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Es gibt für Jeden keinen anderen Weg der Entfaltung und Erfüllungals den der möglihst vollkommenen Darstellung des eigenen Wesens.
≫ Sei Du Selbst ≪ ist das ideale Gesetz, zu mindest für den jungenMenshen, es gibt keinen andern Weg zur Warheit und zur Entwik-lung.Daÿ dieser Weg durh viele moralishe and andre Hindernisse er-shwert wird, daÿ die Welt uns lieber angepaÿt und shwah sieht alseigensinnig, daraus entsteht für jeden mehr als durhshnittlih indivi-dualisierten Menshen der Lebenskampf. Da muÿ jeder für sih allein,nah seinen eigenen Kräften und Bedürfnissen, entsheiden, wieweiter sih der Konvention unterwerfen oder ihr trotzen will. Wo er dieKonvention, die Forderungen von Familie, Staat, Gemeinshaft in denWind shlägt, muÿ er es tun mit dem Wissen darum, daÿ es auf seineeigene Gefahr geshieht. Wiewiel Gefahr einer auf sih zu nehmen fähigist, dafür gibt es keinen objektiven Maÿstab. Man muÿ jedes Zuviel,jedes Übershreiten des eigenen Maÿes büÿen, man darf ungestraft we-der im Eigensinn noh im Anpassen zu weit gehen.Hermann Hesse, Eigensinn maht Spaÿ
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Quelques méthodes mathématiques pour la simulation moléulaire etmultiéhelleRésumé : Ce travail présente quelques ontributions à l'étude théorique et numérique des mo-dèles utilisés en pratique pour la simulation moléulaire de la matière. En partiulier, on présenteet on analyse des méthodes numériques stohastiques dans le domaine de la physique statistique,permettant de aluler plus e�aement des moyennes d'ensemble. Une appliation partiulière-ment importante est le alul de di�érenes d'énergies libres, par dynamiques adaptatives ou horsd'équilibre. On étudie également quelques tehniques, stohastiques ou déterministes, utilisées enhimie quantique et permettant de résoudre de manière approhée le problème de minimisationassoié à la reherhe de l'état fondamental d'un opérateur de Shrödinger en dimension grande.On propose en�n des modèles réduits permettant une desription mirosopique simpli�ée desondes de ho et de détonation par le biais d'une dynamique stohastique sur des degrés de libertémoyens, approhant la dynamique hamiltonienne déterministe du système omplet.Mots-lés : Equations aux dérivées partielles, équations di�érentielles stohastiques, systèmesdynamiques en physique statistique, méthodes de Monte-Carlo, ondes de ho.
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1Preamble
1.1 Presentation of the main resultsDuring my PhD, I studied several tehniques for Moleular Simulation, from an applied ma-thematial viewpoint. These studies an be lassi�ed in three domains:(A) mathematial and numerial analysis of some models of quantum hemistry (Part IV);(B) mathematial and numerial analysis of sampling shemes in moleular dynamis, with aspei� fous on stohasti tehniques and free-energy di�erenes omputations (Part II);(C) redution of dimensionality for shok waves (Part III).1.1.1 Quantum hemistryThe methods I studied in quantum hemistry are not mainstream methods, but are nonethelessvery interesting:(a) together with Mihel Caffarel, Eri Canès, Tony Lelièvre, and Anthony Se-mama, we proposed a new sampling method for Variational Monte-Carlo (see [P8℄ andChapter 6), whih proved to be more e�ient and more robust, at least for the benhmarksystems onsidered. This new sampling proedure is an extension of usual sampling shemesin position spae to sampling shemes in phase-spae (onsidering some �titious momenta,it amounts to replaing the traditional biased random-walk used in Variational Monte-Carloby a phase-spae Langevin dynamis);(b) with Eri Canès and Mathieu Lewin we proposed a dual formulation of the eletroniminimization problem stated in terms of seond-order redued density matries (see [P9℄and Chapter 7), and tested the method on a set of small moleules;() I also studied the Optimized E�etive Potential problem (vaguely stated, the loal potentialin the Kohn-Sham equations yielding the best Hartree-Fok exhange energy). In parti-ular, we preised with Eri Canès from a mathematial viewpoint the proposition ofErnest Davidson, Arthur Izmaylov, Gustavo Suseria, and Viktor Staroverov,who de�ne an E�etive Loal Potential through another minimization proedure to remedyonvergene problems arising in pratial omputations (see [P5℄, [A2℄ and Chapter 8).1.1.2 Moleular dynamis and free-energy omputationsMy fous in this domain is on stohasti tehniques to ompute quantities of interest in Sta-tistial Physis.(a) I �rst ompared di�erent sampling tehniques for moleular dynamis, both from theoretialand numerial viewpoints. This was done in ollaboration with Eri Canès and FrédériLegoll (see [P3℄ and Chapter 3).



2 1 Preamble(b) I then turned to the omputation of free-energy di�erenes:(i) �rst using non-equilibrium dynamis and the Jarzynski equality. This equality wasproperly derived only in the ase when the transition is parametrized by some ex-ternal parameter (the so-alled alhemial transitions), and so, together with TonyLelièvre andMathias Rousset, we proposed an extension to the ase when a rea-tion oordinate indexes the transition, using a projeted stohasti dynamis (see [P6℄and Setion 4.1.2). WithMathias Rousset, we also proposed an equilibration proe-dure of the swithing done at �nite rate (trough some birth/death proess) in order toavoid the degeneray of weights in the Jarzynski equality (see [P10℄ and Setion 4.2);(ii) More reently, we turned to adaptive methods for the omputation of free-energy dif-ferenes. We proposed, still with Tony Lelièvre and Mathias Rousset, a generalformalism to present all the adaptive strategies in a uni�ed framework, showed thata stationary state exists, and proposed a seletion proedure to improve the adaptivemethods when parallel implementations are onsidered (see [P4℄ and Setion 4.4.1).Finally, a work in progress with Tony Lelièvre, Felix Otto, andMathias Rous-set, is to rigorously prove the onvergene of some limiting dynamis within thisframework using entropy methods (see [A1℄ and Setion 4.4.2).() I also proposed some extensions to the usual path sampling tehniques when stohastidynamis are used (see [P1℄ and Setion 4.3).1.1.3 Redued models for shok wavesThe work in this �eld was mainly done at CEA (Frenh Atomi Authority), with Jean-Bernard Maillet and Laurent Soulard. The aim of my work was to �nd some reduedmesosopi model to desribe the main features of shok and detonation waves:(a) I �rst proposed a simpli�ed one-dimensional model, suited for rystalline solids (see [P11℄and Setion 5.1);(b) I then proposed a three dimensional redued model for shok waves based on some Dissipa-tive Partile Dynamis model (see [P7℄ and Setion 5.2.2);() With Jean-Bernard Maillet and Laurent Soulard, we ould then extend this modelto the reative ase (see [P2℄ and Setion 5.2.3).The models proposed in [P7,P2℄ have �rm thermodynami grounds, and the orresponding nume-rial results are in good agreement with all-atom studies, in a qualitative [P2℄ and quantitative [P7℄way.
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2Moleular Simulation: A Hierarhy of Models
2.1 Quantum desription of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.1 The Shrödinger equation and the ground state problem . . . . . . . . . . . . 112.1.2 Diret searh of the ground state energy . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.3 Seond-order redued density matries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.4 Wavefuntion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.5 Density funtional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2 Classial desription of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.1 Desription of matter at the mirosopi level . . . . . . . . . . . . . . . . . . . . . . 212.2.2 The miroanonial ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.3 The anonial ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.2.4 Other thermodynami ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2.5 Time-dependent properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.3 Towards longer simulation times and larger system sizes . . . . . . . . . . 262.3.1 Free-energy omputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3.2 Takling the time-sale problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.3.3 Redued dynamis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Quantum and Statistial PhysisQuantum and statistial physis are two important domains of ontemporary physis, bothdesribing matter at the atomi level (see respetively Setion 2.1 and 2.2). Quantum physisonsiders protons, neutrons and eletrons, subjeted to the Shrödinger equation, whereas sta-tistial physis may be applied to quantum or lassial systems.1 In the latter ase, the theoryaims at desribing the behavior of atoms, an entity arising as the reunion of a nuleus (made ofprotons and neutrons) and its eletroni loud. Some important physial onstants are realledin Table 2.1. From these onstants, the typial orders of magnitudes of the desription of matterat the mirosopi level an be inferred: The typial distanes are expressed in Å (10−10 m), theenergies are of the order of kBT ≃ 4 × 10−21 J at room temperature for lassial systems whilefor quantum systems energies are measured in Hartrees (1 Ha = 27.2 eV = 43.6 × 10−19 J), andthe typial times range from 10−17 s to 10−15 s depending whether quantum or lassial systemsare onsidered (so that the typial mass to onsider is the mass of the eletron or the mass of theproton).

1 The term lassial will often be employed as opposed to quantum in the sequel (and not as a synonymousof usual. . . ).



8 2 Moleular Simulation: A Hierarhy of ModelsIn all ases, the orders of magnitude used in the mirosopi desription of matter are far fromthe marosopi quantities we are used to � as is the number of partiles under onsideration,sine marosopi materials ontain NA ∼ 1023 partiles! Fortunately, statistial physis allows tobridge the gap between mirosopi and marosopi desriptions of matter, in partiular(i) in the framework of the thermodynami limit, where the number of partiles in the miro-sopi desription of the system goes to in�nity, as well as the volume of the sample ofmatter, the density being �xed. This kind of limit an however be justi�ed rigorously insome ases only (see for example the book by Ruelle [293℄ for results onerning lassialstatistial physis, and the book by Catto, Le Bris and Lions [55℄ for results aboutquantum models);(ii) in ertain limiting physial regimes (low density, weak oupling, mean-�eld,. . . ), the mi-rosopi system an be desribed by a kineti equation on the single-partile density �suh as the Boltzmann equation (for a mathematial justi�ation of these limits, see thereviews by Spohn, espeially the paper [318℄ and the book [319℄).Table 2.1. Some important physial onstants or quantities in quantum and statistial physis.Physial onstant Usual notation ValueAvogadro number NA 6.02 × 1023Boltzmann onstant kB 1.381 × 10−23 J/KRedued Plank onstant ~ 1.054 × 10−34 JsElementary harge e 1.602× 10−19 CEletron mass me 9.11 × 10−31 kgProton mass mp 1.67 × 10−27 kgPermittivity of the vauum ε0 8.854 × 10−12 F/mEletron-Volt eV 1.602 × 10−19 JComputational Quantum and Statistial PhysisHow pleasant this link is from a theoretial viewpoint, suh onsiderations annot hold forpratial numerial omputations of matter at the mirosopi level sine this would require si-mulating NA atoms and performing O(1015) time integration steps. These numbers should beompared with the urrent orders of magnitude of the problems that an be takled with lassialmoleular simulation, suh as the simulation of the omplete satellite tobao mosai virus [111℄,whih involved 1 million atoms over 50 ns, or the folding simulations of the Villin headpiee,2where a total trajetory of 500 µs was integrated for 20,000 atoms.Computational moleular simulation, despite its limitations, has however been used and de-veloped in the past �fty years in order to test theories on omputers before their appliations tothe real world. It is a urrent alternative to approximate theories desribing simpli�ed models,hene the name of �numerial experiment�. This use of moleular simulation is partiularly learin its histori development, whih was triggered and sustained by the physis of simple liquids, forwhih there was no good analytial theory (see the pioneering work ofMetropolis,Rosenbluth,Rosenbluth, Teller and Teller [238℄ in 1953, and the �rst moleular dynamis simulation ofAlder andWainwright in 1956 [3℄). Computational quantum hemistry also started in the 50's,with the works of Hall [149℄ and Roothan [288℄ in 1951, and the work of Kohn and Sham [195℄in 1965 for ondensed matter studies.
2 See the website of the Folding�Home projet: http://folding.stanford.edu/



2.1 Quantum desription of matter 9The numerial mirosopeMoleular simulation an be used as a numerial mirosope. Indeed, understanding the beha-vior of matter at the mirosopi level an be di�ult from an experimental viewpoint (beause ofthe high resolution required, both in time and in spae), or beause we simply do not know whatto look for! Numerial simulations are then a valuable tool to test some ideas or obtain some datato proess and analyze in order to help assessing experimental setups. This is partiularly true forurrent nanosale systems. Nevertheless, omputer experiments annot simply replae real-worldexperiments: they should merely be seen as a onvenient �rst step in the onstrution of newtheories.Computation of average properties of physial systemsOne of the major aims of moleular simulation is to ompute average properties of systems -i.e. marosopi quantities that ould also be measured through experiments, but are omputedsine experiments may be unfeasible or too ostly. A famous instane of suh omputations is theinvestigation of the earth's inner ore properties using ab-initio omputations [316℄. More generally,numerial experiments beome very attrative when high pressure or temperature regimes areonsidered.Statistial physis also allows to bridge the gap between physial systems simulated at themirosopi level, and marosopi quantities of interest, through averages over thermodynamiensembles:
〈A〉 =

∫

MN×R3N

A(q, p) dµ(q, p). (2.1)In this expression, the funtion A ≡ A(q, p) is an observable, and the position variable q =

(q1, . . . , qN ) ∈ MN while the momentum variable p = (p1, . . . , pN ) ∈ R3N . The measure µ is aprobability measure depending on the thermodynami ensemble used. These quantities will bepreised in Setion 2.2.An example of observable is the bulk pressure P in a Lennard-Jones liquid. For partiles ofmasses mi, desribed by their positions qi and their momenta pi, it is given by P = 〈A〉 with
A(q, p) =

1

3|M|

N∑

i=1

( |pi|2
mi

− qi ·
∂V

∂qi
(q)

)
,where |M| is the volume oupied by the system, and the potential energy funtion V is givenby (2.26)-(2.27).In pratie, suh averages an be omputed with very small systems ompared to the atualsizes of marosopi systems (provided the interation potentials are short-ranged). For example,the equation of state of Figure 2.1 has been omputed with a system of a few thousands partilesonly, 20 orders of magnitude below the Avogadro number. The agreement with experimentalmeasurements is however very good, and high-pressure results not easily obtained with experimentsan be omputed.2.1 Quantum desription of matterWe will onsider in this setion a moleular system omposed of M nulei, onsidered �xed atthe positions x̄i ∈ R3 (1 ≤ i ≤ M), and N eletrons, with position and spin variables denotedrespetively by xj ∈ R3 and σj ∈ {| ↑ 〉, | ↓ 〉} (1 ≤ j ≤ N). The state of the system is desribed attime t by a wavefuntion

ψ(t; (x1, σ1), . . . , (xN , σN )) ∈ C.
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Fig. 2.1. Numerial equation of state of argon at T = 300 K ('+') and experimental referene urve(solid line). The ideal gas regime is plotted in dash-dotted line.For the wavefuntion ψ to be an admissible physial state, the following requirements must besatis�ed:(i) Normalization: the wavefuntion is normalized for the L2 norm, that is
∑

σ1∈{|↑ 〉,|↓ 〉}
. . .

∑

σN∈{|↑ 〉,|↓ 〉}

∫

R3N

|ψ(t, (x1, σ1), . . . , (xN , σN ))|2 dx1 . . . dxN = 1. (2.2)This property results from the interpretation of |ψ(t, ·)|2 as a probability density;(ii) Indistinguishability of idential partiles: The Pauli priniple requires that the wavefun-tion is antisymmetri under the exhange of oordinates (position, spin) of two identialpartiles. More preisely, for a permutation p of the indies {1, . . . , N} of signature ε(p),
ψ(t, (xp(1), σp(1)), . . . , (xp(N), σp(N))) = ε(p)ψ(t, (x1, σ1), . . . , (xN , σN )).The admissible funtions are therefore the elements of the spae

H =

N∧

i=1

L2
(
R3 × {| ↑ 〉, | ↓ 〉}, C

)
.with norm 1 (for the salar produt indued by (2.2)).To preise further the funtional spae, we introdue the Hamiltonian of the system

H = −
N∑

i=1

~2

2m
∆xi −

N∑

i=1

M∑

k=1

Zke
2

4πε0|xi − x̄k|
+

∑

1≤i<j≤N

e2

4πε0|xi − xj |
,where Zke is the harge of the k-th nuleus and m is the mass of the eletron. In the sequel, wewill onsider atomi units, for whih

m = 1, e = 1, ~ = 1,
1

4πε0
= 1.In this ase, the mass unit is 9.11×10−31 kg, the length unit is the Bohr radius a0 = 5.29×10−11 m,the time unit is 2.42×10−17 s, and the energy unit is the Hartree Ha = 4.36×10−18 J = 27.2 eV =627 kal/mol. This hange of units allows to onsider more intuitive values of physial quantities:for small systems at equilibrium (N and Z =

∑M
k=1 Zk small), the typial distanes between an



2.1 Quantum desription of matter 11eletron and the nulei where it is bound to are of the order of the Bohr radius, and the energiesat equilibrium are of the order of several Ha. The Hamiltonian reads, in atomi units,
H = −

N∑

i=1

1

2
∆xi −

N∑

i=1

M∑

k=1

Zk
|xi − x̄k|

+
∑

1≤i<j≤N

1

|xi − xj |
. (2.3)In the sequel, we will denote

Vnuc(x) = −
M∑

k=1

Zk
|x− x̄k|

.The Hamiltonian operator (2.3) is self-adjoint on H (for an introdution to the spetral theory ofquantum Hamiltonians, see the books by Reed and Simon [277℄ or Dautray and Lions [99℄).2.1.1 The Shrödinger equation and the ground state problemWe will be interested in the sequel in ground-state properties of systems desribed at the quan-tum level, i.e. �nding the lowest eigenvalue of the operator H , and the orresponding eigenvetor.To this end, the following minimization problem is introdued:
E = inf{〈ψ,Hψ〉 | ψ ∈ H, ‖ψ‖L2 = 1}. (2.4)A minimizer of (2.4) is an eigenvetor of the Hamiltonian assoiated with E:

Hψ = Eψ.The existene of minimizers for (2.4) for Coulombi potentials is ensured when ∑M
k=1 Zk ≥ N byresults of spetral theory [99, 277, 377℄. Sine H is a real valued operator, the minimization anbe restrited to real-valued funtions. Atually, in view of the Laplaien in the Hamiltonian (2.3),the minimization in (2.4) an even be restrited to funtions in

H1 =
N∧

i=1

H1
(
R3 × {| ↑ 〉, | ↓ 〉}, C

)
.Remark 2.1. In order to avoid unneessarily heavy notations, the dependene of the ground-stateenergy on the nulei positions x̄1, . . . , x̄M is not denoted expliitely. It is however onvenient toexpliitely parametrize the ground-state energy as

U(x̄1, . . . , x̄M ) = inf {〈ψ,Hx̄1,...,x̄Mψ〉 | ψ ∈ H, ‖ψ‖L2 = 1} (2.5)to study the dynamis of the system and its statistial properties (see Setion 2.2). The funtion Ude�ned in (2.5) is in this ase the interation potential between the partiles. The whole proedureis referred to as ab-initio moleular dynamis. It relies on the approximation that the evolution ofthe eletroni and nulear degrees of freedom an be deoupled, more preisely that the eletronidegrees of freedom an be desribed by a wavefuntion where only the positions of the nulei enteras parameters (in partiular, it is not neessary to take the nulear momenta into aount). Moremathematial preisions on this approximation (the so-alled Born-Oppenheimer approximation)an be found in the book by Teufel [342℄.For simpliity, we omit in the sequel the spin variable in the minimization (2.4) sine themathematial di�ulties are left unhanged.



