice motion, and briefly report

on some theoretical results and numerical experiments on piston-impacted shocks. It is

shown that, in the absence of a specific treatment, the shock profiles generated significantly

differ from shock waves. Especially, their thicknesses grow linearly with time [17, 23], there

is no usual equilibration downstream the shock front [4, 19, 23], and relaxation waves do

not behave as expected. Indeed, one would expect the shock wave to be a self-similar

jump separating two domains at local thermal equilibrium at different temperatures. The

relaxation waves should then catch up the shock front and weaken the shock wave until it

disappears. So, we have to introduce higher-dimensional effects, at least in an averaged way.

This is performed in Section 3. The connection of the chain with a heat bath consisting

of a large number of harmonic oscillators, seems to be a good remedy for spurious 1D

effects. The shocks generated have constant thicknesses and relaxation waves appear to be

properly modelled. We eventually present some simulation results in Section 4.

2. The pure 1D model

2.1. Description of the lattice model

Consider a one-dimensional chain of particles with nonlinear nearest-neighbor interactions,

described by a potential V . Initially, the particles are at rest at positions Xn(0) = nd,

which is an equilibrium state for the system. All the masses are set to 1. The normalized

displacement of the n-th particle from its equilibrium position is xn(t) = 1
d
(Xn(t)−Xn(0)).

The following normalization conditions [17] for the interaction potential V can be used:

V (0) = 0, V ′(0) = 0, V ′′(0) = 1. (2.1)

The first condition is more a shift on the energy reference, the second one expresses the

fact that x = 0 is the equilibrium position, and the last one amounts to a rescaling of time.

The so-called ”reduced relative displacement” is defined as δxn(t) = xn+1(t) − xn(t).
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The Hamiltonian of the system is:

HS({qn, pn}) =

∞∑

n=−∞

V (qn+1 − qn) +
1

2
ṗ2

n, (2.2)

where (qn, pn) = (xn, ẋn). The Newton equations of motion read:

ẍn = V ′(xn+1 − xn) − V ′(xn − xn−1). (2.3)

The potential taken here can either have a physical origin, like the 1D Lennard-Jones

potential:

VLJ(x) =
1

8

(
1

(1 + x)4
− 2

(1 + x)2

)
, (2.4)

or more mathematical motivations, like the one-parameter Toda potential [27]:

V b
Toda(x) =

1

b2

(
e−bx − 1 + bx

)
. (2.5)

Define b = −V ′′′(0). The parameter b measures at the first order the anharmonicity of the

system. For the Lennard-Jones potential b = 9, and for the Toda potential, the parameter

b introduced in the definition (2.5) is indeed equal to −d3V b

dx3
(0).

2.2. Shock waves in the 1D lattice

2.2.1. A brief review of the existing mathematical and numerical results A shock can be

generated using a ”piston” : the first particle is considered as being of infinite mass and

constantly moving at velocity up. We refer to [5] for a pioneering study of those shocks

in 1D lattices, to [15, 17, 19] for careful numerical experiments and formal analysis, and

to [23] for a rigorous mathematical study in the Toda case. All of these studies identify

the parameter a = bup as critical. When a < 2, the velocity of the downstream particles

converge to the piston velocity, in analogy with the behavior of a harmonic lattice ‡ (see

Figure 1). When a > 2, the particles behind the shock experience an oscillatory motion

(see Figure 2). This behavior is quite similar to what is happening in hard-rod fluids

(see [19] for a more precise description of that phenomenon), and has to be linked to the

exchange of momenta happening when two particles collide in a 1D setting. This was also

noticed for other potentials such as the Lennard-Jones potential, and can be used to define

specific 1D thermodynamical averages [4].

In the case of a strong shock (a > 2) and in the Toda case, the displacement pattern

is particularly well understood from a mathematical point of view [23]: the lattice can be

decomposed in three regions. In the first one, for n > cmaxt, the particles have ”almost”

not felt the shock yet, and their displacements are exponentially small. The second region,

whose thickness grows linearly in time (cmint < n < cmaxt), is composed of a train

of solitons. Recall that solitons are particular solutions of the Toda lattice model, and

correspond to localized waves [27]. In the third region (n < cmint), the lattice motion

converges to an oscillatory pattern of period 2 (binary wave). The motion behind the

‡ Note that we use b = 2α with the notation of [17].
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Figure 1. Relative displacement (left) and velocity profiles (right) versus particle index

for a weak shock at a representative time: number of particles Npart = 500, Toda

parameter b = 1, piston velocity up = 0.2, so that a = 0.2. The particle are taken

initially at rest at their equilibrium positions.
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Figure 2. Relative displacement (left) and velocity profiles (right) versus particle index

for a strong shock at time T = 100: b = 10, up = 1, so that a = 10. The particles are

initially at rest.

shock is asymptotically described by the evolution of a single oscillator (see [4] for a precise

description of this behavior). There is no local thermal equilibrium in the usual sense (i.e.

the distribution of the velocities is not of Boltzmann form). This was already mentioned

in [19].