12 2 Moleular Simulation: A Hierarhy of Models2.1.2 Diret searh of the ground state energyWe present in this setion methods to solve diretly (possibly, only approximately) the mini-mization problem (2.4). This is a non-trivial task sine the minimization is performed in L2(R3N )(with 3N large), so that usual optimization tehniques are usually hopeless, exept for smallsystems.Variational Monte-CarloThe variational Monte-Carlo (VMC) method relies on the following upper bound for theground-state energy (2.4): for an arbitrary funtion ψ ∈ H,
E ≤ 〈ψ,Hψ〉

〈ψ, ψ〉 =

∫

R3N

EL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
, (2.6)with EL(x) = [Hψ](x)/ψ(x). The funtion EL(x) is alled the loal energy of the funtion ψ.Remark that if ψ is an eigenfuntion of H assoiated with the eigenvalue E, EL(x) = E for all x,and in this ase the variane of EψL (with respet to the measure of density |ψ(x)|2) is zero.VMC alulations are usually performed with trial wavefuntions ψ that are good approxi-mations of some ground state wavefuntion ψ0. These wavefuntions are often sums of single de-terminantal wavefuntions built upon Slater-type atomi orbitals, multiplied by a Jastrow fator(see Eq. (6.8) for more preisions, and the mathematial analysis by Fournais, Hoffmann-Ostenhof, Hoffmann-Ostenhof and Ostergaard Sorensen [110℄ to motivate the intro-dution of the Jastrow orrelation terms). When several suh trial wavefuntions are onsidered,possibly depending on some parameters, and when these parameters are optimized (to minimizethe energy or the variane of EψL), good upper bounds to the ground-state energy an be obtained(see in partiular the work by Umrigar and Fillippi [351℄ for suh a study).In pratie, the expetation value in (2.6) an be seen as the average of the quantity EL withrespet to the probability measure Z−1

ψ |ψ(x)|2 dx (with Zψ =
∫

R3N |ψ|2). Sine the integrationin (2.6) is performed in a high dimensional spae, it is natural to resort to stohasti tehniques.Suh tehniques are presented in Chapter 3 and an all be adapted to the VMC framework. In par-tiular, we have shown in [P8℄, with E. Canès, M. Caffarel, A. Semama and T. Lelièvre,that it is interesting to replae the gradient dynamis traditionally used in the VMC ommunityby a Langevin type dynamis (with some tehnial adaptations, see Chapter 6 for a more detailedpresentation of this new strategy and the orresponding numerial results).Di�usion Monte-CarloThe Di�usion Monte-Carlo (DMC) method onsists in remarking that the ground state of anellipti operator an be reovered as the longtime limit of a di�usion proess. Indeed, when theHamiltonian is self-adjoint and there exists a spetral gap γ > 0 in the disrete spetrum betweenthe �rst eigenvalue (assumed to be a isolated eigenvalue of multipliity 1) and the seond one, thesolution of
∂φ

∂t
= −Hφ, φ(0, x) = ψI(x), (2.7)is suh that

‖eE0tφ(t) − 〈ψI , ψ0〉ψ0‖ ≤ Ce−γt,where ψ0 denotes a ground-state wavefuntion, and E0 the assoiated ground-state energy. It analso be shown that the energy omputed at time t onverges exponentially fast to the ground-stateenergy; more preisely,
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0 ≤ 〈ψI , Hφ(t)〉

〈ψI , φ(t)〉 − E0 ≤ 〈HψI , ψI〉 − E0

〈ψ0, ψI〉
e−γt.In pratie, it is one again di�ult to solve diretly (2.7) beause of the high dimension ofthe partial di�erential equation. Stohasti methods are therefore used: (2.7) is interpreted as theFokker-Plank equation assoiated with a stohasti di�erential equation (SDE), and the ground-state energy is estimated by simulating the assoiated SDE and using a Feynman-Ka formula.However, this is not su�ient as suh due to large varianes in the estimates. Importane samplingtehniques are therefore used in pratie. They onsist in hoosing a trial wavefuntion ψI suhthat EL(x) = [HψI ](x)/ψI(x) is as onstant as possible (as for VMC alulations), onsidering φ̃ =

ψIφ, and solving the orresponding di�usion equation on φ̃ by stohasti methods.The introdution of some importane sampling funtion ψI has however the drawbak thatthe equation on φ̃ is not ompletely equivalent to (2.7). The nodes ψ−1
I (0) of the wavefuntionimpose indeed additional onstraints, and only upper bounds on the energy are obtained. Thisis the so-alled �xed node approximation. A mathematial analysis of the DMC method and the�xed-node approximation is presented by Canès, Jourdain and Lelièvre in [50℄.Deterministi methodsAlthough the minimization problem (2.4) is a high-dimensional problem, and so, straightfor-ward minimization tehniques (onjugated gradient, et) are usually hopeless, suh approahesare nevertheless interesting to obtain benhmark results on small systems. The straightforwardgradient method based on the minimization of

E(ψ) =
〈ψ,Hψ〉
〈ψ, ψ〉leads to iterates of the form

ψn+1 = ψn + cn(H − E(ψn))ψn.This iterative proedure is therefore not well-posed in general sine the operator H is unboun-ded. To remedy this problem, Nakatsuji proposed to introdue some (self-adjoint) regularizationoperator S and to solve the so-alled saled Shrödinger equation [254, 255℄
SHψ = ES Sψ,where the ground-state energy ES is obtained as

ES = inf

{ 〈ψ, S1/2HS1/2ψ〉
〈ψ, Sψ〉

∣∣∣∣ ψ ∈ H
}
. (2.8)The regularization operator is suh that S1/2HS1/2 is bounded, and Sψ = 0 implies ψ = 0.Atually, ES = E, so that the minimization problem (2.8) is equivalent to (2.4). The interest ofthe formulation (2.8) is that the assoiated gradient minimization

ψn+1 = ψn + cnS
1/2(H − ES(ψn))S1/2ψnis well-posed. Beside the diret minimization of (2.4), this proedure is also a systemati way toimprove trial wavefuntions for VMC or DMC proedures [255℄.A more ommon approah to obtain benhmark results for small systems is to resort to fullon�guration interation (full CI) omputations. In this ase, some Galerkin basis (φ1, . . . , φNb

)ofH1 (Nb ≥ N) is introdued. Denoting by I the set ofN -tuples of distint elements of {1, . . . , Nb},the minimization is performed over wavefuntions of the form



14 2 Moleular Simulation: A Hierarhy of Models
ψ =

∑

i∈I
cI ψI ,where, for I = (i1, . . . , iN) ∈ I, ψI is the Slater determinant ψI = (N !)−1/2 Det(φi1 , . . . , φiN ). Theassoiated approximated minimization problem

EFCI = inf

{
〈ψ,Hψ〉

∣∣∣∣∣ ψ =
∑

i∈I
cI ψI , ‖ψ‖L2 = 1

}gives an upper bound of the ground-state energy. Notie however that the number of determinantsto be onsidered inreases fatorially with Nb, whih is a severe pratial limitation to the method.2.1.3 Seond-order redued density matriesIt was reognized in the 50s by researhers suh as Mayer [232℄, Löwdin [220℄ or Coul-son [72℄, that the wavefuntion needs not to be known in its full generality to ompute theground-state energy of a system desribed by a Hamiltonian (2.3) involving only pair interations.Indeed,
〈ψ,Hψ 〉 = Tr(hγ) +

1

2

∫

R3×R3

Γ (x, y ; x, y)

|x− y| dx dy = Tr(KΓ ), (2.9)where the operator
hx = −1

2
∆x + V (x)is self-adjoint on L2(R3), and the 2-body operator

K =
1

2(N − 1)
(hx1 + hx2) +

1

2|x1 − x2|is self-adjoint on L2(R3 × R3). The funtions γ and Γ are respetively the �rst and seond orderredued density matries, the p-th order redued density matrix assoiated with a wavefuntion ψbeing de�ned as
Γ (p)(x1, . . . , xp; y1, . . . , yp)

=
N !

(N − p)!

∫

R3(N−p)

ψ(x1, . . . , xp, xp+1, . . . , xN )ψ(y1, . . . , yp, xp+1, . . . , xN ) dxp+1 . . . dxN .(2.10)In partiular, the �rst and seond-order density matries are related through
γ(x, y) =

1

N − 1

∫

R3

Γ (x, x2; y, x2) dx2.The formulation (2.9) of the eletroni problem (2.4) shows that the minimization an berestrited to funtions Γ ≡ Γ (2) depending on 4 variables only. However, no neessary and su�ientonditions are known to ensure that a given seond-order redued density matrix (2-RDM) isobtained from a wavefuntion ψ through the ontration (2.10) in the ase p = 2. This is the so-alled N -representability problem of 2-RDMs for pure states. An extension of this issue onsists inharaterizing the density matries whih are onvex ombinations of admissible 2-body densityoperators:
Γ (x, y) =

+∞∑

i=1

niΓi(x, y), 0 ≤ ni ≤ 1,
+∞∑

i=1

ni = N,



2.1 Quantum desription of matter 15the 2-body density operator Γi being obtained from wavefuntions ψi ∈ H1 through (2.10) inthe ase p = 2. Elements in the set CN of onvex ombinations of 2-body density operators areensemble seond order density matries. The �rst works on N -representability have been done byColeman [69℄, and the reent monogrpaph by Coleman and Yukalov [71℄ desribes the urrentsetting of this researh �eld (see also Setion 7.2). To this date, only neessary N -representabilityonditions are known; these onditions are stated in terms of linear (in)equalities. Therefore, onlylower bounds to the true ground-state energy an be reovered this way (sine the variationalspae is too large).From a numerial viewpoint, the �rst enouraging results were obtained in 1975 by Garrod,Mihaillovi and Rosina [120℄, and reently very good numerial results were obtained withsemi-de�nite programming tehniques, suh as interior point methods (see Nakata et al. [253℄)and extended Lagrangian formulations (see the papers byMazziotti [234�236℄). With E. Canèsand M. Lewin, we proposed in [P9℄ a dual approah to this minimization problem. Introduingthe augmented Lagrangian
L(Γ,B, µ) = Tr(KΓ ) − Tr(BΓ ) − µ{Tr(Γ ) −N(N − 1)},it an be shown

E = inf
Γ

sup
B∈(CN )∗, µ∈R

L(Γ,B, µ)where CN is the one of admissible 2-RDMs, and (CN )∗ its polar one, the minimization on Γbeing restrited to symmetri funtions. In a dual manner,
E = sup

B∈(CN )∗, µ∈R

inf
Γ

L(Γ,B, µ) = N(N − 1) sup{µ | K − µ ∈ (CN )∗},the minimization on Γ being also restrited to symmetri funtions (see Setion 7.3). Therefore,the minimization problem (2.9) an be redued to a one-dimensional minimization. The pratialimplementation of this idea uses a Newton algorithm for the optimization in the µ variable,ombined with an internal loop to �nd the projetion of K − µn onto (CN )∗ at the n-th iteration(see [P9℄ and Algorithm 7.1 in Setion 7.3).2.1.4 Wavefuntion methodsVariational wavefuntion methods make ansatz on the funtional form of the wavefuntion ψ,and then perform a minimization analogous to (2.4). The most ommonly used approximation isthe Hartree-Fok (HF) approximation, whih onsists in restriting the variational spae in (2.4)to single Slater determinants (whih are indeed antisymmetri funtions):
ψ(x1, . . . , xN ) =

1√
N !

Det(φi(xj)), (2.11)where the N -tuple Φ = {φi}i=1,...,N is suh that
φi ∈ H1(R3),

∫

R3

φi(x)φj(x) dx = δij .The energy assoiated with the wavefuntion (2.11) is
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〈ψ,Hψ〉 = EHF(Φ) =

1

2

N∑

i=1

∫

R3

|∇φi(x)|2 dx−
∫

R3

Vnuc(x)ρΦ(x) dx

+
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy − 1

2

N∑

i=1

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y| dx dy,(2.12)where the �rst-order redued density matrix and density assoiated with Φ are respetively

γΦ(x, y) =

N∑

i=1

φi(x)φi(y), ρΦ(x) = γΦ(x, x).The assoiated minimization problem is
EHF = inf

{
EHF(Φ)

∣∣∣∣ Φ = {φi}i=1,...,N , φi ∈ H1(R3),

∫

R3

φiφj = δij

}
. (2.13)Sine the partiular ansatz (2.11) is made, the variational spae is too small, the HF energyis an upper bound to the ground-state energy (2.4). The existene of a minimizer for (2.13)when Z =

∑M
k=1 Zk > N − 1 has been shown by Lieb and Simon [211℄. However, nothing isknown about the uniqueness of the minimizer (up to an orthogonal transformation on the N -tuple Φ).In physial terms, the di�erene between the ground-state energy and the Hartree-Fok energyis alled the orrelation energy. Indeed, the assumption (2.11) is some independene assumptionof the eletrons, ompatible with the Pauli priniple. When the spin variable is onsidered, onlytwo eletrons with the same spin are orrelated with the HF ansatz, while for the true wavefun-tion, eletrons with di�erent spins are orrelated due to the Coulomb interation (whih preventseletrons to be too lose one from another).A minimizer of (2.13) satis�es the Hatree-Fok equations, whih are the Euler-Lagrange equa-tions assoiated with (2.13) (using the invariane through any unitary transform, see for instaneCanès, Defraneshi, Kutzelnigg, Le Bris and Maday [53℄):

FΦφi = −1

2
∆φi + Vnucφi +

(
ρΦ ⋆

1

|x|

)
φi +KΦφi = ǫiφi. (2.14)In this expression, the exhange operator KΦ is de�ned as

KΦϕ(x) = −
∫

R

γΦ(x, y)

|x− y| ϕ(y) dy. (2.15)Under the assumption Z ≥ N , Lions proved in [214℄ that there are in�nitely many solutionsto the nonlinear eigenvalue problem (2.14). It is not known whih additional onditions must besatis�ed by the solutions of (2.14) for them to be minimizers of (2.13). On the other hand, if Φ is aminimizer of (2.13), then the orresponding eigenvalues ǫi are the N lowest eigenvalues of FΦ [214℄,and ǫN+1 > ǫN (see Bah, Lieb, Loss and Solovej [17℄).From a numerial viewpoint, �xed-points of (2.14) are sought for, usually through self-onsistent algorithms; indeed, even if (2.14) is not equivalent to (2.13), (2.14) turns out to beeasier to solve in pratie. An introdution to the orresponding numerial tehniques and to themathematial analysis of their onvergene an be read in the book by Canès, Le Bris andMaday [52℄ (see also [53℄ for a more omprehensive presentation).Many methods were proposed and developed to improve the HF approximation. A lassi�-ation of these so-alled post Hartree-Fok methods is presented in [53℄, where variational andnon-variational approahes are distinguished. An example of variational post-HF method is themultion�guration self-onsistent �eld method, for whih the wavefuntion is written as a �nite



2.1 Quantum desription of matter 17sum of single Slater determinants (reall indeed that any admissible wavefuntion an be writtenas an in�nite sum of single determinants). This method has reently been investigated from amathematial perspetive by Frieseke [114℄ and Lewin [208℄.2.1.5 Density funtional theoryThe Hohenberg and Kohn ideaTheHohenberg andKohn theorem [161℄ expresses the fat that the knowledge of the ground-state density of a system ompletely determines the potential Vnuc (up to a onstant), and theground-state wavefuntion ψ. Therefore, the minimization (2.4) over all possible wavefuntionsan be replaed by a minimization over all admissible densities (see (2.18) below). Heuristially, itindeed is expeted that the derivative of the eletroni density presents singularities at the positionsof the atomi nulei, and the strength of these singularities is related to the eletroni harge ofthe orresponding nulei (Kato's usp onditions [190℄). All the parameters of the Coulombipotential an therefore be reovered from the density.The eletroni energy of a system is de�ned, for an external potential V ∈ L3/2(R3) + L∞(R3)(so that V ≡ Vnuc with the notations used until here), as
E(V ) = inf

ψ∈H1

{〈
ψ,

(
H0 +

N∑

i=1

V (xi)

)
ψ

〉}
= inf
ψ∈H1

{
〈ψ,H0ψ〉 +

∫

R3

ρψV

}
, (2.16)where the Hamiltonian

H0 =

N∑

i=1

−1

2
∆xi +

∑

1≤i<j≤N

1

|xi − xj |
,does not depend on V , and where ρψ is the eletroni density assoiated with the wavefuntion ψthrough

ρψ(x) = N

∫

R3(N−1)

|ψ(x, x2, . . . , xN )|2 dx2 . . . dxN .Notie that, thanks to Sobolev embeddings, ρψ ∈ L1(R3) ∩ L3(R3). The funtional [210℄ de�nedfor ρ ∈ L1(R3) ∩ L3(R3) as
FL(ρ) = sup

V ∈L3/2(R3)+L∞(R3)

{
E(V ) −

∫

R3

ρV

}
, (2.17)has been introdued by Lieb [210℄. Note that FL is a onvex funtion, and that the ground-stateenergy an be reovered as

E(V ) = inf
ρ∈L1(R3)∩L3(R3)

{
FL(ρ) +

∫

R3

ρV

}
. (2.18)This is a onsequene of the fat that FL is the Legendre transform of E (reall that L3/2(R3) +

L∞(R3) is the dual spae of L1(R3) ∩ L3(R3) and that the funtional E de�ned by (2.16) isonave [210℄). The fat that the minimization in (2.18) an be restrited to a minimization overeletroni densities motivates the name density funtional theory (DFT).An alternative de�nition of the Lieb funtional uses onvex ombinations of N -partile densityoperators, of the form
Γ (N)(x, y) =

+∞∑

i=1

niΓ
(N)
i (x, y), 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,



18 2 Moleular Simulation: A Hierarhy of Modelsthe N -partile density operator Γ (N)
i being obtained from wavefuntions ψi ∈ H1 through (2.10).The set of onvex ombinations of N -partile density operators is the set DN of ensemble N -partile density operators. In this setting,

FL(ρ) = inf
{

Tr(H0Γ
(N)), Γ (N) ∈ DN , Γ (1)(x, x) = ρ(x)

}
.The fat that this de�nition oinides with the previous one is proven in [210℄.In order to obtain pratial models, the (unknown) funtion FL has to be preised. There aretwo main approahes:(i) in the so-alled orbital-free methods, FL is an expliit funtion of the density ρ only. Forexample, the Thomas-Fermi model approximates FL by

FTF(ρ) =
10

3
(3π2)2/3

∫

R3

ρ5/3 +
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy;(ii) in Kohn-Sham models, a non-interating system of N eletrons is onsidered, and ρ is thesum of the orresponding individual densities of the eletrons.3Pratial implementation of DFT : the Kohn-Sham shemeIn most urrent omputations, DFT is implemented through theKohn and Sham (KS) sheme.First, onsidering a non-interating eletron gas, H0 is approximated by its kineti part T =

− 1
2

∑N
i=1∆xi . The assoiated energy is the Janak kineti energy funtional

TJ(ρ) = inf
{
Tr(H0Γ

(N)), Γ (N) ∈ DN , Γ (1)(x, x) = ρ(x)
}
,

= inf

{
1

2

+∞∑

i=1

ni

∫

R3

|∇φi|2, φi ∈ H1(R3),

∫

R3

φiφj = δij , 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,

+∞∑

i=1

ni|φi|2 = ρ

}
.This approah orresponds to the so-alled extended KS model, in whih frational oupationnumbers ni are allowed. The funtional TJ an be de�ned as above for ensemble N -representabledensities ρ, i.e. arising from the ontration of density operators belonging to DN . Coleman [69℄showed that the set of ensemble N -representable densities of �nite kineti energy is

IN =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫

R3

ρ = N

}
.The eletrostati energy is then approximated by the Coulomb energy

J(ρ) =
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy.Finally, the error done on the kineti energy and on the eletrostati interation energy is om-pensated by the so-alled exhange-orrelation energy:
Exc(ρ) = FL(ρ) − TKS(ρ) − J(ρ). (2.19)The (extended) Kohn-Sham approah onsiders the following minimization problem:

3 This explains a posteriori why the Thomas-Fermi like models are alled orbital-free models. . .
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EKS(V ) = inf

{
1

2

+∞∑

i=1

ni

∫

R3

|∇φi|2 +

∫

R3

ρV +
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy + Exc(ρ),

φi ∈ H1(R3),

∫

R3

φiφj = δij , 0 ≤ ni ≤ 1,

+∞∑

i=1

ni = N,

+∞∑

i=1

ni|φi|2 = ρ

}
.

(2.20)Provided Exc is di�erentiable in IN at ρ ∈ IN and denoting by vxc(ρ) its funtional derivative,the Euler-Lagrange equations assoiated with (2.20) are the (extended) Kohn-Sham equations
−1

2
∆φi(x) + V (x)φi(x) +

(∫

R3

ρ(y)

|x− y| dy
)
φi(x) + vxc(ρ)φi(x) = ǫiφi(x), (2.21)together with the onstraints ∫

R3 φiφj = δij , and ni = 1 if ǫi < εF , 0 ≤ ni ≤ 1 if ǫi = εF , ni = 0if ǫi > εF . The Lagrange multiplier εF of the onstraint∑+∞
i=1 ni = N is the so-alled Fermi level.The usual Kohn-Sham equations

−1

2
∆φi(x) + V (x)φi(x) +

(∫

R3

ρ(y)

|x− y| dy
)
φi(x) + vxc(ρ)φi(x) = ǫiφi(x), (2.22)with ni = 1 if 1 ≤ i ≤ N , and ni = 0 otherwise, are obtained when only integer oupation numbersare allowed. The existene of a minimizer to the minimization problem assoiated with (2.22) (andhene, the existene of a normalized solution to (2.22)) has been proved by Le Bris [42℄ for someusual approximations of vxc.Reall at this point that the potential V used here is the external potential (for instane,the potential Vnuc generated by the nulei). Therefore, the Kohn-Sham equations are formallysimilar to the Hartree-Fok equations (2.14), exept that the non-loal exhange operator has beenreplaed by a loal exhange-orrelation potential. This similarity has been used in the early daysof quantum hemistry to simplify the Hartree-Fok equations, by replaing the non-loal exhangepotential by its �best� approximation. The quality of this approximation must be understood in avariational sense, and is known as the Optimized E�etive Potential (OEP) approah (see belowand Chapter 8).Exhange-orrelation funtionalsThe most simple approximation of Exc(ρ) is the loal density approximation (LDA), based onthe homogeneous eletron gas piture. It reads

ELDA
xc (ρ) =

∫

R3

ρ(x)εLDA
xc (ρ(x)) dx,where εLDA

xc = εLDA
x + εLDA

c . The exhange part an be omputed analytially as εLDA
x (ρ) =

−CDρ4/3, where CD = 3
4 ( 3
π )1/3 is the Dira onstant. On the other hand, the orrelation parthas to approximated, using for instane very aurate Quantum Monte-Carlo omputations. Asan improvement, it was suggested to onsider spin-dependent densities ρ|↑ 〉 and ρ|↓ 〉 and gradientorretions ∇ρ|↑ 〉, ∇ρ|↓ 〉 to aount for inhomogeneities in the eletron density (hene the nameGeneralized Gradient Approximation (GGA) for this method). Many re�nements to these funtio-nals were proposed (for example, relying on orbital dependent funtions or using the Hartree-Fokexhange funtional), but the quest for a high-quality transferable exhange-orrelation is de�nitelynot over (see for instane the review by Suseria and Staroverov [304℄).



20 2 Moleular Simulation: A Hierarhy of ModelsFinding relevant exhange-only funtionals: the Optimized E�etive PotentialapproahSharp and Horton [308℄ proposed a systemati way to obtain loal potentials approximatingthe non loal Hartree-Fok exhange operator KΦ given by (2.15). They suggest to minimizethe energy of the Slater determinant onstruted with the eigenfuntions ooresponding to the
N lowest eigenvalues of some one-eletron Shrödinger operator − 1

2∆ + W , W being a 'loalpotential'.4 This trak was further explored by Talman and Shadwik [338℄. The orrespondingminimization problem is the so-alled Optimized E�etive Potential (OEP) problem, whih anbe vaguely stated as
inf
W

{
EHF(φW1 , . . . , φWN )

∣∣∣∣
∫

R3

φWi φ
W
j = δij , (φW1 , . . . , φWN ) are the eigenvetorsorresponding to the N lowest eigenvalues of HW = −1

2
∆+W

}
.

(2.23)However, this minimization problem, stated as suh, does not seem to be well-posed sine thereis no straightforward bound on a minimizing sequene (Wn) in any natural norm (see the workby Ben-Haj-Yedder, Canès and Le Bris [25℄). A way to irumvent this di�ulty is to replaethe minimization problem (2.23) by formally equivalent onditions that do not expliitely referto a loal potential W . In this ase, some mathematial results about the well-posedness of theequivalent problem an be stated (see [25℄, as well as the brief summary of Setion 8.2).Besides these mathematial issues, there are also numerial problems in the omputation ofthe OEP when the problem is disretized using basis sets (see e.g [321℄). It is therefore temptingto replae the minimization problem (2.23) by a simpler minimization problem, also stating thatthe exhange potential to be onsidered is some optimal approximation of the non-loal exhangeoperator (2.15). Together with E. Canès, E. Davidson, A. Izmaylov, G. Suseria and V.Staroverov [P5,A2℄, we showed that it is possible to de�ne (up to an additive onstant) anE�etive Loal Potential (ELP), whih is suh that
vELP = arginf

v∈L3(R3)+L∞(R3)

{
1

2
‖[v −KΦ, γΦ]‖2

HS

}
, (2.24)where ‖ · ‖HS is the Hilbert-Shmidt norm for L2(R3) operators, and [A,B] = AB − BA. Themathematial study of the well-posedness of the minimization problem (2.24) an be read inSetion 8.3.The ELP potential has an analyti form, whih is very useful for pratial omputations. Let ushowever notie that this potential was already derived by other (non-variational) means in [138,297℄. The existene of solutions to the Kohn-Sham equations with a simpli�ed loal exhangepotential (solution of a simpler variational problem in Hilbert-Shmidt norm, and proposed bySlater [312℄) is shown in Setion 8.1 for radial orbitals.

4 The notion of loal potential does not have a preise meaning in the physis and hemistry literature; itis enough for this introdution to think onsiderW ∈ L3/2(R3)+L∞
ε (R3) as a multipliative operator. Inthis ase, the essential spetrum of the operator − 1

2
∆+W is still [0,+∞) [52,277℄. The set L3/2(R3)+

L∞
ε (R3) is the set of all funtion φ whih, for all ε > 0, an be written as a sum φ = φ3/2 + φ∞ with
φ3/2 ∈ L3/2(R3) and ‖φ∞‖L∞(R) ≤ ε.



2.2 Classial desription of matter 212.2 Classial desription of matter2.2.1 Desription of matter at the mirosopi levelWe onsider in this setion mirosopi systems omposed of N partiles (typially atoms, i.e.nulei and their eletroni louds), desribed by the position of the partiles q = (q1, · · · , qN ) ∈
R3N and the assoiated momenta p = (p1, · · · , pN) ∈ R3N . For physial and biologial systemsurrently studied, N is typially between 103 and 109. The interation between the partiles istaken into aount through a potential V ≡ V (q), and the total energy of the system system isgiven by the Hamiltonian

H(q, p) =
1

2
pTM−1p+ V (q), (2.25)where M = Diag(m1, . . . ,mN ) is the mass matrix.Potential funtionsThe interation potentials ould, in priniple, be obtained from (2.5). This is indeed the asein ab-initio moleular dynamis simulations, where the potential is reomputed using (2.5) eahtime the positions of the nulei hange.This approah is however very time-onsuming, so that only small systems an be simulated.In pratie, to takle larger systems, empirial formulas for the potential energy funtion areused. These empirial formulas are obtained by assuming a funtional form for the interationpotential, and then performing some parameter �tting so that omputed average properties mathexperimental results, or, possibly, simulations results from small equilibrium ab-initio simulations.The properties to be mathed are usually thermodynami properties suh as the equation ofstate of the material or its ompressibility. When ab-initio moleular dynamis is used to obtainbenhmark results, the Born-Oppenheimer approximation impliitely used to write the interationpotential as (2.5) may not be valid. This is for instane the ase when hemial reations happenin the systems (bonds being broken or formed), though some approahes aim at handling suhevents in the framework of lassial empirial potentials (see below).A very simple example is the potential funtion of a �uid omposed of N partiles, interatingthough a pairwise additive potential depending only the distane between the partiles. In thisase,

V (q1, . . . , qN ) =
∑

1≤i<j≤N
V(|qi − qj |). (2.26)For example, the argon �uid is well desribed by a Lennard-Jones potential

V(r) = ǫ

((σ
r

)12

−
(σ
r

)6
)
, (2.27)with ǫ/kB = 120 K, and σ = 3.405 Å. Higher-body interations an then be onsidered, in partiu-lar for biologial modeling. These higher-orders terms aount for loal interations (bond angles,dihedral angles, see Setion 3.4.1 for an expliit example of suh potential terms for alkane hains)and non-loal interations (van der Waals fores, Coulomb interations between non-bonded atompairs) � see for instane the book by Shlik [299℄ for more preisions on the models used inomputational biology.Pairwise additive potentials and three- or four-body interations may however be not good en-ough an approximation. Many studies still aim at proposing better (empirial) potential funtions,in partiular in the �eld of ondensed matter, and �tting their parameters on better data sets.Reent instanes of suh potentials are the (Modi�ed) Embedded-Atom Model ((M)EAM) poten-tials [22℄, whih use some referene eletroni loud around the partile; or bond-order potentialsof REBO [341℄ or ReaxFF [353℄ types, whih ontain environment-dependent terms (dependingon the loal oordination of the atoms). The latter potentials an even handle hemial reations.



22 2 Moleular Simulation: A Hierarhy of ModelsBoundary onditionsSeveral boundary onditions an be imposed to the system:(1) Many urrent simulations are done with periodi boundary onditions, so that surfae e�etsan be avoided and bulk onditions are approximated. In this ase, a partile interats notonly with all the partiles in the systems, but also with their periodi images;(2) Some simulations are done with free boundary onditions. This is the ase for isolatedsystems (moleules in vauo). It may be onvenient to quotient out rigid body translationsin this ase sine the potential energy is invariant under global translation and rotation ofthe system;(3) It is sometimes onvenient to onsider on�ned systems. In this ase, the positions of thepartiles are restrited to some prede�ned region of spae, and some rules have to be set forre�etions on the boundaries of the system (suh as speular re�etion of the momenta);(4) Finally, some (stohasti or deterministi) foring an be onsidered at the boundaries (seeSetion 3.5.1).In the sequel, we will denote by M the position spae (also alled the on�guration spae), and
T ∗M its otangent spae. Typially, M = T3N (a torus of dimension 3N) for simulations withperiodi boundary onditions (PBC) and N atoms in the simulation ell. In this ase, T ∗M =

T3N × R3N .Thermodynami ensemblesThe state of a system is desribed, within the framework of statistial physis, by a probabilitymeasure µ on the phase-spae T ∗M. Marosopi features of the system are then omputed asaverages with respet to this measure, as given by (2.1):
〈A〉 =

∫

MN×R3N

A(q, p) dµ(q, p).We present in the sequel two very important thermodynami measures, namely the miroanoni-al and the anonial measures, desribing respetively isolated systems, and systems at a �xedtemperature (in ontat with a so-alled thermostat or energy reservoir).2.2.2 The miroanonial ensembleThe most simple thermodynami ensemble is the miroanonial ensemble, whih desribesisolated systems. The orresponding probability measure is the uniform probability measure onaessible on�gurations, that is
µmc(dq, dp) = δH(q,p)−E =

dσE
|∇H | , (2.28)where dσE is the area measure indued by the Lebesgue measure on the manifold M(E) =

{(q, p) | H(q, p) = E}. Thermodynami integrals of the form (2.1) are omputed in pratieresorting to some ergodiity assumption:
〈A〉 = lim

T→+∞

1

T

∫ T

0

A(Φt(q, p)) dt, (2.29)where, in the miroanonial ensemble, the �ow Φt is the �ow of the hamiltonian dynamis asso-iated with (2.25):
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q̇i(t) =
∂H

∂pi
(q(t), p(t)) =

pi(t)

mi
,

ṗi(t) = −∂H
∂qi

(q(t), p(t)) = −∇qiV (q(t)).

(2.30)Ergodiity an be shown rigorously for ompletely integrable systems and their perturbations (seefor instane the referene book by Arnol'd [11℄).From a numerial viewpoint, the ergodiity property requires very stable algorithms allowinga longtime integration of the hamiltonian dynamis. The dynamis (2.30) is an ordinary di�e-rential equation (ODE) whih is often numerially integrated by the elebrated veloity-Verletalgorithm5 [360℄ 



pn+1/2= pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1),

(2.31)where ∆t is the time step. The numerial �ow assoiated with the veloity-Verlet algorithm sharestwo qualitative properties with the exat �ow Φt of (2.30): it is time reversible and sympleti.These two properties are very important for the longtime integration of the hamiltonian dynamis:A well-established result, realled in the referene book by Hairer, Lubih and Wanner [146℄on geometri numerial integration (see in partiular Chapters VIII and IX), is that the energyof the system is onserved up to O(∆t2) over times O(e−c/∆t) when the Störmer-Verlet sheme isused. The numerial analysis of miroanonial sampling methods based on these properties (inthe very partiular ase of ompletely integrable systems) an be read in the papers by Canès,Castella, Chartier, Le Bris, Legoll, Faou and Turinii [48, 49, 203℄.2.2.3 The anonial ensembleSystems at a �xed temperature (in partiular, systems in ontat with a thermostat) aredesribed by the anonial probability measure µ on T ∗M:
dµ(q, p) = Z−1 exp(−βH(q, p)) dqdp, (2.32)where β = 1/kBT (T denotes the temperature and kB the Boltzmann onstant). The onstant Zin (2.32) is the normalization onstant de�ned as
Z =

∫

T∗M
exp(−βH(q, p)) dqdp,and is also alled the partition funtion in statistial physis. Sine the HamiltonianH is separable,the anonial measure is of the form

dµ(q, p) = dπ(q)dκ(p),where
dκ(p) = P(p) dp = Z−1

p exp

(
−β

2
pTM−1p

)
dp, (2.33)and

dπ(q) = f(q) dq = Z−1
q e−βV (q) dq. (2.34)

5 See also [145℄ for more historial preisions: The algorithm introdued by Verlet in 1967 [360℄ wasalready known by Störmer at the beginning of the 20th entury, and even by Newton!



24 2 Moleular Simulation: A Hierarhy of ModelsThe positive numbers Zq =
∫
M e−βV (q) dq and Zp = (2π/β)3N/2

∏N
i=1m

3/2
i are normalizationonstants. Notie that we impliitely assumed that the measures µ and π are probability measures,whih is the ase when e−βV ∈ L1(M). It is straightforward to sample from dκ, so that the atualissue is to sample from dπ.Theoretial and numerial omparison of some usual sampling methodsSome numerial methods to generate on�gurations (qn, pn)n≥0 suh that

lim
N→+∞

1

N

N−1∑

n=0

A(qn, pn) =

∫

T∗M
A(q, p) dµ(q, p) (2.35)are presented in the review paper [P3℄ o-authored with E. Canès and F. Legoll (see alsoChapter 3). In partiular, we propose a lassi�ation of usual anonial sampling methods in threeategories, and preise their theoretial ergoity properties. More preisely, we distinguish(i) purely stohasti methods, suh as the Rejetion method or importane sampling teh-niques, whose onvergene relies on usual probabilisti theorems (Law of Large Numbers(LLN), Central Limit Theorem (CLT));(ii) methods based on deterministi hamiltonian dynamis, modi�ed by stohasti perturba-tions to ensure that di�erent energy levels are explored. These methods are either Markovhains tehniques, suh as Metropolis-Hastings shemes [153, 238℄ using the hamiltoniandynamis as a proposition funtion (Hybrid Monte-Carlo sheme [88℄), or stohasti dif-ferential equations having the hamiltonian dynamis as limiting dynamis (Langevin dy-namis). In all ases, the methods are onstruted suh that the anonial measure isinvariant. Sine theorems analogous to LGN and CLT for Markov hains or proesses anbe obtained under rather general assumptions, the theoretial ergodiity of these methodsis usually granted (see in partiular the exellent book by Meyn and Tweedie [240℄ fortheoretial results for Markov hains, as well as Setion 3.6 for a summary of some relevanttheoretial results in the ontext of omputational statistial physis);(iii) ompletely deterministi methods, based on the Nosé-Hoover paradigm [259,260℄. In thisase, extended variables (q, p, x) are onsidered, and their dynamis is postulated in amanner that the marginal of the invariant measure with respet to the additional variable xis the anonial measure. Though this onsisteny result, no theoretial ergodiity proofis known. On the other hand, there exist some theoretial non-ergodiity results (see theproof by Legoll, Luskin and Moekel [204℄ based on a perturbation of ompletelyintegrable systems).We have also ompared the numerial ergodiity of these methods for a simple alkane moleule,both for stati properties (thermodynami integrals of the form (2.1)) and for time-dependentproperties suh as autoorrelation funtions (see Setion 2.2.5). The numerial results show, asqualitatively expeted, that the e�ieny of purely stohasti methods dereases rapidly when thedimension of the system inreases. Completely deterministi methods may be di�ult to use (hoieof parameters, neessity of small time-steps to ensure the proper onservation of some invariants ofthe dynamis). On the other hand, methods mixing moleular dynamis and stohasti tehniquesare found to be more robust and e�ient.Metastability and the obstrution to numerial ergodiityEven if the theoretial ergodiity is ensured and an be heked numerially for simple systems,it is often the ase in pratie for interesting physial systems that numerial ergodiity fails dueto the presene of very di�erent time sales in the system. Fast time sales are typially assoiatedwith fast omponent of the potential energy, and require small time-steps to be resolved. For



2.2 Classial desription of matter 25instane, bond lengths in a moleule have a vibration period of the order of a femtoseond (10−15 s),whereas other quantities (suh as the bakbone struture of a protein) evolve on muh longertime sales. Long time sales are often the onsequene of metastable features of the potential:metastable regions are portions of the phase-spae loated around a loal minima of the potentialenergy surfae, separated by high energy barriers. Interesting events suh as protein folding ouronly when several metastable basins have been explored, and this may require times of the orderof the miroseond (10−6 s) or more [299℄.When the metastable states of the system are identi�ed, it is possible to deouple the metastablevariables and the remaining degrees of freedom: A possible ure to the failure of the numerialergodiity is then to resort to free energy di�erenes omputation tehniques (see Setion 2.3.1).There are of ourse many other ways to proeed, suh as the aelerated dynamis of Setion 2.3.2.There are also methods based on the spetral properties of the Markov transition kernel to identifythe metastable states, see the work of Shütte [301℄. Robust, general purpose methods able tosample omplex potential energy surfaes (suh as those of large biologial systems) are howeverstill laking.2.2.4 Other thermodynami ensemblesThere are several other thermodynami ensembles beside the miroanonial and the anonialensembles, for instane ensembles where the number of partiles, the pressure and the tempera-ture are onserved (NPT ensemble), or the grand anonial ensemble, where the volume, thetemperature and the average number of partiles are onserved. The grand-anonial ensemble isalso termed µVT ensemble, denoting by µ the hemial potential.6 The µVT probability measureis [270℄
dν(N, qN , pN) = Z−1 1

h3NN !V N
eβ(µN−HN (qN ,pN )) dqN dpN , (2.36)where d is the dimension of the spae, V the volume of simulation the ell, and HN is the Hamilto-nian (2.25) for N interating partiles. The normalization onstant Z reads (denoting by T ∗MNthe otangent spae of the manifold MN )

Z =

∞∑

N=0

1

ΛNN !V N
eβµN

∫

T∗MN

e−βHN (qN , pN ) dqN dpN ,where Λ = h(2πmβ−1)−1/2 (with h the Plank onstant) is the �thermal de Broglie wavelength�.The �rst tehniques developed to sample from (2.36) were Monte-Carlo tehniques [258℄. We referto [113, Chapter 5℄ for further referenes. Tehniques from NVT sampling were then transposedto the µVT setting, suh as Hybrid Monte-Carlo [218℄ or Nosé-Hoover dynamis [56, 57, 216℄(see [296, Chapter 8℄ for further referenes onerning these methods and their extensions).It may also be the ase that some external foring is performed on the system (see Setion 3.5).For instane, there may be partile reations or destrution or some thermalization at the boun-daries of the system only. In these ases, it is not always lear whih thermodynami ensemble touse, and whih quantities are preserved (exatly or in average).2.2.5 Time-dependent propertiesTime-dependent properties are of the general form
〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ, (2.37)

6 In this setion but in this setion only, the notation µ is the hemial potential and not the thermody-nami measure used.



26 2 Moleular Simulation: A Hierarhy of Modelswhere Φt is the �ow of the dynamis used to generate trajetories. The trajetories (q(t), p(t))t≥0 =

Φt(q, p)t≥0 may be omputed using the hamiltonian �ow assoiated with (2.25). This is a onsitanthoie sine the anonial measure (2.32) is invariant under the miroanonial dynamis (2.30).Transport oe�ients are examples of dynamial properties. For instane, the self di�usionoe�ient in a system of N idential partiles of mass m an be omputed by the Einstein rela-tion [276℄:
D = lim

t→+∞
1

6Nt

〈
N∑

i=1

|qi(t) − qi(0)|2
〉
,where qi(t) is the position of the i-th partile at time t, and 〈 · 〉 denotes an ensemble average overthe initial onditions. An alternative expression is the Green-Kubo formula based on the integratedveloity autoorrelation funtion [276℄:

D =
1

3Nm2

∫ +∞

0

〈
N∑

i=1

pi(t) · pi(0)

〉
dt,where pi(t) is the momentum of the i-th partile at time t. Other lassial examples are the shearvisosity of a �uid or its thermal di�usivity [276℄.An aurate numerial omputation of time-dependent thermodynamial integrals asks �rst fora good sampling of the starting points, distributed aording to the anonial distribution. Thesepoints should not be too numerous - one must be able to run short hamiltonian trajetories (oneor several) starting from eah point with reasonable omputer ressoures. The ost of omputinga single trajetory over a given physial time interval [0, T ] sales as (∆t)−1. The total ost is oforder O(N(∆t)−1), where N is the number of starting points. Therefore, for a �xed omputationalost, there is a trade-o� to be made between the auray of the sampling of dµ (saled by N)and the auray of the numerial integration of (2.30) (given by ∆t).In pratie, it is sometimes the ase that time-dependent properties at onstant temperatureare omputed as a trajetorial averages (relying on some ergodiity assumption). It is not learhowever whether suh a proedure is orret, sine the dynamis is either the hamiltonian �ow,in whih ase the initial onditions are not properly sampled, or the dynamis is onsistant withthe anonial ensemble, in whih ase there are usually parameters to be hosen, and it is unlearthat the �nal result is independent on those parameters. For instane, the self-di�usion of a watermoleule depends a priori on the frition used in the Langevin dynamis.However, in any ases, systems do not usually onserve their energies in the longtime limitbeause of interations with their environment. Sampling initial anonial onditions and perfor-ming hamiltonian dynamis may then be justi�ed only for the omputation of time-dependentproperties for short times, sine the interations with the environment an be negleted. An alter-native strategy ould be to resort to systems with stohasti boundary onditions, but governedby hamiltonian dynamis in the ore simulation region (see Setion 3.5). In this situation, thethermostatting proedure on the boundaries does not diretly a�et the dynamis and thus, theproperties to be omputed. The in�uene of the thermostat nonetheless plays a role on longertimes sine the energy of the system is allowed to �utuate.2.3 Towards longer simulation times and larger system sizesThe moleular simulation tehniques presented in the previous setions only allow to simulatesystems very small ompared to real physial systems, and for short times only. However, thebehavior of ertain marosopi systems is in�uened in the long-term by events happening at themirosopi level. For instane, biologial moleules are subjeted to important hanges of theironformations (and thus, of their biologial properties) on time sales of the order of a seond,



2.3 Towards longer simulation times and larger system sizes 27and the typial times for the evolution of mehanial properties of materials subjeted to radiationdamages sale as years whereas the orresponding relevant mirosopi events (evolution of thedisloations, migration of vaanies, et) happen on mirosopi time sales. There is therefore aneed for methods enabling larger simulations. We fous in this setion on three strategies:(i) free-energy tehniques, whih allow to enfore transitions from a metastable state to ano-ther one, provided the transition an be onveniently parametrized (Setion 2.3.1);(ii) tehniques to inrease the simulated time, resorting to larger time-steps, aelerated dy-namis, or Kineti Monte-Carlo tehniques (Setion 2.3.2);(iii) redued dynamis, whih are mesosopi dynamis orresponding to the all-atom dyna-mis through some averaging proedure, and are therefore omputationally less demanding(Setion 2.3.3).We do not mention here tehniques to inrease the spatial sizes of the system, suh as domaindeomposition methods, or model oupling, where a region of the system is desribed with a re�nedmodel while the remaining part of the system is desribed with a oarser method. An instane ofthe latter approah is the quasiontinuum method of Tadmor, Ortiz and Phillips [334℄, wherean atomisti desription and a �nite element disretization are oupled. This method has beenstudied from a mathematial perspetive on a model one-dimensional system by Blan, Le Brisand Legoll in [32℄.2.3.1 Free-energy omputationsWhen the variables at the origin of the metastable behavior of the system are known (orassumed to be known), it is possible to use free-energy tehniques to enfore transitions betweenmetastable states. Of ourse the reliability of the methods ruially depends on the hoie of thereation oordinate, whih represents the essential degrees of freedom. The determination of theseessential degrees of freedom is a very important problem. Thus, in the following, we suppose thata �good� reation oordinate is given, and we are interested in the omputation of free energydi�erenes assoiated with this reation oordinate.Remark 2.2 (Mathematial motivation for the hoie of the reation oordinate). Onlyfew mathematial studies have dealt with the optimal hoie of the reation oordinate. In the workof Vanden-Eijnden and Tal [357℄ a variational de�nition of the reation oordinate and thesurfae separating two metastability zones is proposed. This de�nition is at the origin of the stringmethod [370℄ (see also the orresponding disussion in [91℄).The absolute free energy of a system is de�ned as
F = − 1

β
lnZ,where Z =

∫
T∗M e−βH(q,p) dq dp is the partition funtion. It an be omputed only for ertainsystems, suh as ideal gases, or solids at low temperature (resorting to the phonon spetrum) [113,281℄. However, in many appliations, the quantity of interest is the free energy di�erene betweenan initial and a �nal state. These di�erenes indeed give information on the relative stabilities ofseveral speies, and the free energy di�erene pro�le between the initial and the �nal state an beused to preise the transition kinetis from one state to the other. Transitions from an initial to a�nal state an be lassi�ed in two ategories:(i) the so-alled alhemial ase onsiders transitions indexed by an external parameter λ(intensity of a magneti �eld, temperature, parameters of an interation potential). Thesystem is then governed by a Hamiltonian Hλ (or a potential Vλ). The orresponding freeenergy di�erene is
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∆F = −β−1 ln




∫

T∗M
e−βH1(q,p) dq dp

∫

T∗M
e−βH0(q,p) dq dp


 ;(ii) in the reation oordinate ase, the transition is indexed through some level set fun-tion ξ(q) ∈ Rm indexing submanifolds of the on�guration spae, and

∆F = −β−1 ln




∫

T∗M
e−βH(q,p) δξ(q)−z1 dq dp

∫

T∗M
e−βH(q,p) δξ(q)−z0 dq dp


 .Reall that δξ(q)−z is the measure de�ned on Σ(z) = {q, ξ(q) = z} by

δξ(q)−z = |∇ξ|−1dσΣ(z).Free energy di�erenes are muh more amenable to ompute than the absolute free energy.Classial tehniques to this end fall within four main lasses (see Figure 2.2 for a artoon ompa-rison):(i) The �rst one, dating bak to Kirkwood [194℄, is thermodynami integration, whih mi-mis the quasi-stati evolution of a system as a suession of equilibrium samplings (thisamounts to an in�nitely slow swithing between the initial and �nal states);(ii) The seond one, the free energy perturbation method, was introdued by Zwanzig [380℄,and is suited to the alhemial ase only. It reasts free energy di�erenes as anonialaverages, so that usual sampling tehniques an be employed. Notie also that there existmany re�nements for those two lasses of tehniques, suh importane sampling tehniques(the umbrella sampling of Torrie and Valleau [345℄);(iii) A more reent lass of methods uses dynamis arising from a swithing at a �nite rate,using nonequilibrium dynamis with a suitable exponential reweighting, as introdued byJarzynski in [187℄;(iv) �nally, adaptive dynamis may be used. In this ase, the swithing shedule is not imposeda priori, but a biasing term in the dynamis fores the transition by penalizing the regionswhih have already been visited. This biasing term an be a biasing fore as for the AdaptiveBiasing Fore tehnique of Darve and Pohorille [75℄, or a biasing potential in the aseof theWang and Landau sheme [368℄ or the nonequilibrium metadynamis of Iannuzzi,Laio and Parrinello [179℄.We detail now to some extend these approahes in the alhemial setting, for simpliity, andindiate how the method an be extended to treat transitions indexed by a reation oordinate.Thermodynami integrationIn the alhemial setting,
F (λ) = − 1

β
ln

∫

T∗M
e−βHλ(q,p) dq dp.Thermodynami integration onsists in remarking that F (λ) =

∫ λ
0 F ′(s) ds, and that the derivative

F ′(λ) =

∫

T∗M

∂Hλ

∂λ
(q, p) e−βHλ(q,p) dq dp

∫

T∗M
e−βHλ(q,p) dq dp
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(a) Thermodynami integration: a projeted dy-namis is used to sample eah �slie� of thephase-spae. (b) Perturbative method: an instantaneoustransition from the initial to the �nal state isonsidered.