2.2.2. Density plots. To get a better understanding of the shock patterns, it is convenient

to represent the system in terms of local density. This local density can be obtained as

a function of the local average of the interatomic distances, both in space and time. We

restrict ourselves to a local average in space.

More precisely, the local averaged interatomic distance of the n-th length is denoted

by δxn, and given by:

δxn =
+∞∑

i=−∞

αj δxn+j.
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The local density ρn is then defined as:

ρn =
(
1 + δxn

)−1
.

The weights {αj} are chosen in practice to be non negative and of sum equal to one. A

convenient choice is for example:

αj = C−1 cos

(
j

2M + 1
π

)

for −M ≤ j ≤ M , and αj = 0 otherwise. The constant C is a normalization factor:

C =

M∑

j=−M

cos

(
j

2M + 1
π

)
.

The integer M is the local range of averaging.

Figure 3 gives the densities corresponding to the relative displacement patterns of

Figures 1 and 2.
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Figure 3. Density patterns for the relative displacement pattern of the weak shock of

Figure 1 (left) and the strong shock of Figure 2 (right). The local averaging range is

M = 50.

2.2.3. Simulation of piston compression We first implement a preliminary thermalization.

The particles are taken initially at rest at their equilibrium positions. We then generate

displacements xn and velocities ẋn from the probability density

dν =

∞⊗

n=−∞

Z−1e−
1

2
βx(x2

n
+ẋ2

n
) dxn dẋn, (2.6)

with Z = 2π/βx. The initial displacements and velocities are then of order
1√
βx

. Notice

that we take small initial displacements, so we approximate the full potential V (x) by

its harmonic part 1
2
x2. This approximation is of course justified only at the beginning

of the simulation, when displacements are small enough. After this initial perturbation,

we let the system free to evolve during a typical time Tinit = 10. The simulations were

performed using a Velocity Verlet scheme, the time step being chosen to have a relative

energy conservation
∆E

E
of about 10−3.
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At time Tinit the piston impact begins: the first particle is kept moving toward the

right at constant velocity up.

Let us emphasize that the shock patterns are robust, in the sense that they remain

essentially unchanged when initial thermal pertubations are supplied. This point was

already noted in [19] where the authors gave numerical evidence of that fact. While

rigorously proven only in the Toda lattice case for a lattice initially at rest at equilibrium,

the above shock description seems then to remain qualitatively valid for a quite general

class of potentials and with random initial conditions. A comparison of the different profiles

is made in Figures 4 and 5. The profiles are indeed quite conserved, especially the density

profiles.
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Figure 4. Relative displacement profiles for a thermalized strong shock using a Toda

potential with b = 10, and comparison with the reference profile corresponding to a

lattice initially at rest. The piston speed is up = 0.3 (so that a = 3), 1
√

βx

= 0.02.
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Figure 5. Local density profiles corresponding to Figure 4 with M = 50. Dashed

line: reference profile. Solid line: Thermalized profile. Notice that both patterns almost

coincide.

For strong shocks (a > 2), the shock front thickens linearly with time as can be seen in

Figure 6. This is in contradiction with what is observed in shock propagation experiments

as well as in 3D numerical simulations. Moreover the velocity distribution behind the
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Figure 6. Relative displacement patterns for the same conditions as in Figure 4 (reference

case). Left: Snapshot at time T1 = 200. The shock front corresponds (roughly) to the

zone between particle Nmin = cminT1 = 60 and particle Nmax = cmaxT1 = 350. Right:

Snapshot at time T2 = 800. The shock front corresponds to the zone between particle

number Nmin = 250 and particle number Nmax = 1500. Thus the shock front is indeed

growing linearly in time.

shock front shows that the downstream particles experience a (quasi-)oscillatory motion

in the range [0, 2up]. This is of course not the case for 3D simulations, where the particle

velocities are much less correlated, and appears to be a pure 1D effect.

We emphasize once again that initial thermal perturbations are not sufficient to

remedy these spurious 1D effects since the patterns obtained in Figures 4 and 5 are very

similar. In the sequel we are going to build a 1D model that enables us to get rid of these

undesired effects.

2.2.4. Simulation of relaxation waves In order to study the relaxation waves, the piston

is removed after a compression time t0, and the systems evolves freely during time t1 − t0.
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Figure 7. Relative displacement and speed profiles for the same parameters as for Figure

4. The compression time is now t0 = 50, and the relaxation time is t1 − t0 = 350.

The results are once again not physically satisfactory. The soliton train of Figure 7,

which was less visible in Figure 4, is not destroyed by the relaxation waves. It travels on and
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widens since the solitons move away from each others (the distance between the fastest

ones, that is, the more energetic ones, and the slowest ones, increases). We emphasize

that the energy remains localized in those waves, so there is no damping of these solitons.

Rarefaction is only observed in the region behind the soliton train.

On the other hand, in 3D simulations or in experiments, one observes a progressive

damping of the whole compressive wave. This is a second spurious effect of the 1D model

we would like to get rid of and that our model will able to deal with.

3. Introduction of mean higher-dimensional effects

The results of the previous Section indicate the need for a modeling of perturbations

arising from the transverse degrees of freedom existing in higher dimensional simulations.

Such perturbations will interfere with the shock front composed of a soliton train, and

possibly damp this soliton train. Perturbations in the longitudinal direction, such as

thermal initialization for the xn, cannot do this, as shown by Figures 4 and 5.

Actually, some facts are already known about the influence of 3D effects on shock

waves. In [14, 18] Holian et al pointed out the fact that even a 1D shock considered in a

3D system (a piston compression along a principal direction of a crystal for example) may

not look like the typical 1D pattern of Figures 1 or 2. If the crystal is at zero temperature,

then the compression pattern in 3D is the same as the 1D one, with a soliton train at the

front. But if positive temperature effects are considered, the interactions of the particles

with their neighbors - especially in the transverse directions - lead to the destruction of

the coherent soliton train at the front, and a steady-regime can be reached (shock with

constant thickness).

Therefore, 1D models are often supplemented with a postulated dissipation. The

corresponding damping term in the equations of motion usually accounts for radiative

damping [13, 24, 25], or may compensate thermal fluctuations [1] from an external heat bath

for a system at equilibrium. Let us point out that purely dissipative models may stabilize

shock fronts. However, temperature effects then completely disappear. In particular, no

jump in kinetic temperature can be observed in purely dissipative 1D simulations. Besides,

we also aim here at motivating the usually postulated dissipation and memory terms, and

show that they arise naturally as effects of (conveniently chosen) higher dimensional degrees

of freedom.

To the best of the author’s knowledge, there is no existing model that could both

account for higher dimensional effects in non equilibrium dynamics and be mathematically

tractable. We introduce a classical deterministic heat bath model, as an idealized way to

couple the longitudinal modes of the atom chain to other modes. This model is justified

to some extent by heuristic considerations in Section 3.1. We are then able to derive

a generalized Langevin equation describing the evolution of the system, and recover a

stochastic model in some limiting regime.
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3.1. Form of the perturbations arising from higher dimensional degrees of freedom

Consider the system described in Figure 8, which is still a 1D atom chain, but where each

particle in the 1D chain also interacts with two particles outside the horizontal line. These

particles aim at mimicking some effects of transverse degrees of freedom. The transverse

particles are placed in the middle of the springs and have only one degree of freedom,

namely their ordinates yn. The particles in the 1D chain are still assumed to have only one

degree of freedom as well. This means that we constrain them to remain on the horizontal

line. The interactions between the particles in the chain and the particles outside the

chain are ruled by a pairwise interaction potential, for example the same potential as for

interactions in the 1D chain.
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Figure 8. Notations for the interaction of a transverse particle with particles on the 1D

atom chain.

Consider small displacements around equilibrium positions. The pairwise interaction

potentials can therefore be taken harmonic. Up to a normalization, and for a displacement

x from equilibrium position, V (x) = 1
2
x2.

We first turn to the case θ = π
3

corresponding to a 2D regular lattice. At first order,

dn =



(

1

2
(1 + xn+1 − xn)

)2

+

(√
3

2
+ yn

)2



1/2

' 1 +
1

4
(xn+1 − xn) +

√
3

2
yn.

We now focus on the evolution of xn. All the equalities written below have to

be understood as equalities holding at first order in O(|xn|), O(|yj
n|). Considering only

interactions with the neighboring particles on the horizontal line, and the additional

interaction with the particle yn,

ẍn =
9

8
(xn+1 − 2xn + xn−1) +

√
3

4
(yn − yn−1).

The equation governing the evolution of yn is:

ÿn = −3

2
yn −

√
3

2
(xn+1 − xn).
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More generally, consider the system of Figure 8 with a general angle θ. The equilibrium

distance is now d0 = 1
2 cos θ

, and the corresponding normalized harmonic potential is

V (d) = 1
2
( d

d0 − 1)2.

The normalized distance d̄n =
dn

d0
is now

d̄n = 1 + cos2 θ(xn+1 − xn) + 2 sin θ cos θ · yn.

The additional longitudinal force exerted on xn by yn is then

fn = cos2 θ [cos θ(xn+1 − xn) + 2 sin θ · yn] .

Summing over N particles that do not interact with each other, each one being

characterized by an angle θi, the additional force on xn is seen to be of the form

Fn = AN(xn+1 − 2xn + xn−1) +
N∑

i=1

Ki(y
i
n − yi

n−1),

with Ki = 2 cos2 θi sin θi and AN =
∑N

i=1 cos3 θi. So, the equation of motion for xn is

ẍn = (1 + AN )(xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yi

n−1). (3.1)

The equations for the yi
n can be obtained in the same way as before:

ÿi
n = −aiy

i
n − 2Ki(xn+1 − xn). (3.2)

These linear perturbations are only valid for small displacements, i.e. when the

approximation of the full potential by its harmonic part is justified. Notice moreover

that we discard any type of interaction of the y particles with each others.