() Nonequilibrium dynamis: the swithingspeed is the same for eah trajetory and is im-posed a priori. (d) Adaptive dynamis: the system is fored toleave regions where the sampling is su�ient.Fig. 2.2. Cartoon omparison of the di�ent tehniques to ompute free energy di�erenes.is the anonial average of ∂Hλ

∂λ with respet to the anonial measure dµλ = Z−1
λ e−βHλ(q,p) dq dp.Therefore, in pratie, F ′(λi) is omputed by usual sampling tehniques for a sequene of va-lues λi ∈ [0, 1] and integrated numerially to obtain the free-energy di�erene pro�le.The extension to transitions indexed by a reation oordinate an be done using for instaneprojeted stohasti dynamis (see the work by Ciotti, Lelièvre and Vanden-Eijnden [66℄,realled in Setion 4.1.2). In this ase, it an be shown rigorously that the derivative of thefree energy an be obtained as an average over the Lagrange multipliers assoiated with theonstraint ξ(q) �xed. Alternatively, Hybrid Monte-Carlo type approahes may be used to samplethe submanifold of �xed values of ξ (see Shütte and Hartmann [151℄).Free-energy perturbationFree-energy perturbation onsists in rewriting ∆F as

∆F = −β−1 ln

∫

T∗M
e−β(H1−H0)dµ0.



30 2 Moleular Simulation: A Hierarhy of ModelsNotie that this tehnique annot be used as suh to ompute free energy di�erene in the reationoordinate ase, sine the orresponding measures δξ(q)−z2 and δξ(q)−z1 have non overlappingsupports.7An approximation of ∆F is then obtained by generating on�gurations (qn, pn) distributedaording to dµ0 and averaging the orresponding quantities e−β(H1−H0)(qn,pn). However, it isoften the ase that the initial and the �nal distributions dµ0 and dµ1 hardly overlap, so thatintermediate steps are onsidered. Deomposing the free-energy hange in n intermediate steps
λi = i/n:

∆Fi = −β−1 ln
Zλi+1

Zλi

= −β−1 ln

∫

T∗M
e−β(Hλi+1

−Hλi
)dµλi ,it holds ∆F = ∆F0 + · · · + ∆Fn−1. It is expeted that the overlap between dµi and dµi+1 issu�ient provided n is large.The elementary free-energy di�erenes ∆Fi an be omputed more e�iently using some im-portane sampling tehnique, namely Umbrella sampling [345℄ is this ontext. It relies on thefollowing reformulation:

∆F = −β−1 ln

∫

T∗M
e−β(H1−W )dπW

∫

T∗M
e−β(H0−W )dπW

,where dπW (q, p) = Z−1e−βW (q,p) dq dp. The measure dπW should be hosen suh that it has anappreiable overlap both with dµ0 and dµ1. This bridging property motivated the name Umbrellasampling. Some possible hoies for the umbrella funtion are
dπW (q) = Z−1

1/2 e−βH1/2(q,p) dq dp,or using H̃1/2 de�ned by the relation
dπW (q) = Z̃−1

1/2 e−βH̃1/2(q,p) dq dp =
1

2
(dµ0 + dµ1).The Jarzynski equalityThe Jarzynski equality an easily be obtained for a system governed by hamiltonian dynamis,starting at equilibrium, and subjeted to a swithing at �nite rate (in a time T < +∞) fromthe state λ(0) = 0 to the state λ(T ) = 1. More preisely, we onsider initial onditions sampledaording to dµ0, and the system of non-autonomous ordinary di�erential equations (0 ≤ t ≤ T )





q̇i(t) =
∂Hλ(t)

∂pi
(q(t), p(t)),

ṗi(t) = −∂Hλ(t)

∂qi
(q(t), p(t)).

(2.38)De�ning by Φλ the assoiated �ow, the work performed on the system starting from some initialonditions (q, p) is
W (q, p) =

∫ T

0

∂Hλ(t)

∂λ
(Φλt (q, p))λ

′(t) dt = H1(Φ
λ
T (q, p)) −H0(q, p).Indeed, with Φλt (q, p) = (Q(t), P (t)),

7 This tehnique is however used in pratie to ompute free energy di�erene in the reation oordinatease: To this end, the free energy di�erene is approximated by the free energy di�erene assoiatedwith the transition indexed by Vλ(q) = V (q) +K(ξ(q) − zλ)2, for K large enough.
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∂t
(
Hλ(t)(Φ

λ
t (q, p))

)
=
∂Hλ(t)

∂λ
(Φλt (q, p))λ

′(t) +
∂Hλ(t)

∂q
· ∂tQ(t) +

∂Hλ(t)

∂p
· ∂tP (t),and the last two terms on the right-hand side ompensate eah other in view of (2.38). Then,

∫

T∗M
e−βW (q,p) dµ0(q, p) = Z−1

0

∫

T∗M
e−βH1(Φ

λ
T (q,p)) dq dp = Z−1

0

∫

T∗M
e−βH1(q,p) dq dpsine ΦλT de�nes a hange of variables of Jaobian 1. The above equality an be restated as

E(e−βW ) =
Z1

Z0
= e−β∆F , (2.39)where the expetation is taken with respet to initial onditions distributed aording to dµ0. Theextension to stohasti dynamis is presented in Setion 4.1.1, following the proof of Hummer andSzabo [177℄ relying on a Feynman-Ka formula.Extension to the reation oordinate aseWe have proposed with T. Lelièvre and M. Rousset [P6℄ an extension of the Jarzynskinonequilibrium dynamis to the reation ase, as well as the extension of the equality (2.39). Thedynamis relies on projeted stohasti dynamis, and the equality allowing the omputation offree energy di�erenes is still obtained using a Feynman-Ka equality (see Setion 4.1.2). However,the orret derivation of this equality requires a areful de�nition of the work exerted on thesystem, whih an be omputed as some trajetorial average of the Lagrange multipliers requiredto projet the dynamis onto the visited submanifolds of onstant values of ξ, minus an additionalterm orreting the biais introdued by the nonequilibrium foring (a fore is exerted on the systemto fore the transition, and the orresponding work should be disarded).Degeneray of the weightsFree-energy di�erenes an be obtained as a nonlinear average over many realizations. Therealizations of the swithing proess an be straightforwardly parallelized resorting to many inde-pendent trajetories, so that natural a posteriori error bounds are provided via the entral limittheorem. However, as elegant as the Jarzynski equality may be, it is often the ase in pratie,unless the swihing is very slow, that the weights are degenerated, so that some rare realizationsrule out the average. These heuristi onsiderations an be made rigorous in some situations, whereanalytial omputations an be done. Consider the Hamiltonian

Hλ(q, p) =
1

2
ω2(q − λ)2 +

1

2
p2,and the linear swithing shedule λ(t) = t/T . The general solution of the hamiltonian dynamis is

q(t) = q(0) cos(ωt) +
p(0)

ω
sin(ωt) +

∫ t

0

ω sin(ωs)λ(t− s) ds.For simpliity, the swithing time is hosen suh that ωT = π/2 mod π (but the following analysisremains qualitatively valid whenever ωT 6= 0 mod π). Then,
q(T ) = q(0) + λ(T ) − 1

ωT
, p(T ) = −ωq(0) +

1

T
.Therefore, if the initial positions are anonially sampled (that is, q(0) ∼ ω−1β−1/2N (0, 1)), thenthe �nal positions and momenta are distributed respetively aording to
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q(T ) ∼ 1 − 1

ωT
+ ω−1β−1/2N (0, 1), p(T ) ∼ 1

T
+ β−1/2N (0, 1).It an be read from these formulas that the distribution of the on�gurations lags behing theanonial distribution. Indeed, the positions for example are distributed around the average posi-tion 1− (ωT )−1 instead of 1, and the di�erene between the average values grows as the swithingis performed faster. It is also possible to ompute the works assoiated with the swithing:

W = H1(q(T ), p(T )) −H0(q(0), p(0)) =
1

T 2
+

2ω

T
q(0) ∼ 1

T 2
+

2

T
√
β
N (0, 1). (2.40)This shows that E(W ) = T−2 > ∆F = 0, the expetation being taken with respet to initialon�gurations (q(0), p(0)) anonially distributed (for the Hamiltonian H0), while E(e−βW ) = 1 =

e−β∆F as expeted. When the swithing time is small, it is lear from the expression (2.40) thatthe lower tail of the work distribution is of paramount importane to obtain orret estimatesof the free energy di�erene, and that very a small fration of the work distribution will ruleout the expetation value. More preisely, denoting by P (W ) the probability density of the workdistribution,
E(e−βW ) =

∫

R

e−βWP (W ) dW = C

∫

R

exp

[
−βT

2

8

(
W +

4

T 2

)2
]
dW.When T is small, the values of the work ontributing the most to the integral are distributedaround −4/T 2, with a standard deviation O(T ). These values are however quite unlikely in viewof (2.40). The lower tail of the work distribution is related to the tails of the distribution of theinitial on�gurations. Therefore, unless the initial on�gurations an be sampled very aurately(whih asks for a large sample of starting points, as well as an unbiased and e�ient samplingmethod), the swithing should not be performed too fast, and, in any ases, the exponential re-weighting (2.39) must be performed.To avoid the degeneray of weights, espeially when the swithing is not slow, we have proposedwith M. Rousset in [P10℄ to use a seletion mehanism on replias of the system simulated inparallel (see also Setion 4.3.3). This seletion uses an interating system of partiles, a strategyinspired by resampling tehniques (see the literature on sequential Monte-Carlo algorithms, inpartiular the book by Douet, Freitas and Gordon [84℄ and the review paper by Douet,Del Moral and Jasra [85℄). In this ase, it is not neessary to attah a weight to eah partile,the equilibrium being maintained at all times through probabilisti seletion rules (birth/deathproess): Replias with a work lower than the average work are favoured, while the other ones arepenalized. The onsisteny of this approah an be shown in the limit of an in�nite number ofreplias (see the works by Rousset [289, 290℄).Another approah to ompute more reliably the expetation value (2.39) is to onsider thisexpetation as an expetation over all possible transition paths. Path sampling strategies, possiblyombined with importane sampling tehniques, an then be used [331,374℄ to bias the samplingtowards paths orresponding to unlikely low values of the work (see Setion 4.3 for more preisionson path sampling and its appliation to the omputation of free energy di�erenes).Adaptive dynamisAdaptive dynamis aim at spending just enough time to sample the measures dµλ as is needed,while overoming free energy barriers. To desribe preisely adaptive dynamis, we proposed aformulation in terms of a �xed point strategy in [P4℄ with T. Lelièvre and M. Rousset (seealso Setion 4.4). We present here adaptive dynamis in the alhemial setting, but all the originalformulations of this method were proposed in the reation oordinate ase.



2.3 Towards longer simulation times and larger system sizes 33It is onvenient to onsider the extended variable X = (q, λ), where the assoiated reationoordinate ξ(X) = λ ∈ T. We onsider here that the transition is parametrized using a potentialfuntion V (q, λ), the orresponding anonial measures being dπλ(q) = Z−1
λ e−βV (q,λ) dq. When Xtevolves aording to an overdamped Langevin dynamis:

{
dqt = −∇qV (qt, λt) dt+

√
2β−1 dW q

t ,

dλt = −∂λV (qt, λt) dt+
√

2β−1 dWλ
t ,

(2.41)(where W q
t , Wλ

t are standard independent brownian motions) the measure
dΠ(q, λ) = Z−1e−βV (q,λ) dq dλis invariant.8 In priniple, it is possible to use the dynamis (2.41) to sample extended on�gura-tions distributed aording to dΠ(X), and then ompute free energy di�erenes as

F (λ2) − F (λ1) = −β−1 ln
ψeq(λ2)

ψeq(λ1)
,where the marginals ψeq of the equilibrium distribution are de�ned as

ψeq(λ) =

∫

M
e−βV (q,λ) dq.However, the above dynamis annot be used as suh when there are metastable features in thefree-energy di�erene pro�le F (λ)−F (0), beause the values of the parameter λ will remain stukin some subset of [0, 1]. Free energy barriers are assoiated with values of ψeq(λ) small omparedto ψeq(0).In order to overome these metastable features, adaptive dynamis propose to add a biasingterm in the dynamis of the variable λt in (2.41) so as to explore the whole interval [0, 1]. The biasshould also give the free energy pro�le in the longtime limit. To make these heuristi onsiderationspreise, it is onvenient to resort to ensembles of realizations of some stohasti dynamis on Xt,namely {

dqt = −∇qV (qt, λt) dt+
√

2β−1 dW q
t ,

dλt = −∂λ [V (qt, λt) − Fbias(t, λt)] dt+
√

2β−1 dWλ
t ,

(2.42)where a biasing term Fbiais(t, λ) has been introdued. The on�gurations of the system are thendesribed at time t by some distribution ψt(q, λ) (in pratie, this orresponds to simulating anin�nite number of replias in parallel). The distribution of the variables λt is given by the marginals
ψt(λ) =

∫

M
ψt(q, λ) dq.If the biasing term Fbias(t, λ) indeed onverges to F (λ), then the variableX subjeted to the dyna-mis (2.42) is distributed aording to dΠ∞(q, λ) = Z−1

∞ e−β(V (q,λ)−F (λ)), so that λ is distributedaording to the marginals
ψ∞(λ) =

∫

M
exp(−β[V (q, λ) − F (λ)]) dq = 1.

8 Of ourse, boundary onditions should be spei�ed for the variable λ. For ertain reation oordinates,periodi boundary onditions an be used. A more detailed disussion on the appropriate boundaryonditions an be read in Setion 4.4.



34 2 Moleular Simulation: A Hierarhy of ModelsThis means that the metastable features of the free energy pro�le have been removed, and allregions are explored in the same manner.Adaptive biasing potentialIn pratie, the key issue for adaptive dynamis is to propose a onvenient update for thebiasing potential Fbias(t, λ). A �rst idea is to fore the marginals ψt(λ) to onverge to the targetvalue ψ∞(λ) = 1, and to rely on the dynamis on qt in (2.42) to obtain the right distribution ofon�gurations for a �xed value of λ. Assuming that the on�gurations of the system are instan-taneously distributed aording to ψt(q, λ) = Z−1
t e−β(V (q,λ)−Fbias(t,λ)) (whih is indeed the ase ifthe dynamis on the q variable is muh faster than the dynamis in the λ variable), the update

∂tFbias(t, λ) = −β
−1

τ
lnψt(λ) =

1

τ
(F (λ) − Fbias(t, λ)) + ctwith τ > 0 is suh that Fbias(t, λ) → F (λ) as t → +∞ (up to a onstant term not dependingon λ). In general, ψt(q, λ) 6= Z−1

t e−β(V (q,λ)−Fbias(t,λ)), but the biasing potential is still updated as
∂tFbias(t, λ) = −β

−1

τ
lnψt(λ). (2.43)In this ase, it an be shown that, if there is a stationary point of the dynamis (2.42) with theupdate (2.43), then it holds Fbias(t, λ) → F (λ) (up to a onstant). The update (2.43) is quitenatural in view of the requirement that the marginals ψt(λ) should be onstant: when ψt(λ) > 1(overexplored region), the bias is dereased, whereas the biasing term is inreased in underexploredregions, orresponding to ψt(λ) < 1 (see Figure 2.3).
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(b) Free energiesFig. 2.3. (a) Target marginal distribution in the λ variable at time t (dotted line) and urrent marginaldistribution (solid line). (b) Target free energy pro�le (solid line) and proposed biasing potential (dashedline): In this ase, the bias should be dereased in the �rst free energy well where the sampling is su�ient(ψt(λ) > ψ∞(λ)), and inreased in the seond one to favour the sampling of this region.Adaptive biasing foreIn the same vein, the biasing term an be introdued as a biasing fore (instead of a biasingpotential). Assuming again that the on�gurations of the system are instantaneously distributedaording to ψt(q, λ) = Z−1
t e−β(V (q,λ)−Fbias(t,λ)), the update
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∂t∂λFbias(t, λ) = −β

−1

τ




∫

M
∂λV (q, λ)ψt(q, λ) dq
∫

M
ψt(q, λ) dq

− ∂λFbias(t, λ)


 =

1

τ
(∂λF (λ) − ∂λFbias(t, λ))for some τ > 0 is suh that the biasing fore ∂λFbias(t, λ) onverges to ∂λF (λ). In the general ase,the biasing fore is still updated as

∂t∂λFbias(t, λ) = −β
−1

τ




∫

M
∂λV (q, λ)ψt(q, λ) dq
∫

M
ψt(q, λ) dq

− ∂λFbias(t, λ)


 . (2.44)As in the ase of biasing potentials, it an be shown that, if there exists a stationary state for theabove dynamis, then Fbiais(t, λ) → F (λ) (up to a onstant) in the longtime limit.With T. Lelièvre, F. Otto andM. Rousset [A1℄ (see also Setion 4.4.2 for a mathematialproof in a simpli�ed ase and a brief introdution to the mathematial tehniques required for theproof), we ould write a proof of onvergene of the dynamis (2.44) in the limiting regime τ → 0.The proof relies on the introdution of an entropy funtion for the measure ψt, and its deompo-sition into a marosopi ontribution (assoiated with the marginals ψt) and a mirosopi part(depending only on the onditioned measures ψt/ψt). On the other hand,

∂tψt = ∂λλ ψt,whih implies the onvergene of the marginals ψt and the deay of the marosopi entropy. Thedeay of the mirosopi entropy is ensured when the onditioned measures ψ∞(·, λ)/ψ∞(λ) sa-tisfy a logarithmi Sobolev inequality with a onstant uniform with respet to λ. From a physialviewpoint, this expresses the fat that the dynamis for �xed λ are uniformly ergodi. Finally, therate of onvergene is the minimum between the marosopi onvergene rate (di�usive explo-ration) and the mirosopi onvergene rate (related to the logarithmi Sobolev onstant). Theextension of the proof to the reation oordinate ase follows the same lines but requires to modifyslightly the dynamis (2.44).Enhaning the onvergeneThe above formalism using ensemble of realizations naturally suggests a parallel implemen-tation of the dynamis through replias onstruting a ommon biasing term. This plain parallelimplementation an however be enhaned through some seletion proess on the replias (see [P4℄).Indeed, in the above heuristi analysis, it seemed important to have a uniform sampling of theaessible spae in the λ variable (the reation oordinate in this setting). A seletion proess(jump/branhing proess) an be surimposed to the di�usion dynamis (2.42) to dupliate repli-as in underexplored regions (innovative partiles) and eliminate replias in overexplored regions.It is, in some sense, a non-loal proedure, omplementary to the di�usion proess, to equilibriatethe distribution of the values of the reation oordinates as fast as possible. Numerial results ina simple ase an be found in [P4℄ (see also Setion 4.4.1).2.3.2 Takling the time-sale problemWe present in this setion some strategies to reah longer simulation times. Takling the time-problem is more di�ult than takling the spae-problem, sine parallel implementation strategiesare usually limited by the sequential nature of time.