However, this motivates an attempt to take into account missing degrees of freedom

by introducing a heat bath whose form will lead to equation of motion similar to (3.1) -

(3.2). We now turn to this task.

3.2. Description of the heat bath model

We consider the following Hamiltonian for a coupled system consisting of the system under

study (S) and a heat bath (B) described by bath variables {yj
n} (n ∈ Z, j = 1, . . . , N). To

use a heat bath is classical but was never done in the context of 1D chains to the author’s

knowledge. The full Hamiltonian reads:

H({qn, pn, q̃j
n, p̃j

n}) = HS({qn, pn}) + HSB({qn, pn, q̃j
n, p̃j

n}), (3.3)

where (qn, pn, q̃j
n, p̃j

n) = (xn, ẋn, yj
n, mjẏ

j
n), HS is given by (2.2), and

HSB({qn, pn, q̃j
n, p̃j

n}) =

∞∑

n=−∞

N∑

j=1

1

2mj
(p̃j

n)2+
1

2
kj

[
γj(qn+1 − qn) + q̃j

n

]2
.(3.4)

The interpretation is as follows. Each spring length δxn = xn+1 − xn is thermostated

by a heat bath {yj
n}, in the spirit of [7, 28]. The parameter kj is the spring constant of

the j-th oscillator, mj its mass, γj weights the coupling between ∆xn and yj
n. Note that

although more general cases can be considered [22, 20], the coupling is taken bilinear in
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the variables, for it allows for an exact mathematical treatment. Indeed, a generalized

Langevin equation (GLE) can be easily recovered (see [7, 28] for seminal examples). To

the author’s knowledge, it is also the only case where the limit N → ∞ can be rigorously

justified.

Other physical motivations may be presented, such as the representation of extra

variables in Fourier modes leading to a Hamiltonian similar to (3.3), see [2]. These extra

degrees of freedom allow for some ”transverse” radiation of the energy.

3.3. Derivation of the generalized Langevin equation

3.3.1. General procedure Up to a rescaling of yj
n, we may assume that all masses mj

are 1. The only parameters left for the coupling are the coupling factors γj. Introducing

the pulsations ωj given by ωj = k
1/2
j , the equations of motion read:

ẍn = gN(xn+1 − xn) − gN(xn − xn−1) +

N∑

j=1

γjω
2
j (y

j
n − yj

n−1), (3.5)

ÿj
n = −ω2

j

[
yj

n + γj(xn+1 − xn)
]
, (3.6)

where

gN(x) = V ′(x) +

(
N∑

j=1

γ2
j ω

2
j

)
x. (3.7)

Notice the strucutral similarities of (3.5) with (3.1) and of (3.6) with (3.2).

The procedure is classical [28]. The solutions {yj
n} of (3.6) are integrated and then

inserted in (3.5) for {xn}. The integrability of the system is clear (once initial conditions

in velocities and displacements are set) when the force gN is globally Lipschitz. This is

for example the case when the sum
∑N

j=1 γ2
j ω

2
j is finite, and when V ′ is globally Lipschitz,

which is indeed true for the Toda potential (2.5). For the Lennard-Jones potential (2.4)

it remains true as long as the energy of the system is finite (since the potential diverges

when x → −1, the bound on the total energy implies x > x0 > −1, and a bound on the

Lipschitz constant can be given by V ′(x0)).

The computation gives:

yj
n(t) = yj

n(0) cos(ωjt) +
ẏj

n(0)

ωj
sin(ωjt) +

∫ t

0

γjωj sin(ωjs)(xn+1 − xn)(t − s) ds.

Integrating by parts and inserting in (3.5):

ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+

∫ t

0

KN(s)(ẋn+1 − 2ẋn + ẋn−1)(t − s) ds + rN
n (t), (3.8)

where

KN(t) =

N∑

j=1

γ2
j ω

2
j cos(ωjt),
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and

rN
n (t) =

N∑

j=1

(yj
n(0) − yj

n−1(0))γjω
2
j cos(ωjt) + (ẏj

n(0) − ẏj
n−1(0))γjω

2
j

sin(ωjt)

ωj

+ γ2
j kj cos(ωjt)(xn+1 − 2xn + xn−1)(0).

Formally, (3.8) looks like a GLE, provided rN
n is a random forcing term. The dissipation

term involves a memory kernel KN and an ”inner” friction ẋn+1−2ẋn+ẋn−1. The derivation

made here shows that the usually postulated dissipation and memory arise naturally as

effects of higher dimensional degrees of freedom. The dissipation term, classical in elasticity

theory and postulated by some studies [13, 25], is derived here, as memory effects, that were

also considered in [25], since the corresponding model was that of a viscoelastic material.