36 2 Moleular Simulation: A Hierarhy of ModelsThe parareal strategyA notieable exeption to the above intrinsi limitation is the parareal strategy, introdued byLions,Maday and Turinii in [213℄, and then applied to the �eld of moleular dynamis in [18℄.The parareal strategy onsists in a heap sequential part, the proposition of a oarse trajetory ofthe system using a oarse integrator (large time-step or oarse fore-�eld), whih is then re�nedin parallel; this proedure is repeated until onvergene.Taking larger time-stepsIt is a typial situation in moleular dynamis that the potential energy is the sum of a rapidlyevolving term and a term evolving on muh longer time sales:
V (q) = Vslow(q) + Vfast(q). (2.45)The fast term may arise from sti� omponents in the potential energy (or degrees of freedom withsmall assoiated masses), and is generally muh heaper to evaluate than the slow term. Indeed,the fast term usually orresponds to lose range interations, and the ost of its evaluation saleslinearly with the system size. On the ontrary, the slow term often orresponds to long-rangeinterations, whose ost sales quadratially with the system size.When V is given by (2.45), the time step used for the integration of the dynamis is ditatedby the fast part of the potential. There are several methods to handle this issue:(i) when the fast term omes from sti� omponents in the potential, and these sti� omponentsare onsidered to penalize some onstraints (an almost onstant bond length in a moleulefor instane), it may be advantageous to resort to onstrained dynamis, as is done inRATTLE [8℄ and SHAKE [295℄;(ii) multiple time-step methods may be used. The fast fores are then evaluated with atime step ∆t lose to the time step used in the standard veloity-Verlet algorithm, whe-reas the slow fores are evaluated with a larger time step ∆tslow. One suh algorithmis the so-alled Impulse method [141, 347℄, whih orresponds to a Strang splitting ofthe original Hamiltonian in two terms, H = Hslow + Hfast with Hslow(q, p) = Vslow(q),

Hfast(p, q) = Vfast(q) + 1
2p
TM−1p. However, numerial resonanes require the slow foreevaluation time step∆tslow to be smaller than half the period of the fast movement [31,119℄.So, ∆tslow is still restrited by the highest frequeny modes (see also [146, Chap. XIII℄ fora omprehensive review in the ase when the fast term is harmoni).Kineti Monte-Carlo approahesIn Kineti Monte-Carlo (KMC) algorithms, a list of metastable states and events that mayhappen in the system (possible transitions between metastable states) is onsidered. The systeman be an all-atom system, or a redued version of the all-atom system (for example, for eventshappening on a ristal, the atoms of the ristal are not represented, and only the defets, suh asvaanies, interstitial atoms and aggregates, are onsidered; this approah is the so-alled ObjetKMC).For simpliity, we present here only the equilibrium KMC algorithm, for whih the list ofevents and their ourene probabilities are �xed (tehniques to update the list of events on the�y have also been developed, see Henkelman and Jonsson [158℄). It is assumed that the eventsour at random times distributed aording to a Poisson distribution. Indexing by i the possibleevents, with rates ri (so that the orresponding random times are distributed aording to thedensity rie−rit), the KMC algorithm, �rst proposed by Bortz, Kalos and Lebowitz [37℄ in theontext of material siene (and independently proposed later by Gillespie [129, 130℄ to treathemial reations) is



2.3 Towards longer simulation times and larger system sizes 37KMC algorithmAlgorithm 2.1. Consider a list of M possible events i = 1, . . . ,M , with assoiated reationrates ri. Starting from some initial on�guration of the system and t0 = 0,(1) hoose an event k, aording to the disrete probabilies (wi)i=1,...,M with wi =
ri∑M
j=1 rj

;(2) perform the move orresponding to the event k;(3) inrement the time by a random time distributed aording to an exponential distribu-tion of parameter∑M
j=1 rj : tn+1 = tn + τn, τn ∼ E




M∑

j=1

rj


;(4) go to Step (1).This algorithm is not e�ient as suh when the rates span several orders of magnitudes, sinein this ase, the less unfrequent events are performed very often in the KMC algorithm, and thetime inrements are not large (of the order of the smallest typial time of the possible events).In this ase, Gillespie and Petzold [131, 132℄ have shown how to perform some time oarse-graining based on the τ -leap method, in order to obtain a hemial Langevin equation or evensome deterministi kineti equation.Another route is to remark that events happening almost simultaneously but far away onefrom eah other may be treated as independent events. Domain deomposition tehniques forKMC [309℄ are based on this idea, the main hallenges being the synhronization of time in thedi�erent subdomains and the treatment of events happening at the boundaries of the subdomains.Some spatially adaptive oarse-graining may also be onsidered [63℄.Computation of reation ratesThe most important and time-onsuming part in a KMC omputation is atually the omputa-tion of the reation rates of the possible events. These events are transitions from one metastablestate to the other, so that, when the temperature is not too high (and entropi e�ets are nottoo important), these metastable states are loal minima of the potential energy surfae. In thisase also, the transition states between two loal minima are saddle-points of the potential energysurfae, loated along the minimum energy path bridging the initial and the �nal state. The lo-ation of the saddle-point on the minimum energy path is due to the Large Deviation Theory ofFreidlin and Wentzell [112℄.We desribe here tehniques used in many pratial omputations, whih rely on the ReativeFlux method of Bennett and Chandler [26, 60℄, and on the Transition State Theory (TST),introdued in the 30s by Eyring and Wigner [102, 371℄. The �rst step in all these methods isto loalize transition states, whih are saddle-points of order 1 of the energy surfae (the Hessianmatrix has only one negative eigenvalue),9 and to parametrize the transition from one metastablestate to the other using some reation oordinate (or olletive variable, or order parameter) ξ(q),suh that the transition state orresponds to Σ = ξ−1{ 1

2}. The normal to the surfae Σ at q ∈ Σis denoted by n(q). The reatant region is A = ξ−1[0, 1
2 ), the produt region is ξ−1(1

2 , 1]The forward reative �ux (measuring esapes from A to Ac) is then de�ned, for a time t, asthe forward �ux through the dividing surfae (see Figure 2.4, Left):
9 This loalization is done using some method to follow the eigenvetors orresponding to one of thelowest eigenvalues of the Hessian matrix, starting from the bottom of the energy well.
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k+(t) =

〈
δξ(q(0))=1/2 ∂t(ξ(q))|t=0 1Ac(q(t))

〉

〈1Ac(q)〉

=

∫

Σ

n(q(0)) · p(0)

m
1Ac(q(t)) e−βH(q,p) dσΣ(q, p)

∫

T∗M
1Ac(q) e−βH(q,p) dq dp

.The bakward reative �ux k−(t) is de�ned in a similar manner. In pratie, this expression reahesa plateau value for times t≪ (k+(0)+k−(0))−1, and this limit is the reative �ux rate. The hoieof the dividing surfae Σ is very important for pratial implementations sine a bad hoie ofthis surfae leads to many rerossings, and few transitions (see Remark 2.2 for an optimization ofthe interfae).
A

ν
0

E
a

Fig. 2.4. Left: Shemati piture of the �ux leaving region A through the dividing surfae. Some attemptsare suessful (trajetories ending outside of A), others are not (trajetories ending on the left of thedividing surfae). Right: Harmoni TST approximation.The lassial TST rate onstant is atually k(0), i.e. it orresponds to the reative �ux valuewhen rerossings are disarded (whih orresponds to setting t = 0), and is an upper bound forthe true rate. The TST approximation is therefore not suited for di�usive proesses. HarmoniTST is the further approximation that the rate onstant an be written as
kHTST = ν0e

−βEa ,where the ativation energy Ea is the di�erene between the energy of the saddle-point and theloal minima from whih the esape is attempted, and ν0 is homogenous to a frequeny (seeFigure 2.4, Right). Harmoni TST an be derived rigoroulsy in the one-dimensional ase for aharmoni potential under the assumption βEa ≫ 1 (see e.g. [178, Setion III.A℄). In the mutli-dimensional ase, the harmoni TST rate is given by the Vineyard expression [362℄
kHTST =

∏3N
i=1 ν

min
i∏3N−1

i=1 νsad
i

e−βEa ,where (νmin
i )i=1,...,3N are the frequenies of the Hessian matrix at the bottom of the energy well,and (νsad

i )i=1,...,3N−1 are the positive frequenies of the Hessian matrix at the saddle-point.



2.3 Towards longer simulation times and larger system sizes 39Sampling reation pathsTransition Path SamplingTransition Path sampling (TPS) is a tehnique developed by Bolhuis, Chandler, Dellagoand Geissler [80, 81℄ whih allows to sample reative paths (for a �xed time interval T ). Areative path is de�ned in this ontext as a trajetory (deterministi or stohasti) starting insome initial subset A of phase-spae and ending in another region B of phase-spae at time T .This an indeed be a hallenging task with straightforward MD when high free-energy barriersseparate both regions. This is even more hallenging when many loal minima separate both states,and no onvenient reation oordinate an be found (the orresponding free-energy surfaes aresaid to be rough).TPS is a method to sample paths bridging A and B one an initial reative path is given.More preisely, the orresponding algorithm is a Metropolis-Hastings algorithm with a onvenientproposition funtion allowing, starting from a reative path at the n-th iteration, to propose amodi�ed (hopefully reative) path at iteration n + 1. When the underlying dynamis is determi-nisti, an e�ient proposal funtion onsists in hoosing randomly a time along the trajetory,modifying slightly the momenta of the partiles at this time, and integrating the dynamis forwardand bakward in time (see the review paper by Dellago, Bolhuis et Geissler [81℄ for morepreisions). When the underlying dynamis is stohasti, for instane when a Langevin dynamisis onsidered, the latter algorithm is often still used (the dynamis is integrated forward and ba-kward in time using a new realization of the brownian motion), so that the proposition of a newpath uses only some information at a given time along the trajetory. In partiular, the spei�realization of the brownian motion whih led to the transition is ompletely disarded, and so,the probability to obtain a new reative path may be low, espeially if the transition is di�usive.Inversly, Crooks and Chandler [74℄ proposed to keep ompletely the realization of the brownianmotion that led to the transition, exept on a small time interval. In this ase, the proposal path isvery similar to the previous path, and the iterations in the Metropolis-Hastings algorithm may bevery orrelated. I proposed in [P1℄ an approah generalizing the two tehniques presented above:in this framework, a path is represented as its initial onditions and the spei� realization of thebrownian motion that led to the transition. A new path is proposed by seleting a time at randomalong the trajetory, but integrated forward and bakward using a new realization of the brow-nian motion orrelated to the previous one (the amout of orrelation being a tunable parameter).Numerial tests show that this new algorithm is indeed interesting (see [P1℄ and Setion 4.3)Computation of reation onstantsThe sampling of the path ensemble allows the omputation of rate onstants for transitionsfrom A to B (whih an be used for KMC omputations for instane). More preisely, starting attime t = 0 with replias of the system all loated in A, it holds
C(t) =

〈1A(q0)1B(qt)〉
〈1A(q0)〉

≃ kAB t,for times τmol ≪ t ≪ τrxn, and where 〈·〉 denotes an average over all possible paths (see [81℄ andSetion 4.3 for more preisions on the measure used in path-spae). The times τmol and τrxn arerespetively the moleular deorrelation time and the typial reation time, namely
τrxn =

1

kAB + kBA
.In pratie, it is possible to sample only paths of a presribed temporal length and to omputefrom the resulting sample whether C(t) sales linearly. The preise proedure to extrat the rateonstant from those simulations is explained in [81, Setion 4.4℄.



40 2 Moleular Simulation: A Hierarhy of ModelsFinding a onvenient initial path is a di�ult task in pratie. Some strategies are proposedin [81℄. It is also possible to enfore progressively the paths to end up in B. In this ase, free-energytehniques an be used provided some order parameter de�ning the end region B is known. Thiswas done by Geissler and Dellago in [122℄ using nonequilibrium swithing dynamis. This analso be done with several paths swithed in parallel, using a seletion proedure to ensure thatthe �nal sample of paths is not degenerate (see [P1℄ and Setion 4.3.3).Path sampling formulated as a stohasti partial di�erential equationIn TPS, a path is represented as a numerial trajetory, that is, a sequene of on�gurationsseparated by a time ∆t. In partiular, the measure on path spae depends on the time step hosen,and the results are not formulated in an intrinsi manner. From a mathematial viewpoint, it isinteresting to formulate the path sampling problem at a ontinuous level. In the formulation ofHairer, Stuart, Voss and Wiberg [147, 330℄, the sampling of paths linking an initial state x0to a �nal state x1 (bridge path sampling) is formulated as a stohasti partial di�erential equation(SPDE). Only then, this SPDE is disretized so that paths an be omputed in pratie. Thisway, more e�ient numerial algorithms an be proposed (see Beskos, Roberts, Stuart, andVoss [29℄).Aelerated dynamisSeveral tehniques were proposed to aelerate moleular dynamis omputations. We presenthere three strategies, proposed by Voter, from the most rigorous to the most approximate one(i.e. relying on less and less assumptions).HyperdynamisThe Hyperdynamis method, introdued by Voter in [365℄, is reminisent of Umbrella sam-pling tehniques (see Setion 2.3.1). The idea is to onsider a bias potential ∆V ≥ 0 ating only onthe wells of the energy minima, so that the dynamis is una�eted near transition states (saddle-points of the energy landsape). In this manner, for a simulation time t (algorithmi time), thesystems spends less time near the bottom of the energy wells, and more time in the transitionregions. The aumulated physial time is
thyper =

∫ t

0

eβ∆V (qs) ds ≥ t,so that the speed-up fator thyper/t ≥ 1. The key hallenge in this method, as in all Umbrellasampling methods, is the onstrution of the bias potential for many-dimensional problems. Someproposals were made in [364℄ (using a hessian-based potential) or in [243℄ (relying on the assump-tion that transitions an be deteted by signi�ant hanges in some bond lengths).Parallel Replia dynamisThis method, proposed byVoter in [366℄, enables to parallelize (with a linear saling) the timeevolution for true infrequent transitions in a system, under the assumption that the esape timesare exponentially distributed. The method relies on the mathematial remark that the sum of Mexponentially distributed random variables (with parameter τ) is also exponentially distributed,but with a parameter Mτ . Therefore, unless a transition ours, it is equivalent to simulate onesystem or several independent replias of the system, and adding the assoiated simulated timesto give the orresponding simulation time of a single system.A pratial implementation of this idea is that several replias of a same system are simulatedon di�erent proessors, and whenever a transition from one metastable state to another one ours,



2.3 Towards longer simulation times and larger system sizes 41the simulation is stopped. The total simulation time is inremented by the sum of all simulationtimes, all replias start from the new metastable state (the suessful system is repliated) andsome deorrelation is performed, then the parallel time integration until the next transition isstarted again. This strategy an be used even if the proessors do not have the same speeds.However, some are has to taken to detet transitions properly. A lassial proedure to this end isa quenhing proedure using some gradient desent method, heking at onvergene whether thegeometry at the basin minimum has hanged. Appliations of this method an be found in [367℄.Temperature Aelerated dynamisThis tehnique, proposed by Sorensen and Voter in [317℄, an be applied to infrequent eventsystems when harmoni TST is a good approximation. The typial appliation is radiation damagefor very long times. The system is simulated at some higher temperature T+, while the dynamisof interest is for a temperature T− < T+. Starting from some metastable state, the attemptedesapes out of this metastable state are interepted, and the orresponding harmoni TST rateare omputed. More preisely, for the i-th esape event at time ti+, the rate is
ki+ = νi0e

−Ei
a/kBT+ ,so that the orresponding transition time ti− assoiated with the lower temperature T i− is

ti− = ti+ exp

(
Eia
kB

(
1

T−
− 1

T+

))
.After this omputation, the system is re�eted bak in the metastable state, and the simulationontinues. Assuming some lower bound on the prefators νi0, it is possible to derive an upperbound on the simulation time required at the higher temperature in order to be sure that (say)95% of the transitions at the lower temperature have oured. Finally, the system undergoes thetransition event with the smallest time ti−, and the simulation time is advaned by ti−. The mainlimitation to this approah is that the temperature T+ annot be too large in pratie, otherwiseharmoni TST is no longer valid.2.3.3 Redued dynamisSome dynamis an be expliitely redued in some limiting regime. This is the ase for somemodel systems (see below for the ase of a system oupled with a deterministi heat bath omposedof harmoni osillators). Even if this is not possible in general, a formal analysis may suggesta reasonable form for the redued dynamis, and some parameter estimation then has to beperformed to reprodue as well as possible the simulation results obtained for the original modelwith the redued model.Redued dynamis in the ase of a oupling with a deterministi heat bathFor a partile oupled to many harmoni osillators, Zwanzig [379℄ formally showed that thelimiting dynamis on the oupled partile is a generalized Langevin equation (with memory).This formal proof was put on �rm mathematial grounds by Kupferman, Stuart, Terry andTupper in the ase of a single partile harmonially oupled with bath partiles [199℄.In [P11℄, I have used suh a oupling with harmoni bath degrees of freedom to modelshok waves using a one-dimensional atom hain model. Although this simpli�ed model is one-dimensional, it aptures some e�ets of higher dimensional models, in partiular some relaxationof the energy behind the shok front, whih allows to orret the non-physial behavior of one-dimensional hains under shok loading (see also Setion 5.1 for more preisions on the limitingdynamis when the number of degrees of freedom of the heat bath goes to in�nity).



42 2 Moleular Simulation: A Hierarhy of ModelsDissipative Partile Dynamis modelsDissipative Partile Dynamis is a mesosopi model introdued in 1992 by Hoogerbruggeand Koelman [170℄, and later put on �rm thermodynami grounds by Español and Warrenin 1995 [98℄. The primary aim of DPD was the modeling of omplex �uids, based on the heuris-ti oarse-graining that droplets or blobs of �uids (that is, a olletion of moleules moving in aoherent fashion) an be replaed by single mesosopi partiles, interating through onservative(pairwise additive) and visous fores with their neighbors, while subjeted to some thermal mo-tion. What is not always lear in those models, is the typial physial length and time sales ofthe problem (how 'mesosopi' it is).DPD models may be derived from (all-atom) mirosopi models for harmoni one-dimensionalatom hains [94℄ (see also the limiting equation obtained in [P11℄ and Setion 5.1, whih is of ge-neralized DPD type). In a more general ontext, Flekkoy, Coveney and De Fabritiis [106℄motivate the dynamis using Voronoi ells. In all ases, the all-atom deterministi dynamis isreplaed by a stohasti dynamis, where the deterministi part arises from some average beha-vior of the system, and the stohasti part models the �utuations around the average behaviorresulting from the degrees of freedom whih are no longer treated expliitely.As an be seen from the equilibrium measure of the dynamis (see (2.46)), the onservativepart of the dynamis aounts for thermodynamial properties of the system, while the fritionand �utuation parts enhane the visosity of the system [97℄. The DPD dynamis reads




dqi =
pi
mi

dt,

dpi =
∑

j 6=i
−∇qiV(rij) dt− γχ2(rij)(vij · eij)eij dt+

√
2γ

β
χ(rij)dWij eij ,with

γ > 0, rij = |qi − qj |, eij =
qi − qj
rij

, vij =
pi
mi

− pj
mj

,

χ a weighting funtion (with support in a ball of radius rc, rc being some ut-o� radius), andwhere the standard one-dimensional Wiener proesses Wij are suh that Wij = −Wji. DPD istherefore suh that the global linear momentum and the global angular momentum are preserved(sine all interations, inluding frition fores and random terms, are pairwise additive).Still denoting H(q, p) = 1
2p
TMp+ V (q) with V (q) =

∑
1≤i<j≤N V(rij), it an be shown thatthe measure

dµ(q, p) =
1

Z
exp (−βH(q, p)) dq dp (2.46)(where Z is a normalization onstant) is an invariant probability measure of (5.35) sine it isa stationary solution of the Fokker-Plank equation assoiated with (5.35) (see [98℄). However,proving the ergodiity of DPD is a di�ult task. The only result to this date is due to Shardlowand Yan who showed the ergodiity of DPD when the on�guration spae is a one-dimensionaltorus, and under ertain onditions on the interation potential, the weighting funtions, andprovided the density of the system is large enough.Notie �nally that DPD-like models may help to bridge the gap between partile disretizationsof Navier-Stokes equations (suh as the Smoothed Partile Hydrodynamis of Luy and Mona-ghan [217,246℄) and all-atom models. A �rst step to suh a general formalism in the equilibriumase is proposed by Español and Revenga in [96℄.Interation potential between partilesChoosing a good potential desribing interations between the mesosopi DPD partiles is aquestion that has been addressed from di�erent viewpoints. There are three typial approahes:



2.3 Towards longer simulation times and larger system sizes 43(i) use some averaged fore, arising as some thermodynami average (the mean fore obtainedin free-energy omputations) [97, 142℄, or some short-time average [109℄ of a ompletedynamis. The mean fore exerted by a partile loated at q2 on a partile loated at q1 isde�ned as [142℄:
−∇q1V(q1, q2) =

∫
−∇q1V (q) e−βV (q) dq3 . . . dqN
∫

e−βV (q) dq3 . . . dqN

= − 1

β
∇q1 [ln g(|q1 − q2|)] ,where g(r) is the pair distribution funtion. For droplets of �uids, this equation maybe extended to desribe interations between enter of masses of the droplets at a �xeddistane (still averging the interation fores);(ii) searh for some optimal pair potential, �tting the parameters of a potential with a givenfuntional form through some riteria (usually, a least square �t of the results to statiequilibrium thermodynami properties omputed for some referene all-atom system);(iii) using more ompliated e�etive potentials, for instane anisotropi (to take steri e�etsinto aount).Many (most) studies follow the seond approah. In partiular, InverseMonte-Carlo tehniques [219,279℄ aim at reovering the radial pair distribution funtion g(r) (using the one-to-one mappingbetween g(r) and a pairwise potential V(r), see [155℄). Other important quantities are thermo-dynami oe�ients (suh as the ompressibility), or equations of state (pressure as a funtionof density, see for instane [245℄ for a model protool). Sometimes, transport oe�ients are alsoonsidered, in partiular the self-di�usion onstant. It is important to note that the e�etive po-tentials omputed these ways depend on the thermodynami regimes where the �tting was done.This is partiularly lear when the e�etive interation fore is the mean fore, or is obtained fromone given radial pair distribution funtion.Appliation to shok and detonation wavesThere are many re�nements and variants of the DPD model (2.46). In partiular, it is possibleto onsider DPD models where the partiles have an internal energy ǫi. These models are known asDPD models with onserved energy (DPDE) sine the evolution of the internal energy variable ispostulated in a manner that the total energy of the system H(q, p)+