So, we are left with a description of the system only in terms of {xn}. To further specify

the terms, we have to describe the choice of the heat bath spectrum {ωj}, the coupling

constant γj and the initial conditions for the bath variables.

3.3.2. Choice of the constants We choose the values [21]:

ωj = Ω

(
j

N

)k

, γ2
j ω

2
j = λ2f 2(ωj) (∆ω)j, f 2(ω) =

2α

π

1

α2 + ω2
, (3.9)

where (∆ω)j = ωj+1 − ωj, α, λ > 0 and k > 0.

The function f 2 is defined this way for reasons that will be made clear in Section 3.4.

The heat bath spectrum {ωj} is more dense as N increases. The exponent k accounts

for the repartition of the pulsations. More general choices could be made, involving

randomly chosen pulsations [21]. However, we restrict ourselves to the case of deterministic

pulsations.

We emphasize here once again that the constants chosen and the form of the coupling

are not new. A similar choice is made in [21]. The novelty is in the application to a 1D

chain, where independent heat baths are considered, each heat bath corresponding to a

spring length.

We now motivate (3.9). Notice that an upper bound to the heat bath spectrum is

imposed. This is related to the discreteness of the medium. Indeed, for a system at

rest with particles distant from 1, the higher pulsation allowed is π, corresponding to an

oscillatory motion of spatial period 2. When particles come closer (for example if the mean

distance between particles is a < 1), the higher pulsation increases to the value π
a

since

the lowest spatial period is now 2a. Taking then lower bound dm for the minimal distance

between neighboring particles, we get an upper bound for the spectrum, namely Ω = π
dm

.

The choice of the coupling constants between the system and the bath is an important

issue. The only purpose of the heat bath in a 1D shock simulation is to mimic some effects

of dimensionality, such as energy transfer to the tranverse modes. This energy transfer

can be quantified using (3.6). Indeed, the total energy transfer for a harmonic oscillator of

pulsation ω subjected to an external forcing σ is known [2]. More precisely, consider the

following harmonic oscillator:

z̈ + ω2z = h(t), (3.10)
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where h is an external time-dependent forcing term. Then the total energy transfered

by the external forcing to the system (from t = −∞ to t = +∞ for a system at rest at

t = −∞) is ∆E = 1
2
|ĥ(ω)|2. The energy transfer to the heat bath occurs as described

by (3.6). This gives a total energy transfer for a spring xn+1 − xn considered initially at

rest:

∆En =
1

2

N∑

j=1

γ2
j ω

4
j |∆̂xn(ωj)|2. (3.11)

As a first approximation, a shock profile can be described as a self-similar jump: ∆xn(t) =

δH(n−ctn), where δ < 0 is the jump amplitude, c the shock speed, and H is the Heaviside

function. Then, |∆̂xn(ω)| = ω−1. The energy transfer (3.11) is therefore

∆En =
δ2

2

N∑

j=1

γ2
j ω

2
j .

With the spectrum (3.9), the condition ∆En → C with 0 < C < ∞ is satisfied:

∆En =
δ2λ2

2

N∑

j=1

f 2(ωj)(∆ω)j →
δ2λ2

2

∫ Ω

0

f 2 = λ2δ2σ(Ω).

The last expression is bounded since f 2 is integrable (We recall

∫
∞

0

f 2 = 1). The function

σ is a C∞ function. Notice that the above convergence results from the convergence of the

Riemann sum appearing on the left.

3.3.3. Choice of the initial conditions. We consider initial conditions {yj
n(0), ẏj

n(0)}
randomly drawn from a Gibbs distribution with inverse temperature βy. This distribution

is conditioned by the initial data {xn, ẋn}. More precisely, set

yj
n(0) = −γj(xn+1 − xn)(0) + (βykj)

−1/2ξn
j , (3.12)

ẏj
n(0) = (βy)

−1/2ηn
j , (3.13)

where ξn
j , ηn

j ∼ N (0, 1) are independently and identically distributed (i.i.d.) random

Gaussian variables. With these choices,

rN
n (t) =

1√
βy

N∑

j=1

ωjγj cos(ωjt)(ξ
j
n − ξj

n−1) + ωjγj sin(ωjt)(η
j
n − ηj

n−1). (3.14)

The probability space is induced by the mutually independent sequences of i.i.d.

random variables ξj
n, ηj

n. Denote D the linear operator acting on sequences Z = {zn}
through DZ = {zn − zn−1}. So,

rN
n (t) =

λ√
βy

N∑

j=1

f(ωj) cos(ωjt)Dξj
n + f(ωj) sin(ωjt)Dηj

n (∆ω)
1/2
j .

For fixed N , the above expressions give

E(rN(t)(rN(s))T ) =
1

βy
KN (t − s)DDT (3.15)
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where rN = (. . . , rN
n , dots) and the linear operator DDT acts on sequences Z as DDT z =

{zn+1 − 2zn + zn−1}. This relation is known as the fluctuation-dissipation relation, linking

the random forcing term and the memory kernel. Notice that the noise term is correlated

both in time and in space. The behavior of the system when N → ∞ is then an interesting

issue, that can help us to get a better understanding of the phenomenas at play.

3.4. Limit when N → ∞

3.4.1. Limit of the dissipation term The memory kernel can be seen as a Riemann sum.

The limit is then:

KN(t) = λ2

N∑

j=1

f 2(ωj) cos(ωjt)(∆ω)j → λ2

∫ Ω

0

f 2(ω) cos(ωt) dt = λ2KΩ(t) (3.16)

when N → ∞, the convergence holding in L1[0, T ], T > 0.

The special choice (3.9) implies KΩ(t) → e−αt when Ω → ∞ in L∞(R+). The memory

kernel is then exponentially decreasing.

3.4.2. Limit of the fluctuation term The limit N → ∞ gives the convergence of the noise

term in a weak sense in C[0, T ] (see the Appendix and [21]) toward a stochastic integral:

rN
n (t) → λrΩ

n (t) =
λ√
βy

∫ Ω

0

f(ω) cos(ωt)DdW n,1
ω +f(ω) sin(ωt)DdW n,2

ω (3.17)

where W n,1
ω , W n,2

ω (n ∈ Z) are independent standard Brownian motions.

3.4.3. Limit of the equation Formally, a stochastic integro-differential equation (SIDE) is

obtained in the limit N → ∞ :

ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1) (3.18)

+ λ2

∫ t

0

KΩ(s)(ẋn+1 − 2ẋn + ẋn−1)(t − s) ds + λrΩ
n (t), (3.19)

with

KΩ(t) =

∫ Ω

0

f 2(ω) cos(ωt) dω,

rΩ
n (t) =

1√
βy

∫ Ω

0

f(ω) cos(ωt) DdW n,1
ω + f(ω) sin(ωt) DdW n,2

ω ,

and the fluctuation-dissipation relation

E(rΩ(t)(rΩ(s))T ) =
1

βy
KΩ(t − s)DDT , (3.20)

where rΩ = (. . . , rΩ
n , . . .). The way the solutions of (3.8) converge to the solutions of (3.18)

can be made rigorous by a direct adaptation of the results of [21]: the convergence of xN
n

solution of (3.8) to xn solution of (3.18) is weak in C2[0, T ] (in the sense of continuous

random processes). We refer to the Appendix for some precisions on the proof.
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The random process rΩ
n are Ornstein-Uhlenbeck (OU) processes. In order to precise

these OU processes, the SIDE (3.18) can be rewritten as a stochastic differential equation

(SDE). This is done in the limiting case Ω → ∞ where a Markovian limit can be recovered

when considering an additional variable [21]. Notice that when Ω → ∞, KΩ(t) →
K(t) = e−αt. Denoting Q = (. . . , xn−1, xn, xn+1, . . .), P = (. . . , ẋn−1, ẋn, ẋn+1, . . .),

V (Q) =
∑

∞

n=−∞
V (xn+1−xn) and R = (. . . , Rn−1, Rn, Rn+1, . . .), the previous SIDE (3.18)

is equivalent to the following SDE:

dQ = P dt

dP = (R −∇V (Q)) dt

dR = −(αR + λ2DDT P ) dt + λ
√

2α
β

DdW,

(3.21)

where W is a standard Brownian motion, and with initial conditions rn(0) ∼
λβ−1/2 N (0, 1).

The limiting equation (3.17) shows the main effects of the heat-bath interaction:

The pure 1D equation (2.3) is supplemented by two terms, one dissipation term with

an exponentially decreasing memory, and a random forcing. Therefore the heat bath acts

first as an energy trap, absorbing some of the energy of the shock when it passes. This

energy is then given back to the system through the random forcing term to an amount

precised by (3.20). This allows the equilibration of the downstream domain. This heuristic

interpretation is confirmed by some numerical simulations of (3.8) in Section 4.

3.5. Generalization of the system-bath interaction

The Hamiltonian of the system can be written in an abstract form as

H(x, yN) =
1

2
|ẋ|2 + F (x) +

1

2
|M ˙yN |2 +

1

2
|Ax − ByN |2 (3.22)

where x = (. . . , xn−1, xn, xn+1, . . .) and yN = (. . . , y1
n−1, . . . , y

N
n−1, y

1
n, . . . , y

N
n , . . .). The

matrix M is a mass matrix (operator), A and B are general operators, F (x) =∑
∞

n=−∞
V (xn+1 − xn).

In the previous example, B was diagonal. But more generally, B could be considered

as tridiagonal: this could model the interaction of two neighboring heat baths linked to

neighboring spring lengths.