∑N
i=1 ǫi is preserved (whih isnon-trivial sine the dynamis is stohasti). The idea is that the dissipated mehanial energy istransformed into internal energy. DPDE was proposed independently by Avalos andMakie [15℄and Español [95℄.In [P7℄, I have used a slightly modi�ed DPDE dynamis to propose a mesosopi model forshok waves. In this model, one (meso)partile stands for a omplex moleule, the internal energyof the partile being ǫ = NredkBTint/2, where Tint is the internal temperature, and Nred thenumber of degrees of freedom not expliitely represented (for a moleule omposed of Nat atomsin dimension d, it holds Nred = 2d(Nat−1)). Replaing a omplex moleule by a single partile wasalready done in the ontext of shok waves by Strahan and Holian [326℄, but the assoiateddynamis is physially less attrative than DPD like dynamis. Simulation results demonstratethat a good agreement with all-atom results an be obtained with suh a redued model (see [P7℄and Setion 5.2.2 for more preisions).The DPD formalism also allows an extension to the modeling of detonation waves. Detonationwaves are, roughly speaking, shok waves initiating exothermi hemial reations as they passes,the energy liberated by the hemial reations enhaning and sustaining the shok. The modelingof detonation requires the introdution of an additional variable, a progress variable λ desribingthe progress of the hemial deomposition (seen as some progress on a free energy pro�le). Thedynamis an be split into three elementary physial proesses:



44 2 Moleular Simulation: A Hierarhy of Models(i) the dynamis on (q, p, ǫ), analogous to the dynamis of inert materials;(ii) the evolution of hemial reations through some kinetis on the progress variable;(iii) the exothermiity of the reation: energy transfers between hemial and mehanial plusinternal energies have to be preised.We have proposed suh a model with J.-B. Maillet and L. Soulard (see [P2℄ and Setion 5.2.3),and the �rst numerial results obtained are enouraging.E�etive di�usion in the reation oordinateThis last setion presents an interesting domain for further researh: the determination of someaverage or e�etive dynamis on the reation oordinate. Indeed, sine the reation oordinaterepresents some marosopi or global variable of the system, or at least some slowly evolvingdegree of freedom, it is natural to seek an e�etive equation for its evolution � where the remainingdegrees of freedom would enter only in an average way, through some stohasti foring or memorye�ets. Two problems an be distinguished in suh an approah: First, the analyti form of thedynamis must be postulated or derived, and this form may vary depending on whether theunderlying dynamis is hamiltonian or stohasti; seond, one the general form of the dynamisis obtained, some parameter estimation must usually be done in order to �t preisely the redueddynamis to the (possibly partially) observed mirosopi data.Redution of the hamiltonian dynamisA general proedure to redue a deterministi dynamis to obtain an e�etive dynamis fora subset of the initial degrees of freedom is to use a projetion operation introdued by Moriand Zwanzig [250, 379℄. The idea is to integrate exatly (though only formally) the undesireddegrees of freedom, whih appear in the dynamis of the remaining degrees of freedom throughsome memory term and a random foring (related to unertainties on the initial onditions).We present the general lines of the Mori-Zwanzig proedure following Givon, Kupferman andStuart [134℄, in the ase when q = (x, y) with x ∈ Rm, y ∈ RdN−m. For the general ase ofreation oordinates ξ : RdN → Rm, additional geometri di�ulties are introdued, but ananalogous derivation an be performed (see [136℄). We denote by p = (px, py) the momentumassoiated with q.For (x, y) ∈ X × Y evolving aording to the dynamis
{
Ẋ = f(X,Y ),

Ẏ = g(X,Y ),
(2.47)whih is assumed to have dρ(X,Y ) as an invariant (positive, bounded) measure, the followingprojetion operators an be introdued:

Π(X,Y ) = X, Pf(X) =

∫

Y
f(X,Y ) dρ(X,Y )

∫

Y
dρ(X,Y )

.The solution of (2.47) an then be rewritten as
Ẋ(t) = Pf(X(t)) +

∫ t

0

K(X(t− s), s) ds+ n(X(0), Y (0), t).The foring term n and the memory term K are related through a �utuation/dissipation relation,and are de�ned respetively by the equation



2.3 Towards longer simulation times and larger system sizes 45
∂tn = (Id − P )Ln, n(X,Y, 0) = f(X,Y ) − Pf(X),and the relation

K(X, t) = PLn(X,Y, t),where L is the Liouville operator L = f(X,Y ) · ∇X + g(X,Y ) · ∇Y .When (2.47) is the hamiltonian dynamis, initial onditions an be assumed to be distributedaording to the anonial measure, whih determines the measure to be used for the projetionoperator P . This leads to the following projeted dynamis de�ned on R2m:
d

dt

(
x

px

)
=

(
M−1
x px

−∇xV (x)

)
+

∫ t

0

K((x, px)(t− s), s) ds+ n(x(0), px(0), y(0), py(0), t), (2.48)where Mx is the mass matrix assoiated with the variable px, and V (x) is the potential of meanfore:
V (x) = − 1

β
ln

∫

RdN−m

e−βV (x,y) dy. (2.49)The e�etive dynamis is therefore a hamiltonian dynamis, with two additional terms: a memoryterm, and a foring term arising from the undetermination on the initial onditions. The latterterm is a random foring term when the initial onditions are random (and in the limit N → +∞,see for instane [199℄ for a rigorous proof in a simple ase).However, it is important to note that the limiting equation (2.48) obtained by this proje-tion tehnique is not simpler than the original hamiltonian equation posed in RdN . In pratie,it is nevertheless a onvenient starting point to propose approximate dynamis on the reationoordinate.Redution of stohasti dynamisCertain redution of all-atom dynamis are done starting from a stohasti dynamis. Wepresent here a lassial derivation in the simple ase q = (x, y) with x ∈ Rm, y ∈ RdN−m, for thedynamis
dqt = −∇V (qt) dt+

√
2β−1 dWt,

Wt being a standard dN -dimensional brownian motion. When the variables of the system an bepartitioned into slowly evolving variables x and rapidly evolving variables y, the variables y arepresent only through some mean ation on the variables x. This idea an be made rigourous usingsome �titious resaling of the time in the y variables aording to (ǫ > 0)




dxǫt = −∇xV (xǫt , y
ǫ
t) dt+

√
2β−1 dW x

t ,

dyǫt = −1

ǫ
∇yV (xǫt , y

ǫ
t) dt+

√
2β−1

ǫ
dW y

t ,where W x
t , W y

t are independent standard brownian motions, of dimensions m and dN −m res-petively. In the limit ǫ→ 0, an e�etive dynamis on x is obtained as
dXt = −∇xV (Xt) dt+

√
2β−1 dWt, (2.50)

Wt being a standard m-dimensional brownian motion, and V (x) the potential of mean fore (2.49)(see Papaniolaou [266℄ and the pedagogial book by Pavliotis and Stuart [268, Chapters 10and 11℄ for more preisions on the meaning and the validity of this limit). This approah an beextended to general reation oordinates (see [91, Setion 10℄). In this ase, the limiting dynamisis of the general form
dXt = f(Xt) dt+ σ(Xt) dt, (2.51)



46 2 Moleular Simulation: A Hierarhy of Modelsthe funtions f and σ depending on the hoie of the reation oordinate.An alternative derivation of the dynamis (2.51) relies on the work of Gyöngy [144℄. Indeed,for a reation oordinate ξ : RdN → R, It� alulus using (2.50) shows that
dξ(qt) = (−∇V (qt) · ∇ξ(qt) + β−1∆ξ(qt)) dt+

√
2β−1 |∇ξ(qt)|

∇ξ(qt) · dWt

|∇ξ(qt)|
.Introduing the dynamis

dXt = f(t,Xt) dt+ σ(t,Xt) dBt, dBt =
∇ξ(qt) · dWt

|∇ξ(qt)|with
f(t, z) = E

(
−∇V (qt) · ∇ξ(qt) + β−1∆ξ(qt) | ξ(qt) = z

)
, σ(t, z) = E (|∇ξ(qt)| | ξ(qt) = z ) ,the results of [144℄ show that the laws of Xt and ξ(qt) are idential. A dynamis of the form (2.51)an be obtained under the assumption that the onditional distributions of qt are independent oftime, and are in fat onditioned anonial measures. In this ase, the above onditional expeta-tions an indeed be omputed as

E(h(qt) | ξ(qt) = z ) =

∫

ξ−1(z)

h(q) e−βV (q)|∇ξ(q)|−1 dq

∫

ξ−1(z)

e−βV (q)|∇ξ(q)|−1 dq

.Parameter estimation for the limiting equationDepending on whether the starting dynamis is deterministi or stohasti, it is possible toobtain redued dynamis of generalized Langevin type suh as (2.48), or dynamis with a multipli-ative noise suh as (2.51). In both ases, to simulate in pratie suh dynamis, some preliminaryparameter estimation must be performed.For dynamis of Mori-Zwanzig type (2.48), a usual approah is to postulate some funtionalform for the potential of mean fore V , the memory term and the noise term. The orrespondingparameter estimation an then be performed starting from a sample of observed values of thereation oordinate and using statistial tehniques suh as maximum likelihood estimations (seefor instane the review paper by Bibby and Sorensen [30℄ on parameter estimation for ellipidi�usions, or the work of Pokern, Stuart and Wiberg [271℄ in the hypoellipti ase). Thesestatistial estimations an also validate or invalidate the funtional form postulated a priori forthe di�erent terms.Statistial tehniques an of ourse also be used for dynamis of the form (2.51) (see for ins-tane Hummer [176℄). For the moment however, most approahes rely rather on the so-alledequation-free tehniques (see, in the ontext of e�etive dynamis, Kopelevih, Panagioto-poulos and Kevrekidis [196℄, as well as [373℄). These methods start from an ensemble of inde-pendent mirosopi on�gurations assoiated with a �xed value of the reation oordinate, andstudy the short-time evolution of the distribution of the values of the reation oordinate to obtainapproximations of the drift term f and the multipliative noise term σ in (2.51).
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〈A〉 =

∫

T∗M
A(q, p) dµ(q, p), (3.1)or time-dependent properties
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〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ, (3.2)where Φt is the Hamiltonian �ow. In the above expression, M denotes the position spae (alsoalled the on�guration spae), and T ∗M its otangent spae. A generi element of the positionspae M will be denoted by q = (q1, · · · , qN ) and a generi element of the momentum spae R3Nby p = (p1, · · · , pN). The mass matrix is M = Diag(m1, . . . ,mN ). The measure µ is the anonialprobability measure:

dµ(q, p) = Z−1 exp(−βH(q, p)) dq dp, (3.3)where β = 1/kBT (T denotes the temperature and kB the Boltzmann onstant) and where Hdenotes the Hamiltonian of the moleular system:
H(q, p) =

1

2
pTM−1p+ V (q). (3.4)Reall that the measure dµ(q, p) an be written as dµ(q, p) = dπ(q) dκ(p) with

dκ(p) = P(p) dp = Z−1
p exp

(
−β

2
pTM−1p

)
dp, (3.5)and

dπ(q) = f(q) dq = Z−1
q e−βV (q) dq. (3.6)Sine it is straightforward to sample from the momentum distribution (3.5) (it is a produt ofindependent Gaussian densities), the atual issue is to sample e�iently from the (position spae)measure π given by (3.6).In this hapter, new onvergene results on the Hybrid Monte-Carlo sampling sheme are stated(see Setion 3.2.2) and various numerial methods to ompute integrals suh as (3.1) or (3.2), arereviewed and their e�ienies are ompared on a benhmark system (simple alkane moleule).More preisely, we onsider the issue of sampling from the anonial measure (3.3).All the methods onsidered in this hapter onsist in generating a sequene of points (qn)n∈Nin the position spae. These methods an be lassi�ed in four ategories:Type 1. (qn)n∈N is a sequene of independent realizations of a given random variable of density

f(q) =
1

Zq
e−βV (q); this is the ase for the standard Rejetion and for the Rejetion ontrolmethods;Type 2. (qn)n∈N is a realization of a ontinuous state-spae Markov hain, for whih π is aninvariant measure; this is the ase for the Metropolized independene sampler and for theHybrid Monte Carlo method;Type 3. (qn)n∈N is an approximation of (qtn)n∈N where (qt)t≥0 (resp. (qt, pt)t≥0) is a sample pathof a stohasti proess on M (resp. on T ∗M), for whih π (resp. µ) is an invariantmeasure; this is the ase for the biased Random-Walk (resp. for the Langevin dynamis);Type 4. (qn)n∈N is an approximation of (q(tn))n∈N where (q(t), p(t), x(t))t≥0 is a trajetory ofa deterministi extended dynamial system (q and p are the physial variables, while

x represents some additional variables; see Setion 3.3 for more details); this extendeddynamial system is suh that it preserves a measure dρ whose projetion on the physialvariables q, p is the measure dµ given by (3.3); this is the ase for Nosé-Hoover, Nosé-Poinaré and Reursive Multiple Thermostat methods.The �rst two questions we will adress are relevant for all the methods mentioned above:



3 Phase-spae sampling tehniques 51Question 1.An observableA(q) onM being given, does the empirial mean 1

N

N−1∑

n=0

A(qn) onvergeto the spae average ∫
M
A(q) dπ(q)?Question 2. If so, an the speed of onvergene be estimated?For methods of Type 1, the answers to Questions 1 and 2 are obviously positive and are diretonsequenes of the Law of Large Number (LLN) and of the Central Limit Theorem (CLT) forindependent identially distributed (i.i.d.) random variables. For the methods of Type 2, Ques-tions 1 and 2 an be positively answered, at least for ompat position spaes M and under someassumptions on the potential energy V . For Question 1, the point is to hek (see Theorem 3.1and Setion 3.6 below) that

π is an invariant probability measure of the Markov hain, (3.7)and that the probability transition kernel P (q, ·) of the Markov hain1 satis�es the aessibilityondition
∀q ∈ M, ∀B ∈ B(M), µLeb(B) > 0 ⇒ P (q,B) > 0, (3.8)where B(M) is the Borel σ-algebra of M and µLeb is the Lebesgue measure on M. Turning toQuestion 2, a onvergene rate of N−1/2 an be obtained when the transition kernel P has someregularity properties, and provided some Lyapunov ondition holds true (see Theorem 3.2 andondition (3.11) below).For the methods of Type 3, analogous results an be stated at the ontinuous level (for theunderlying Markov proesses). In omputations, disrete-time approximations are used, and onereovers the ase of a Markov hain, and the same kind of results as for methods of Type 2 holdtrue. For methods of Type 4, no general onvergene result is known.In the ase when the sequene (qn)n∈N originates from a Markov hain on M or from adisretized stohasti proess on M or on T ∗M (methods of Types 2 and 3), additional questionsarise. Indeed, instead of onsidering one realization starting from a given initial data, it is alsopossible to generate samples with the same omputational ost by onsidering several shorterrealizations starting either all from the same point or from di�erent points (whih onstitute apre-existing initial distribution). In this ase, typial onvergene results involve weighted totalvariation norms for the probability measures that are generated. In the sequel, we will often referto this kind of onvergene as the "onvergene of densities" sine, when the n-step probabilitytransition kernel2 Pn(q, ·) of the Markov hain and the invariant probability measure both admitdensities with respet to the Lebesgue measure, the onvergene in total variation norm impliesthe L1 onvergene of the densities. We an thus formulate the following two questions:Question 3. Does ‖Pn(q, ·) − π‖ onverge to zero when n goes to in�nity for some (weighted)total variation norm?Question 4. If so, an the speed of onvergene be estimated?Again, if π is an invariant probability measure and if the aessibility ondition (3.8) holds true,the answer to Question 3 is positive (see Theorems 3.3 and 3.4 below). A geometri onvergenerate in ρn for some ρ ∈ (0, 1) in some weighted total variation norm an also be obtained when the

1 If q ∈ M and B is a Borel set of M, P (q,B) is the probability for the Markov hain to be in B whenstarting from q.
2 For q ∈ M and B a Borel set of M, Pn(q,B) is the probability for the Markov hain to be in B whenstarting from q after exatly n steps. It is indutively de�ned from P by P 0(q,B) = 1B(q) and theindution rule

Pn(q,B) =

Z

M
P (q, dq′)Pn−1(q′, B).



52 3 Phase-spae sampling tehniquestransition kernel P has some weak regularity properties and provided some Lyapunov onditionholds true (namely ondition (3.31) below, see Theorem 3.8). Let us point out that the Lyapunovondition (3.31) providing geometri onvergene of the densities is not of the same nature as theondition (3.11) providing a onvergene rate of the average along one sample path.Let us mention that, in some appliations, integrals suh as (3.1) are sometimes omputed usingBlue Moon sampling tehniques [54, 65, 370℄. In this ase, integrals over submanifolds (generallyhypersurfaes) of M have to be estimated. For suh omputations, the theoretial analysis isthe same as the one presented here. From the numerial viewpoint, algorithms adapted to theonstraint of sampling a hypersurfae (and not the whole spae) have to be used, namely projetedalgorithms for stohasti dynamis (see e.g. [66℄ and Setion 4.1.3) and SHAKE or RATTLEalgorithms for deterministi evolutions (see [146, Chap. VII.1.4℄).This hapter is organized as follows. We �rst desribe and ompare from a theoretial pointof view the most popular methods to sample from the anonial distribution. In Setion 3.1,we onsider purely stohasti methods; stohastially perturbed Moleular Dynamis methodsand deterministi thermostatting methods are presented in Setion 3.2 and 3.3 respetively. Inpartiular, in Setion 3.2.2, we present some new onvergene results for the Hybrid Monte Carlosheme (see Theorems 3.7, 3.9 and 3.10). A summary of the main known results is presented inTable 3.1. We refer to the orresponding setions for notations and further explanations, and toSetion 3.6 for some theoretial bakground on Markov hains and proesses.We then turn to a pratial appliation of those methods in the ase of linear alkane moleulesin Setion 3.4. The fat that some methods may work better than others, and that this dependson the situation at hand, is ommonly aepted. However, these beliefs are usually only basedon some qualitative omparisons, or on omparison with experimental data. In the latter ase,disrepanies between numerial results and experimental results an ome both from numerialand modelling approximations, so it is not easy to draw onlusions spei�ally on the numerialmethods. Comparing the methods in a quantitative way is one of the main purpose of this study.Finally, an appliation of the previous sampling methods to ompute time-dependent propertiesusing stohasti boundary onditions is presented in Setion 3.5.3.1 Purely stohasti methodsPurely stohasti methods onsist in generating points in the position spae aording to themeasure dπ(q) = f(q) dq given by (3.6), without refering to any physial dynamis of the system.We brie�y reall here four methods, the Rejetion, Rejetion ontrol, Importane sampling, andMetropolized sampling methods. They all make use of a referene positive probability distribution
g(q), suh that (i) it is easy to generate samples from g, and (ii) g is a �good� approximation of f ,in a sense that will be made preise below.3.1.1 Rejetion methodThe Rejetion method [215℄ requires the knowledge of a probability density g whih bounds ffrom above up to a multipliative fator c > 0:

f ≤ cg, (3.9)and from whih it is easy to generate samples. For instane, when M = T3N (moleular systemwith periodi boundary onditions) and the potential energy V is bounded from below, a uniformdensity g may be used (but its e�ieny is likely to be very poor). The idea of the method is todraw proposals aording to the density g and to aept them with probability f/(cg).



3.1Purelystohastimethods53
Table3.1.Summaryofthedi�erentsamplingmethodsandtheirproperties.Thefollowingshortenings
havebeenused:MH(Metropolis-Hastingssheme),MD(MoleularDynamis),i.i.d.r.v.(independently
andidentiallydistributedrandomvariables),LLN(usualLawofLargeNumbers,i.e.fori.i.d.variables),
MCLLN(LLNforMarkovhains),MPLLN(LLNforMarkovproesses).