4. Numerical results

The equations of motion (3.5), (3.6) are integrated numerically for a given N , using a

classical velocity-Verlet scheme. The system is initialized with velocities and displacements

generated from (3.12) and (3.13) in the y-coordinates, and from (2.6) in the x coordinates.

Note that the quantities
1

βx
and

1

βy
may differ. The system is then first let to evolve freely,

so that the coupling between transverse and longitudinal directions starts.

Shock waves are generated using a piston in the same fashion as in Section 2.2.3,

giving Figures 9 and 10. We then study relaxation waves (Figure 11).
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The time-step ∆t is chosen to ensure a relative energy conservation of 10−3 in the

absence of external forcing. Typically, ∆t = 0.01. The spectrum density parameter k in

(3.9) is taken to be k = 1. Other choices lead to the same kind of simulation results.

Notice that, if L represents the size of the 1D chain, the algorithmic complexity scales

as O(LN). The computations were made on an usual desktop computer (Pentium 1.0 GHz),

and only took about a couple of hours for the most demanding ones.

4.1. Sustained shock waves

Figures 9 and 10 show the different patterns obtained in the case of a system coupled to a

heat bath. Notice that the upper bound to the spectrum, Ω, is of order π since the shock

is not too strong, and hence the medium is not too compressed. The parameter α is taken

less or equal to Ω so that KΩ and σ(Ω) are sufficiently close from their limiting values.

The parameter λ was varied in the range [0, 5]. If λ is too small, the coupling is too

weak and the profiles look like the pure 1D ones (Note that we recover the purely 1D

model with Hamiltonian (2.2) when λ = 0). If λ is too high, the forcing may be too strong,

leading to the collapse of two neighboring particles if the time step is not small enough. A

good choice of λ involves a good rate of energy transfer to the transverse modes. For the

moment the choice of λ is completely empirical. It would be desirable to estimate it from

full 3D simulations. This is precised to some extent in the next Section.

The results show that the introduction of transverse degrees of freedom has important

consequences on the pure 1D pattern. The soliton train at the front is destroyed, and the

shock thickness is constant along time, instead of growing in time as in the pure 1D case.

This is to the author’s knowledge the first result of this kind for a 1D chain. Thus a

steady regime can now be reached, and these simulations really seem to deserve the name

“shock waves”. In contrast to the pure 1D model results, these simulations have now the

same qualitative behavior as 3D simulations or experiments.

0 200 400 600 800 1000
Particle index

−0.3

−0.15

0

R
el

at
iv

e 
di

sp
la

ce
m

en
t

0 200 400 600 800 1000
Particle index

−0.3

−0.15

0

R
el

at
iv

e 
di

sp
la

ce
m

en
t

Figure 9. Relative displacement profiles for the system coupled to a heat bath (left), and

comparison with a thermalized shock (right). For the thermalized shock, the parameters

are up = 0.3, b = 10 and 1
√

βx

= 0.01. For the system coupled to a heat bath, the

additional parameters are 1√
βy

= 0.02, α = 5, Ω = 10, λ = 0.5. The number of transverse

oscillators is N = 25.
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Figure 10. Same parameters as for Figure 9, except for the system coupled to a heat

bath, N = 100. Left: Relative displacement profile. Right: Local density as a function of

the particle index.

4.2. Rarefaction waves
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Figure 11. Relative displacement profiles for the system coupled to a heat bath (left)

and the thermalized 1D system (right). The parameters for the system coupled to a heat

bath are 1√
βy

= 0.04, α = 2, Ω = 5, λ = 0.5. The system is compressed during t0 = 50.

The relaxation time is t1 − t0 = 350.

As can be seen in Figure 11, a rarefaction wave develops and progressively weakens

the shock (notice that the velocities decrease and that the relative displacement increase

compared to Figures 9 and 10). This is indeed the expected physical behavior for a viscous

fluid. This dissipation can be interpreted as energy transfer to the transverse modes.

Besides, no soliton train survives, contrarily to the pure 1D case, where the solitons

are not destroyed and move on unperturbed. In the pure 1D case, there is no weakening

of the initial wave, only dispersion. Once again, to our knowledge, this is the first time a

1D discrete model behaves as expected.
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5. Conclusion

This study indicates a possible track to thermostate a 1D lattice in a deterministic way,

without fixing the temperature as would require a Langevin thermostatting for instance.

Indeed, when the shock passes, the temperature changes, and a Langevin simulation asks

for an a priori knowledge of the temperature in the shocked region.

The interactions of the chain and the bath naturally lead to memory effects, and can

be described by a memory kernel, at least in some limiting regime. Numerical experiments

illustrate the success of this method. This model indeed qualitatively reproduces some

important features of shock waves (sharpness of the shock front, existence of relaxation

waves, equilibration after the shock has passed). This is in contrast with the classical pure

1D model.

However, this heat-bath thermalization is better suited for shocks that are not too

strong. On the other hand, for strong shocks, nonlinear effects should play an important

role in the energy transfer in the transverse modes, and a bilinear coupling such as (3.4)

may not be a relevant modelling. In this case, a nonlinear coupling in the spirit of [20]

should be more adapted.

An interesting issue is now to compare those reduced 1D profiles with profiles arising

from full 3D simulations. Figure 12 compares the velocity of the center of mass of a

slice of constant thickness of a Lennard-Jones solid (using a FCC structure), in reduced

units [16], and the velocity of the corresponding representative particle (for the 1D model

(3.3) ) as a function of the time. The agreement is reasonable, except at the shock front,

where oscillations remain. A better agreement can however be obtained when using the

SDE formulation (3.21). This agreement can be precised in a more quantitative way by

parameter estimation techniques, as described in [20]. This work is in progress.
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Figure 12. Left: Longitudinal velocity profile for the center of mass of one slice

of constant thickness as a function of time (in reduced units). Right: Velocity of

the corresponding representative particle using the model (3.3) with a Lennard-Jones

potential, with parameters up = 0.3, 1
√

βx

= 1√
βy

= 0.01, α = 2, Ω = 5, λ = 1, N = 200.
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Appendix

The proof of the convergence of the solutions of (3.8) to the solutions of (3.18) can be done

as in [21], by astraightforward extension to the multi-dimensional case (in order to deal

with convergence of sequences).

Denote xN
n the solution of (3.8) for a given number N of transverse variables. We set

δxN
n = xN

n+1 − xN
n . The solution of (3.18) is noted xn. We set λ = 1 to simplify notations.

The extension to more general values of λ is straightforward.

The space of real sequences in noted H = R
�
, and is equiped with the usual l∞-norm.

For a sequence z = {zn} ∈ H:

|z|l∞ = sup
n∈ �

|zn|.

The space H endowed with this norm is then a separable complete metric space.

Consider the array of spring lenghts

QN =




...

δxN
n
...


 ,

and the array of random forcing terms

GN =
1

βy




...

rN
n
...


 .

We similarly define Q and G for the sequence {xn}. (Note that these definitions are

different from the definitions in Section 3.4.3 since we consider here the reduced relative

displacements δxn instead of the particles’ positions xn.)

Recall that the linear operator D, acting on sequences z = {zn} ∈ H, is defined by

Dz = {Dzn} = {zn − zn−1}. It follows |DDTz|l∞ ≤ 4|z|l∞.

Equation (3.8) can be rewritten as (recall λ = 1)

Q̈N = DDT F (QN) +

∫ t

0

KN (s)DDT Q̇N(t − s) ds + DGN(t).
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Introducing KN(t) =
∫ t

0
KN (s) ds and integrating the convolution term by parts,

equation (3.8) becomes

Q̈N −
(

DDTF (QN) +

∫ t

0

KN(s)DDT Q̈N(t − s) ds

)
= DGN(t) − DDT Q̇N(0)KN(t).(A.1)

This equation can be rewritten under a fixed point form as

(Id + RN )Q̈N(t) = FN(t). (A.2)

As F is Lipschitz, ||RN || is small for small T . An usual Picard argument gives the existence

and uniqueness of Q̈N ∈ C([0, T ],H) solving (A.2) for T small enough (see [12], Section 12,

for an analogous proof). Standard results also give the continuity of Q̈N on KN ∈ L1[0, T ]

and UN = DGN − DDTQN (0)KN ∈ C([0, T ],H). The mapping (KN , UN) 7→ QN is then

continuous from L1[0, T ] × C([0, T ],H) to C([0, T ],H) with the corresponding norms.

The convergence of KN in L1[0, T ] is straightforward, and implies the convergence of

KN in L1[0, T ].

The convergence of UN results from the convergence of KN ∈ L1[0, T ] and from the

convergence of GN to G (in a way to precise). We refer to [11], Section VI.4., Theorem 2.

Considering the collection of continuous real-valued stochastic processes GN with values

in H (which is a separable complete metric space), we have to show:

(i) The finite-dimensional distributions of GN weakly converge to those of G, which is a

continuous process.

(ii) A tightness inequality of the form

∀t, t + u ∈ [0, T ], E
[
|GN(t + u) − GN (t)|2l∞

]
≤ C|u|.

Then it follows GN ⇒ G in C([0, T ],H)-weak.

These two points are straightforward generalizations of the proof in [21] (in the case

of non-random pulsations ωj) when extended to sequences with values in H, giving the

convergence UN ⇒ U in C([0, T ],H)-weak.

The convergences of KN to K in L1[0, T ] and UN to U in C([0, T ],H) in a weak sense

then give the convergence of Q̈N in C([0, T ],H) in a weak sense. Therefore, QN ⇒ Q in

C2([0, T ],H)-weak. This implies the convergence in a weak sense for all the components

of QN for T small enough.

For general t, consider e−γtQN for γ large enough, and rescale appopriately the

operators appearing in (A.2). The proof then follows the same lines.