Rejetion and Metropolized Hybrid Biased Langevin DeterministiName Rejetion ontrol independene Monte-Carlo Random-Walk dynamis dynamissampler (MIS) (HMC)Sampling from MH with MH with Ellipti Hypoellipti ExtendedMethod the true independent MD proposals di�usion di�usion MD systemdensity proposalsType i.i.d Markov Markov Markov Markov ODEvariables hain hain proess proessMC LLN MC LLN MP LLN MP LLNQuestions 1, 2 LLN (onditions on the (onditions on the (Lyapunov (Lyapunov Openproposal funtion) potential energy) ondition) ondition) questionAny textbook Setion 3.1.3 and [237℄ Setion 3.2.2 Setion 3.2.3 Setion 3.2.4Uniform ergodiity Geometri ergodiity Geometri ergodiityQuestions 3, 4 - when a bounding Ergodiity (Lyapunov (Lyapunov Openfuntion exists ondition) ondition) questionSetion 3.1.3 Setion 3.2.2 Setion 3.2.3 Setion 3.2.4Numerial MH with Euler-Maruyama BBK algorithm or Operatordisretization - - veloity-Verlet or MALA higher order shemes splittingSetion 3.2.2 Setion 3.2.3 Setion 3.2.4 Setion 3.3Type - - Markov Markov Markov ODEhain hain hain disretizationSame tehniques Classial No result for usualConvergene - - and results as for the MC tehniques shemes / results for Openontinuous sheme spei� shemes questionSetion 3.2.2 Setion 3.2.3 and [283℄ Setion 3.2.4Free Sampling Proposal Time step ∆t, Time step ∆t Time step ∆t, Number/values ofparameters funtion g funtion g Integration time τ Frition oe�ient ξ thermostat masses,time step ∆tRule g "lose to" f g "lose to" f �Not too muh rejetion� Aeptane rate ≃ 0.5 ξ∆t �small� (0.01)



54 3 Phase-spae sampling tehniquesAtually, a bound on the (non-normalized) distribution f̃(q) = Zqf(q) = e−βV (q) is su�ientto run the algorithm. Suh a bound reads f̃ ≤ c̃g, and is muh easier to establish in pratie sinethe normalization onstant Zq is unknown and very di�ult to estimate. The proposals are thenaepted with probability f̃/(c̃g).Finding a funtion g suh that the onstant c appearing in (3.9) is as small as possible is veryimportant. It is indeed well-known [215℄ that, on average, generating one sample point requires cdraws, that is c evaluations of the potential energy V , whih is by far the most omputationallyexpensive part of the alulation. This onstant c is therefore of paramount importane. Whenthe system dimension is small, it is usually possible to �nd g suh that c is not too large, andtherefore the method is very e�ient. But when c is very large, the method is totally ine�ient.In moleular simulation, it is usually very di�ult to onstrut e�ient sampling funtions g forsystems involving more than a few atoms. This an however still be done for some spei� systems,suh as rystals at low temperature, using Taylor expansions around the equilibrium position, andontrolling the relevane of the expansion by Rejetion ontrol tehniques (see Setion 3.1.2 below).Sine the points generated by the Rejetion algorithm are independent realizations of somerandom variable, usual onvergene results suh as the Law of Large Numbers and the CentralLimit Theorem apply [137℄. Let A be some observable over the position spae, (qn)0≤n≤N−1 bethe sample generated by the method, and let us set
SN (A) =

N−1∑

n=0

A(qn). (3.10)If π(|A|) < +∞, then the Law of Large Numbers holds true:
lim
N→∞

1

N
SN (A) =

∫

M
A(q)f(q) dq =

∫

M
Adπ a.s.If π(|A|2) < +∞, then the Central Limit Theorem holds true. There exists γA > 0 (in fat,γA =

π(|A|2) − π(|A|)2) suh the following onvergene in law holds:
(NγA)−1/2SN (Ā) →

N→∞
N (0, 1),where Ā = A−

∫

M
Adπ and N (0, 1) is the standard Gaussian random variable.3.1.2 Rejetion ontrolIt is often triky to �nd a funtion g suh that (3.9) is satis�ed everywhere in M. However, itis sometimes possible to �nd a sampling funtion g for whih (3.9) is satis�ed for most proposals

q̃ generated from g. In this ase, the Rejetion method presented in the previous setion an besomewhat modi�ed so that the non-global harater of the bound is taken into aount.The Rejetion ontrol sheme [64,215℄ allows one to handle proposals that violate the inequa-lity (3.9) by an appropriate a posteriori reweighting. Let us just note here that this sheme anbe reast [64℄ as an Importane sampling sheme, a method we will reall in Setion 3.1.4.3.1.3 Metropolized independene samplerWhen c is large, the Rejetion method may require many evaluations of the potential energy V .As c is unknown in pratie, it is di�ult to estimate a priori the omputational e�ieny ofthe method. Therefore, a stohasti method with a �xed omputational ost ould provide aninteresting alternative.



3.1 Purely stohasti methods 55TheMetropolized independene sampler (MIS), presented e.g. in [215, Setion 5.4.2℄, is one suhmethod. Basially, it is a Metropolis-Hastings algorithm [153,238℄ with i.i.d. proposals. Therefore,the generated sequene of points forms a Markov hain (see [240℄ for some de�nitions and propertiesof ontinuous state-spae Markov hains).Metropolis-Hastings algorithmWe �rst reall the general idea of the Metropolis algorithm [238℄, whih was later generalized byHastings [153℄ to provide a general purpose sampling method (see also Setion 4.3 and Setion 6.1.1for non trivial appliations of the Metropolis-Hastings algorithm to the ase of path sampling andVariational Monte Carlo respetively). We present it here on the on�gurational spae M, andonsider that we have a rule to generate proposal on�gurations q′ starting from the urrenton�guration q, and that this proposal funtion is haraterized by the probability density P(q, q′)(It is also alled 'generation probability' or 'transition density' in the �eld of moleular simulation).Metropolis-Hastings algorithmAlgorithm 3.1. Starting from some initial on�guration q0, and for n ≥ 1,(1) Propose a move from qn to q̃n+1 aording to the transition density P(qn, q̃n+1);(2) Compute the aeptane rate
αn = min

(
f(q̃n+1)P(q̃n+1, qn)

f(qn)P(qn, q̃n+1)
, 1

)
;(3) Draw a random variable Un uniformly distributed in [0, 1] (Un ∼ U [0, 1]);(i) if Un ≤ αn, aept the move and set qn+1 = q̃n+1;(ii) if Un > αn, rejet the move and set qn+1 = qn.(4) go to Step (1).We denote by P the transition kernel of this Markov hain. It is easily seen that

P (q, dq′) = r(q, q′)P(q, q′) dq′ +

(
1 −

∫
r(q, q′′′)P(q, q′′) dq′′

)
δq,where the density r(q, ·) is given by

r(q, q′) = min

(
1,
f(q′)P(q′, q)

f(q)P(q, q′)

)
.By onstrution, dπ(q) = f(q) dq is an invariant measure [215℄.The key point in all Metropolis-Hastings shemes is to �nd an e�ient proposal funtion.In partiular, there is always a trade-o� between the aeptane and the deorrelation rate ofthe Markov hain. Indeed, if the aeptane rate is low, the obtained sample is degenerate, andnot statistially on�dent. On the other hand, to inrease the aeptane rate, more orrelatediterations an be used. In this ase the method is more likely to remain trapped in loal minima,and the numerial ergodiity rate may be slow.Metropolized independene samplerWe assume that the potential energy V is ontinuous. Considering an everywhere positiveprobability density g, let us set P(q, q′) = g(q′) and w(q) =

f(q)

g(q)
. This version of the Metropolis-



56 3 Phase-spae sampling tehniquesHastings is alled the Metropolized independene sampler (MIS). The algorithm we will use istherefore as follows: Metropolized independene samplingAlgorithm 3.2. Consider an initial point q0. For n ≥ 1,(1) generate a point q̃ in M from the density g;(2) generate a random number Un ∼ U [0, 1];(3) if Un ≤ min

{
1,

w(q̃)

w(qn)

}, set qn+1 = q̃, otherwise, set qn+1 = qn;(4) replae n by n+ 1 and go bak to step (1).Convergene of the average along one sample pathLet us now reall some onvergene results for Markov hains, whih, applied to the spei�ases of the Metropolized independene sampling, will provide onvergene results. Let us denoteby A some observable on the position spae and by (qn)n∈N one realization of the MIS Markovhain starting from a given q0. The question under examination is that of the onvergene of theempirial mean 1

N
SN (A) toward ∫

M
A(q) dπ(q) where π is the anonial measure de�ned by (3.6)and SN (A) is de�ned by (3.10).First, π is an invariant measure due to general results on Metropolis-Hastings algorithms [215℄.Therefore, ondition (3.7) is satis�ed. Condition (3.8) is also trivially satis�ed whenever the supportof f is a subset of the support of g. This is the ase here sine we have hosen a funtion g whosesupport is the whole position spae M.Sine onditions (3.7) and (3.8) are satis�ed, a Law of Large Numbers (LLN) holds for almostall starting points, and Question 1 an therefore be answered positively. Indeed, reall the followingtheorem:Theorem 3.1 ( [240, Theorem 17.1.7℄). Suppose onditions (3.7) and (3.8) are satis�ed. Then,for any measurable funtion A ∈ L1(π),

lim
N→∞

1

N
SN (A) =

∫

M
Adπ a.s.for almost all starting points q0 ∈ M, where SN (A) is de�ned by (3.10).To obtain a onvergene rate on SN (A), an additional ondition is needed, suh as:There exist two measurable funtions L ≥ min{1, A} and W ≥ 0, a real number band a petite set C suh that

∆W (q) ≤ −L(q) + b1C(q), π(W 2) < +∞,

(3.11)where A is the observable under onsideration and ∆W (q) is de�ned by
∀q ∈ M, ∆W (q) = (PW )(q) −W (q) =

∫

M
P (q, dy)W (y) −W (q). (3.12)The de�nition of petite sets an be found in [240℄. Let us make the following remark, whihwill be very useful:



3.1 Purely stohasti methods 57Remark 3.1. Under some regularity onditions that will always be met here (inluding the fatthat the hain is weak Feller [240, Chap. 6℄), all ompat subsets of M are petite sets and theMarkov hain is Doeblin [89℄. As a onsequene, when the state spae M is ompat, the ondition(3.11) holds true (hoose C = M, W and L arbitrary smooth funtions and take b large enough).Condition (3.11) allows one to obtain a Central Limit Theorem (CLT). For a given measurablefuntion A suh that π(|A|) < +∞, let us formally de�ne the funtion Â by the following Poissonequation:
−∆Â = A− π(A), (3.13)where ∆ is de�ned as in (3.12). It is not lear in general whether Â is well-de�ned. This turns outto be the ase when ondition (3.11) is satis�ed, and allows to state a CLT:Theorem 3.2 ( [240, Theorem 17.5.3℄). Assume onditions (3.7), (3.8) and (3.11) hold true,and let A be a funtion suh that |A| ≤ L. Let SN (A) be de�ned by (3.10). There exists a funtion

Â whih satis�es (3.13), and the onstant γ2
A := π(Â2 − (PÂ)2) is well-de�ned, non-negative and�nite. If γ2

A > 0, then, de�ning Ā = A− π(A),
(Nγ2

A)−1/2SN (Ā) →
N→∞

N (0, 1),this onvergene being in law.Sine onditions (3.7), (3.8) and (3.11) are satis�ed for the MIS hain, Question 2 an beanswered positively for almost all starting points q0.Convergene of the densitiesTo handle onvergene of densities, it is neessary to introdue the total variation norm for asigned Borel measure ν, de�ned as
||ν|| = sup

h measurable, |h|≤1

|ν(h)| = sup
A∈B(M)

ν(A) − inf
A∈B(M)

ν(A). (3.14)Notie that onvergene in total variation implies weak onvergene.De�nition 3.1. A hain on M is ergodi when
∀q ∈ M, lim

n→∞
||Pn(q, ·) − π|| = 0where π is the invariant measure and Pn is the n-step probability transition kernel.Reall the following theorem:Theorem 3.3 ( [240, Theorem 13.3.4℄). If onditions (3.7) and (3.8) hold true, then

||Pn(q, ·) − π|| → 0 as n→ ∞for π-almost all starting points q.The onvergene in total variation norm implies onvergene of the expetations only for boun-ded observables A. It is therefore not su�ient in pratie. Fortunately, the ergodiity results anbe strengthened in a straightforward way. For a given measurable non-negative funtion W ≥ 1,let us de�ne the W -total variation norm for a signed Borel measure µ as
||µ||W = sup

h measurable, |h|≤W
|µ(h)|. (3.15)Then Theorem 3.3 an be readily extended to π-integrable funtions A.



58 3 Phase-spae sampling tehniquesTheorem 3.4 ( [240, Theorem 14.0.1℄). Suppose that A ≥ 1 is measurable and π(|A|) < +∞.If onditions (3.7) and (3.8) hold true, then for π-almost all q ∈ M,
||Pn(q, ·) − π|||A| → 0 as n→ ∞.Sine onditions (3.7) and (3.8) are satis�ed, the MIS Markov hain is ergodi and Theorems 3.3and 3.4 hold true. This answers Question 3.Under an assumption whih is reminisent of the Rejetion method setting, a simple uniformonvergene rate (independent of the starting point q0) an be obtained:Theorem 3.5 ( [237, Theorem 2.1℄). If the probability density g used in the metropolized in-dependene sampling sheme is suh that

∃c, ∀q ∈ M, f(q) ≤ cg(q),then the sheme is geometrially ergodi with a uniform bound. In this ase, for all q0 ∈ M,
||Pn(q0, ·) − π|| ≤ (1 − c−1)n.This theorem gives an answer to Question 4. Note that in the partiular ase when c = 1 (thatis when f = g sine both funtions are probability densities), the onvergene is already ahievedfor n = 1. This is atually lear sine in this ase the MIS sheme samples from the true density!3.1.4 Importane samplingImportane sampling is a well-known general stohasti integration method. The underlyingidea is to reast the integral Eπ(A) =

∫

M
A(q) f(q) dq as

Eπ(A) =

∫

M

(
A(q)

f(q)

g(q)

)
g(q) dqand to approximate the latter integral through a random sample (qn)0≤n≤N−1 drawn aordingto the density g (see e.g. [215, Setion 2℄).The hoie of the trial funtion g is ruial for the overall e�ieny of the method. It should bea good approximation of f or, better, of f(q)A(q). Sine f is typially of exponential or Gaussianform, and A is most often bounded by a polynomial, f is usually the most important term in theprodut f(q)A(q) as far as sampling issues are onerned. Besides, in appliations, it is often thease that several integrals have to be omputed, with di�erent funtions A. So g is often lookedfor as a good approximation of f .Let us note that, for the omputation of stati quantities, the importane sampling methodbased on a density g outperforms the Rejetion method based on the same density g [64℄.3.2 Stohastially perturbed Moleular Dynamis methodsWe �rst present in Setion 3.2.1 the general framework of deterministi miroanonial (NVE)MD. In Setion 3.2.2, we desribe the Hybrid Monte Carlo (HMC) method, from both the theo-retial and the numerial viewpoints, and give some new onvergene results (see Theorems 3.7,3.9, 3.10). We then present the biased Random-Walk (BRW) in Setion 3.2.3, and the Langevindynamis in Setion 3.2.4.We assume in the sequel that T ∗M is globally di�eomorphi to M×R3N , and atually identifythe two sets for simpliity. We also assume thatM is globally di�eomorphi to R3N in Setions 3.2.3



3.2 Stohastially perturbed Moleular Dynamis methods 59and 3.2.4, and identify the two sets as well. Straightforward modi�ations allow to handle theother ases (suh as systems with periodi boundary onditions or isolated systems parametrizedby rigid-body motions and internal oordinates).3.2.1 General framework for NVE Moleular DynamisThe equations of motion




dq(t)

dt
=

∂H

∂p
(q(t), p(t)) = M−1p(t),

dp(t)

dt
= −∂H

∂q
(q(t), p(t)) = −∇V (q(t)),

(3.16)assoiated with the Hamiltonian (3.4) an be numerially integrated e.g. by the elebrated veloity-Verlet algorithm [360℄ 



pn+1/2= pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1),

(3.17)where ∆t is the time step. The veloity-Verlet sheme is an expliit integrator: reall that inStatistial Physis one often onsiders systems with a large number of partiles, making impliitalgorithms untratable. The numerial �ow assoiated with the veloity-Verlet algorithm sharestwo qualitative properties with the exat �ow of (3.16): it is time reversible and sympleti, whihare very important properties as far as the long time numerial integration of Hamiltonian dyna-mis is onerned (see [146, Chap. VIII and IX℄ and [205℄). This algorithm also asks for a uniqueevaluation of the fores F = −∇V per time step. For all these reasons, it is the most ommonlyused algorithm in moleular dynamis.The dynamis (3.16) annot be used to generate points aording to the anonial measure,beause the energy (3.4) is preserved by the �ow. Hene, the trajetory of the system remains onthe submanifold of onstant energy
T ∗M(E0) = {(q, p) ∈ T ∗M;H(q, p) = E0}where E0 = H(q0, p0) is the energy of the initial data. Under some assumptions, the dynamis(3.16) an be used to ompute miroanonial (NVE) ensemble averages, that is, averages over

T ∗M(E0). The numerial analysis of this method (in the very simple ase of ompletely integrablesystems) an be read in [48,49,203℄. To generate points aording to the anonial measure, thereis a need for stohasti perturbations to ensure that di�erent energy levels will be explored, andeventually all of them. These onsiderations straightforwardly extend to the numerial ase sinesympleti methods suh as (3.17) almost preserve the energy over extremely long times [146, Chap.IX℄.3.2.2 Hybrid Monte CarloPresentation of the methodThe Hybrid Monte Carlo method allows one to generate points in the position spae distribu-ted aording to the anonial measure (3.6). It aims at ombining the advantages of moleulardynamis (that approximates the physial dynamis of the system) and of Monte Carlo methods(that explore the position spae more globally). It is in fat a Metropolis-Hastings algorithm, inwhih proposals are onstruted using the NVE Hamiltonian �ow of the system. This method has



60 3 Phase-spae sampling tehniquesbeen �rst introdued by Duane et al. in [88℄ and partially analyzed from a mathematial viewpointby Shütte in [301℄. This method an be seen as a generalization of the Andersen thermostat me-thod [7℄. It has been used in [302,303℄ to identify the metastable onformations of some biologialsystems.In the standard HMC setting, the sequene of generated positions forms a Markov hain oforder one de�ned as follows: Hybrid Monte CarloAlgorithm 3.3. Consider an initial on�guration q0 ∈ M and τ > 0. For n ≥ 0,(1) generate momenta pn aording to the anonial distribution (3.5) and ompute theenergy En = H(qn, pn) of the on�guration (qn, pn);(2) ompute Φτ (qn, pn) = (pn,τ , qn,τ ), that is, integrate the NVE equations of motion (3.16)on the time interval [0, τ ] starting from the initial data (qn, pn);(3) ompute the energy En,τ = H(qn,τ , pn,τ ) of the new phase-spae on�guration. Aeptthe proposal qn,τ with probability
αn = min

(
1, e−β(En,τ−En)

)
;more preisely, generate a random number Un ∼ U [0, 1], and set qn+1 = qn,τ if Un ≤ αnand qn+1 = qn otherwise;(4) replae n by n+ 1 and go bak to step (1).Let us emphasize that the proposal qn,τ would always be aepted at step (3) if the NVEequations of motion, that are energy onserving, were integrated exatly. In pratie, the time-step ∆t used in the numerial integrator (3.17) an be hosen larger than in standard appliationsof MD sine the dynamis of the system used to generate proposals is not onstrained to auratelyreprodue the physial dynamis of the system. On the other hand, it should not be too large;otherwise, the rejetion rate would be large and the e�ieny of the method would be low.Let us notie that in the standard HMC method, only the end points of the MD trajetories arepart of the sample. It is not ompletely lear whether taking into aount the intermediate pointsof the generated MD trajetories in the sample would bias the sampling, e.g. if the �nal point isrejeted, should these intermediate points be kept? See [256℄ for some work in this diretion.Let us also mention that there exist several re�nements of the standard HMC sheme. In orderto improve the aeptane rate, one ould use a riterion based on a shadow Hamiltonian toaept or rejet the new point [150, 184℄. The idea is that this shadow Hamiltonian is preservedmore aurately than the Hamiltonian (3.4) by the numerial trajetory. The bias introdued bythis modi�ation is orreted by a onvenient reweighting, in the spirit of importane sampling.Another improvement onsists in generating, after eah NVE trajetory of length τ , some newmomenta whih are orrelated with the previous ones [173, 191℄. Of ourse, both approahes anbe ombined [2℄.Convergene of the average along one realizationAs above, let us denote by A some observable on the position spae and by (qn)n∈N onerealization of the HMC Markov hain starting from a given q0. Let Π1 be the �rst oordinate �eldof the phase-spae: Π1(q, p) = q.Convergene results for the HMC sheme have been published by Shütte in [301℄. In this proof,the NVE Hamiltonian �ow is assumed to satisfy two onditions:



3.2 Stohastially perturbed Moleular Dynamis methods 61(A) a mixing ondition, whih reads as follows (see [301, Assumption 4.27℄): for every pair ofopen subsets B,C ⊂ M, there exists n0 ∈ N suh that
∀n ≥ n0,

∫

B

T n1C(q)f(q) dq > 0,where f is given by (3.6) and the funtion Tu is de�ned for any funtion u : M → R by
Tu(q) =

∫

R3N

u (Π1Φ−τ (q, p)) P(p) dp, (3.18)where Φτ is the Hamiltonian �ow. This ondition amounts to a ertain aessibility of thewhole position spae when starting from any point;(B) a so-alled momentum invertibility of the �ow ondition (see [301, De�nition 4.1℄). The�ow Φτ is alled momentum-invertible if the two following onditions hold true:(i) for almost every q ∈ M, there is an open set M(q) ⊂ R3N suh that the funtion
yq : p 7→ Π1Φ−τ (q, p) is loally invertible in M(q), that is, det∇pyq 6= 0 for p ∈
M(q).(ii) there is an η > 0 suh that ess-inf

q∈M

∫

M(q)

P(p) dp = η.This ondition states that the transition probabilities are bounded from below in somesense.The following onvergene result is given in [301℄:Theorem 3.6 ( [301, Lemma 4.31 and Theorem A.24℄). Under the assumptions (A) and(B) realled above, for any measurable funtion A ∈ L1(π), it follows
lim
N→∞

1

N

N−1∑

n=0

A(qn) =

∫

M
Adπ a.s. (3.19)for almost all starting points q0 ∈ M, where (qn)n∈N is the sequene of points generated by theHMC Algorithm 3.3 where, at step (2), the NVE equations of motion (3.16) are exatly integrated.Note that ergodiity results have also been proved [301, Corollary 4.33℄, as well as onvergeneresults on the numerial �ow [301, page 96℄ (in this latter ase, (qn)n∈N in (3.19) is the sequene ofpoints generated by the HMC Algorithm 3.3 where the NVE equations of motion (3.16) are nownumerially integrated).The onditions (A) and (B) realled above are di�ult to hek in pratie, and furthermore,it is not lear whether they are neessary. We present here a new onvergene result, that doesnot require these assumptions.Let us �rst onsider the ase when the NVE equations of motion are integrated exatly. Thetransition kernel P of the HMC Markov hain is de�ned by

∀(q,B) ∈ M×B(M), P (q,B) =

∫

R3N

1{Π1Φτ (q,p)∈B}P(p)dp, (3.20)where the density P is the anonial distribution on the momentum spae given by (3.5).As the phase-spae anonial measure µ = π⊗κ is an invariant measure for Φτ , it is lear thatthe position-spae anonial measure π is an invariant measure for the HMC Markov hain (seee.g. [215, Setion 9.3℄ for details). Therefore, ondition (3.7) holds true.



62 3 Phase-spae sampling tehniquesWe now onsider the aessibility ondition (3.8). This ondition is not satis�ed in general, forany potential energy. Consider for example a one-dimensional partile (M = R) of mass m = 1subjeted to the potential energy V (q) =
1

2
q2. Then the solution q(t) starting from q0 withmomentum p0 is given by

q(t) = q0 cos(t) + p0 sin(t).As already notied by Makenzie in [221℄, taking τ = 2π leads to q(τ) = q0 whatever the hoieof p0. The ondition (3.8) is therefore learly not satis�ed, and the Markov hain is not ergodi.Of ourse this spurious e�et only arises for speial hoies of τ . It is also linked to the fat thatthe period of the trajetory of the harmoni osillator does not depend on the initial momentum.To prove the aessibility ondition (3.8), a �rst way is to make the additional assumption thatthe potential energy is bounded from above. We aknowledge that this assumption is often notsatis�ed in pratie. Nevertheless, for some potential energies that do not satisfy this assumption,it is still possible to prove an aessibility ondition by some expliit onstrutions, spei� to thesystem at hand (espeially in the ase of a singular entral potential energy, see below). We willalso onsider in Setion 3.2.2 another possibility, based on random integration times τ , that anbe used for a larger lass of potentials.We now turn to proving the aessibility ondition (3.8) under the assumption that V isbounded from above. This is the result of the following Lemmas.Lemma 3.1 (HMC aessibility - exat �ow). Let τ > 0. Assume that V is in C1(M) andis bounded from above. Then for any q, q′ ∈ M and any neighborhood V ′ of q′, there holds
P (q,V ′) > 0.Proof. The proof is based on the least ation priniple (LAP). Let us denote by

S(φ) =

∫ τ

0

(
1

2
φ̇T (t)Mφ̇(t) − V (φ(t))

)
dtthe ation assoiated with the path φ ∈ H = {φ ∈ H1([0, τ ],M) | φ(0) = q, φ(τ) = q′}. Sine Vis bounded from above, there exists E0 suh that V (q) ≤ E0 for all q ∈ M. Thus, S is boundedfrom below:

S(φ) ≥ −
∫ τ

0

V (φ(t)) dt ≥ −E0τ.Therefore, there exists a minimizing sequene (φn)n∈N ∈ H suh that S(φn) → infφ∈H S(φ) = s >

−∞. Without restrition, it an be assumed that s ≤ S(φn) ≤ s+ 1 for all n ∈ N. Thus,
∫ τ

0

φ̇Tn (t)Mφ̇n(t) dt = 2S(φn) + 2

∫ τ

0

V (φn(t)) dt ≤ 2S(φn) + 2τE0 ≤ 2(s+ 1) + 2τE0.Therefore, (φ̇n)n∈N is bounded in L2([0, τ ],M). The sequene (φn)n∈N is then bounded in thespae H1([0, τ ],M). Let φ ∈ H1([0, τ ],M) suh that (up to extration) φn ⇀ φ in H1([0, τ ],M)-weak and φn → φ almost everywhere. Sine H is onvex and losed in H1([0, τ ],M), the limit φ isatually in H. Besides, it is easy to hek that lim infn→∞ S(φn) ≥ S(φ) (by lower semi-ontinuityon the kineti energy and Fatou lemma on the potential energy), and this gives immediately
inf
ψ∈H

S(ψ) = min
ψ∈H

S(ψ) = S(φ).Thus φ minimizes S on H. Therefore, the equation
M φ̈ = −∇V (φ) (3.21)



3.2 Stohastially perturbed Moleular Dynamis methods 63holds true on (0, τ) in the distributions sense. By standard regularity results, φ ∈ C2([0, τ ],M)and (3.21) holds true in the sense of ontinuous funtions. Hene the funtion φ is simply thesolution of the Hamiltonian dynamis with φ(0) = q, φ(τ) = q′ and initial veloity φ̇(0).Consider eventually a neighborhood V ′ of q′. Then P (q,V ′) > 0 is a straightforward onse-quene of the ontinuity of the solutions of (3.21) with respet to the initial veloity φ̇(0). ⊓⊔Lemma 3.1 gives aessibility from any point to any open set. It is therefore not enough forondition (3.8) to hold true sine it requires aessibility from one point to any arbitrary Borel setof positive Lebesgue measure. This asks for some regularity of the transition kernel, and in fat,some regularity of the dynamis, inferred from stronger assumptions on the potential energy V .More preisely, we have the following lemma:Lemma 3.2 (HMC irreduibility - exat �ow). Assume that V ∈ C1(M) is bounded fromabove and ∇V is a globally Lipshitz funtion. Then the transition kernel of the HMC Markovhain satis�es
∀q ∈ M, ∀B ∈ B(M), µLeb(B) > 0 ⇒ P (q,B) > 0.Proof. Consider B ∈ B(M) suh that µLeb(B) > 0, and q ∈ M. We want to show that P (q,B) > 0for P de�ned by (3.20). For the sake of simpliity, we assume here that all partile masses areequal to 1.The proof is based on volume onservation in the phase spae: any Borel set of �nal positions ofstritly positive measure an be reahed from q and a set of momenta of stritly positive measure.Denote IB(q) = {p ∈ R3N | Π1Φτ (q, p) ∈ B}, and onsider the funtion θ : IB(q) 7→ B suh that

θ(p) = Π1Φτ (q, p). This funtion is surjetive aording to the proof of the aessibility Lemma 3.1,so that θ(IB(q)) = B. Moreover, P (q,B) =

∫

IB(q)

P(p) dp. Therefore, sine P is positive andontinuous, it is enough to show that µLeb(IB(q)) > 0 in order to get P (q,B) > 0.We proeed by ontradition. Suppose µLeb(IB(q)) = 0. We �rst note that θ is Lipshitz (ofonstant Lip(θ)) sine ∇V is ontinuous and globally Lipshitz by assumption, and τ > 0 is �xed.Indeed, denote C the Lipshitz onstant of ∇V and note that a solution of the equations of motionan be written as
q(τ) = q + pτ −

∫ τ

0

(τ − s)∇V (q(s)) ds.For two di�erent initial momenta p1 and p2, we have
|q1(t) − q2(t)| ≤ |p1 − p2|t+ C

∫ t

0

(t− s)|q1(s) − q2(s)|ds.By Gronwall lemma, there exists cτ < +∞ suh that
|q1(τ) − q2(τ)| ≤ cτ |p1 − p2|,hene θ is Lipshitz.Sine the Lebesgue measure and the Hausdor� measure H3N agree on R3N (see [101, Se-tion 2.2, Theorem 2℄), and sine the behavior of the Hausdor� measure under Lipshitz mappingsis known [101, Setion 2.4, Theorem 1℄, we obtain

µLeb(B) = µLeb(θ(IB(q))) = H3N (θ(IB(q))) ≤ Lip(θ)3NH3N (IB(q)) = Lip(θ)3NµLeb(IB(q)) = 0.This gives µLeb(B) = 0, in ontradition with the assumption µLeb(B) > 0. ⊓⊔Sine onditions (3.7) and (3.8) are satis�ed, a Law of Large Numbers (LLN) holds true foralmost all starting points (see Theorem 3.1). We an therefore answer positively to Question 1:



64 3 Phase-spae sampling tehniquesTheorem 3.7. Assume that V ∈ C1(M) is bounded from above and ∇V is a globally Lipshitzfuntion. Let (qn)n∈N be the sequene of points generated by the HMC Algorithm 3.3 where, atstep (2), the NVE equations of motion (3.16) are exatly integrated. Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.Convergene of the HMC sheme has been established above for smooth potentials, possiblyunder ertain boundedness assumptions on the potential V or its derivatives. However, in many ap-pliations, non-globally smooth potentials are used. Central potentials, suh as the Lennard-Jonesor the Coulomb potential, are some famous examples of singular potentials ommonly onsideredin biology or physis. We present here some results onerning the onvergene of the HMC shemefor a single partile in a entral potential deaying su�iently fast at in�nity (suh as |q|−α for αlarge enough). Only the aessibility properties of the hain are stated expliitely, the rest of theproof following the same lines as for the usual HMC sheme.In view of the reversibility of the NVE equations of motion, to show that any point q2 an bereahed in two steps from a point q1, is equivalent to showing that the end points of the trajetoriesstarting from q1 and q2 oinide. This is the followingProposition 3.1 (HMC aessibility for one partile in a dereasing entral potential).Consider a entral potential V (q) = V (|q|) ∈ C1(R3 \ {0}) suh that q · V ′(q) ≤ 0, ∇V is lipshitzon R3 \Ba(0) for all a > 0 with a onstant Ca suh that lima→∞ Ca = 0, and |∇V | is bounded on

R3 \Ba(0) for all a > 0. Consider q1, q2 ∈ R3 \ {0} suh that q1, the singularity 0 and q2 are notaligned in this order (there is no λ > 0 suh that q01 = −λq02). Then there exist p1, p2 suh that thesolutions of the equations of motion
z̈ = −∇V (z)starting respetively from q1, q2 with momenta p1, p2 oinide at the time τ .The proof is based on an expliit two-step onstrution. If q1, 0 and q2 are aligned in this order,then an additional on�guration q3 not aligned with the previous ones should be onsidered. Hene,one an go from q1 to q2 by four trajetories of time length τ . These results an be extended tomore general potentials suh as the Lennard-Jones potential in a simple way.Proof. We onsider two points q01 , q02 and the orresponding initial momenta p0

1, p
0
2. The two par-tiles are assumed to be of idential masses 1, the general result following after straightforwardmodi�ations. Then,

q1(t) = q01 + p0
1t−

∫ t

0

(t− s)∇V (q1(s)) ds,and, setting p0
2 = p0

1 − q02−q01
τ + p (using a �small� parameter p),

q2,p(t) = q02 +

(
p0
1 −

q02 − q01
τ

)
t+ pt−

∫ t

0

(t− s)∇V (q2,p(s)) ds. (3.22)We look for p suh that q2,p(τ) = q1(τ). This ondition an be rewritten as
p =

1

τ

∫ τ

0

(τ − s)[∇V (q2,p(s)) −∇V (q1(s))] ds = F (p).Under this form, we reognize a �xed-point equation, trivially veri�ed by p = 0 in the ase∇V = 0.The idea is then solve this equation for ∇V small. This an be done if the trajetories move away



3.2 Stohastially perturbed Moleular Dynamis methods 65from the singularity in 0. To this end, the momentum p0
1 has to be taken large enough, and p hasto be small ompared to p0

1.We now formalize these heuristi onsiderations. Notie �rst that the initial momentum p0
1 anbe hosen so that the partile moves out from 0. Indeed, using polar oordinates (r, θ) for thepartile position q ∈ R3,

∂tt(r
2) = ∂tt(x · x) = 2(|q̇|2 − q · ∇V (q)) ≥ −2rV ′(r).By integration,

∂t(r
2)(t) − ∂t(r

2)(0) ≥ −
∫ t

0

2r(t)V ′(r(t))dt ≥ 0. (3.23)So, if the initial onditions are suh that ∂t(r2)(0) > 0, the distane r of a partile to the origin isinreasing. Let us set
M = sup

|q|≥min(|q01|,|q02|)
|∇V (q)|, K = Mτ. (3.24)Sine

∂t(q1 · q1)(0) = 2q01 · p0
1,

∂t(q2,p · q2,p)(0) = 2q02 ·
(
p0
1 + p− q02 − q01

τ

)
,and onsidering p and p0

1 suh that
|p| ≤ K, q02 · p0

1 ≥ q02 · q
0
2 − q01
τ

+K|q02 |, q01 · p0
1 ≥ 0, (3.25)it follows ∂t(q1 · q1)(0) ≥ 0 and ∂t(q2,p · q2,p)(0) ≥ 0. Let us note that, beause q01 , the singularity0 and q02 are not aligned, suh p0

1 exist. Therefore,
∀t ≥ 0, ∀|p| ≤ K, |q2,p(t)| ≥ |q02 |, |q1(t)| ≥ |q01 |. (3.26)Next, we show that there exists t∗ small enough suh that p 7→ q2,p(t) is Lipshitz with uniformbound on [0, t∗]. Indeed, from the expression (3.22), and sine ∇V is lipshitz of onstant C = C|q02 |on R3 \B|q02 |(0), we obtain

|q2,p(t) − q2,p′(t)| ≤ |p− p′|t+ C

∫ t

0

(t− s)|q2,p(t) − q2,p′(t)| ds.This Gronwall inequality implies
|q2,p(t) − q2,p′(t)| ≤ |p− p′|

∫ t

0

s exp(C(t− s))ds.Taking t∗ ≤ τ small enough, we get for all 0 ≤ t ≤ t∗,
|q2,p(t) − q2,p′(t)| ≤

1

4C
|p− p′|. (3.27)This time t∗ is now �xed in the remainder of this proof.Thus, p0

1 being �xed, the distane between two trajetories an be ontrolled for small times.For larger times, we use the fat that we an go arbitrary far from the origin by an appropriatehoie of the initial momentum. Indeed,
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|q2,p(t)| ≥

∣∣∣∣q02 +

(
p0
1 + p− q02 − q01

τ

)
t

∣∣∣∣− τ2 sup
|q|≥|q02 |

|∇V (q)|. (3.28)Let ǫ > 0. Sine ∇V is lipshitz on R3 \ Ba(0) with a onstant Ca suh that lima→∞Ca = 0,there exists R(ǫ) suh that CR(ǫ) < ǫ. If view of (3.28), there exists an momentum p0
1 large enoughsatisfying (3.25) suh that

∀p, |p| ≤ K, ∀t ≥ t∗, |q2,p(t)| ≥ R(ǫ). (3.29)Considering two momenta |p|, |p′| ≤ K, a Gronwall inequality an again be obtained. There existsa onstant Cτ (that does not depend on ǫ ≤ 1) suh that
∀t, t∗ ≤ t ≤ τ, |q2,p(t) − q2,p′(t)| ≤ Cτ |p− p′|. (3.30)The proof an now be onluded. Reall that we look for a �xed-point of the funtion
F (p) =

1

τ

∫ τ

0

(τ − s)[∇V (q2,p(s)) −∇V (q1(s))]ds.The mapping F maps BK = {|p| ≤ K} into itself when p0
1 satis�es (3.25). Indeed, the bound (3.26)is veri�ed in this ase, so that (3.24) implies

|F (p)| ≤ 1

τ

∫ τ

0

(τ − s)2M ds = Mτ = K.Piard theorem an then be applied provided F is ontrative. Choosing momenta suh that (3.25)holds true and suh that ǫ < min{1, 1
4Cττ

},
|F (p) − F (p′)| ≤ C

∫ t∗

0

|q2,p(s) − q2,p′(s)| ds+

∫ τ

t∗

|∇V (q2,p(s)) −∇V (q2,p′(s))| ds.Using (3.27) for the �rst term and, (3.29), the fat that ∇V is lipshitz on R3 \ BR(ǫ)(0) with aonstant CR(ǫ) < ǫ, and (3.30) for the seond term, there holds
∀|p|, |p′| ≤ K, |F (p) − F (p′)| ≤ 1

2
|p− p′|.The funtion F is then ontrative on the ball {|p| ≤ K}. There is therefore a �xed point p = F (p)with |p| ≤ K. ⊓⊔Convergene of the densitiesSine ondition (3.7) is satis�ed, and ondition (3.8) holds true under the assumptions ofLemma 3.2 on the potential energy (V is C1, bounded from above and ∇V is globally Lipshitz),the HMC Markov hain is ergodi (see Theorem 3.3). In partiular,

∣∣∣∣Pn(q0, ·) − π
∣∣∣∣→ 0for almost all starting points q0 ∈ M, where || · || denotes the total variation norm (3.14). We alsoget onvergene in the |A|-total variation norm (3.15) provided π(|A|) < +∞ and |A| ≥ 1 (seeTheorem 3.4). This answers Question 3.



3.2 Stohastially perturbed Moleular Dynamis methods 67Convergene ratesWe have not been able to state more sophistiated onvergene results (Central Limit Theorem,geometri ergodiity) in the general HMC framework sine they require stronger results on theMarkov hain suh as a drift ondition (3.11) or a Lyapunov ondition suh asThere exist a measurable funtion W ≥ 1, real numbers c > 0 and b,and a petite set C suh that
∀q ∈ M, ∆W (q) ≤ −cW (q) + b1C , (3.31)where ∆W (q) is de�ned by (3.12). Let us however make the following remark:Remark 3.2. Under some regularity onditions that will always be met here (inluding the fatthat the hain is weak Feller [240, Chap. 6℄), and when M is ompat, ondition (3.31) is straight-forwardly satis�ed with the hoie C = M (in view of Remark 3.1, M is a petite set and the Markovhain is Doeblin [89℄) for any arbitrary smooth funtion W (taking b large enough).When the state spae is ompat, onditions (3.11) and (3.31) hold true (in view of Remarks 3.1and 3.2). We thus obtain a positive answer to Question 2 (see Theorem 3.2). We also obtain apositive answer to Question 4, in view of the following theorem:Theorem 3.8 ( [240, Theorem 15.0.1℄). Assume onditions (3.7), (3.8) and (3.31) hold true.Then there exist ρ < 1 and R < +∞ suh that, for all q satisfying W (q) < +∞,

‖Pn(q, ·) − π‖W ≤ RW (q) ρn,where Pn is the n-step probability transition kernel and ‖ · ‖W is the norm de�ned by (3.15).Numerial implementation: Method and onvergene resultsIt is standard to use the veloity-Verlet sheme (3.17) to integrate numerially the trajetoriesover times τ = k∆t for some integer k. Let us point out that the aeptane/rejetion step (3)in Algorithm 3.3 ensures that the HMC Markov hain orretly samples the anonial measure π,so that no bias is introdued by the numerial disretization. The situation will be di�erent forthe Biased Random-Walk and the Langevin equation (see Setions 3.2.3 and 3.2.4). We denoteby P∆t the transition kernel of the Markov hain using the veloity-Verlet integrator (3.17) withtime-step ∆t.The theoretial proof of onvergene for the numerial version of HMC follows the same linesas the proof of onvergene for the exat version using the Hamiltonian �ow. The only di�erenelies in the additional aeptane/rejetion step whih does not modify the struture of the hain(for it does not hange the aessibility properties of the hain). We only preise here the hangesthat have to be onsidered for the aessibility Lemma.Lemma 3.3 (HMC aessibility - numerial �ow). Let τ > 0. Assume that V is in C1(M)and is bounded from above on M, and onsider the numerial disretization sheme (3.17). Thenfor any q, q′ ∈ M and any neighborhood V ′ of q′, there holds
P∆t(q,V ′) > 0.Proof. The proof of Lemma 3.1 is based on the minimization of the ation S over some spae H.Here, we extend this proof to the disretized ase using a onvenient approximation of this varia-tional problem. There are several ways to disretize the variational problem, leading to di�erentnumerial shemes. In partiular, the veloity-Verlet algorithm an be derived by minimizing thedisretized ation [226℄



68 3 Phase-spae sampling tehniques
S∆t(Φ) = ∆t

k−1∑

i=0

[
1

2

(
qi+1 − qi

∆t

)2

− V (qi+1) + V (qi)

2

]
, (3.32)where τ = k∆t (we again assumed here that all partile masses are equal to 1).The minimization is performed on the sequenes Φ = {q0, q1, . . . , qk} with the onstraints

q0 = q and qk = q′. The quantity S∆t is still bounded from below for a potential energy boundedfrom above. Hene, there exists a minimizing sequene (Φn)n∈N = ({q0,n, q1,n, . . . , qk,n})n∈N. Eahdi�erene qi+1,n − qi,n is easily seen to be bounded, thus eah omponent qi,n is in fat bounded.We an onsider Φ̄ = (q̄0, . . . , q̄k) suh that, upon extration, we have qi,n → q̄i when n → ∞ foreah i. Moreover, S(Φ̄) = minΦ S(Φ). The optimality onditions then read
q̄i+1 = 2q̄i − q̄i−1 −∆t2∇V (q̄i)for 1 ≤ i ≤ k−1. We reognize the Verlet sheme. As in addition q̄0 = q and q̄k = q′, this shows thatgiven two points q, q′, there is a path onneting them using a numerial veloity-Verlet trajetorywith initial veloity p̄0 =

q̄1 − q̄0

∆t
+
∆t

2
∇V (q̄0). By ontinuity, for initial veloities lose to p̄0, theendpoint of the resulting trajetory remains in a neighborhood of q′. ⊓⊔We an now state a Law of Large Number theorem (see Theorem 3.1):Theorem 3.9. Assume that V ∈ C1(M) is bounded from above and ∇V is globally Lipshitz. Let

(qn)n∈N be the sequene of points generated by the HMC Algorithm 3.3 where, at step (2), theNVE equations of motion (3.16) are numerially integrated by (3.17). Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.Random Time Hybrid Monte CarloIn order to prove onvergene of the lassial HMC sheme, we have assumed in the previoussetion that the potential energy is bounded from above. As explained in the disussion just aboveLemma 3.1, another possibility is to modify the HMC sheme as in [221℄. The modi�ation onsistsin transforming the �xed parameter τ into a random variable, distributed with a density T (τ).This ensures that resonane e�ets are avoided. We all this sheme "Random Time Hybrid MonteCarlo" (RTHMC).The only property required on T is that T is ontinuous and positive on R+. The orrespondingMarkov transition kernel reads, for q ∈ M and B ∈ B(M),

P (q,B) =

∫

R3N×R+

1{Π1Φτ (q,p)∈B}P(p)T (τ) dp dτ. (3.33)Notie that π is still an invariant probability measure for this Markov hain, so ondition (3.7)holds true. Therefore, to get onvergene results, we only need to show ondition (3.8). This isdone in two steps, as for the lassial HMC sheme.The �rst lemma states that there is a positive probability to go from one state q to anyneighborhood of any state q′ in one RTHMC iteration.Lemma 3.4 (RTHMC aessibility). Assume that V ∈ C1(M) and D2V ∈ L∞(R3). Then forany q0, q1 ∈ M, and there exists τ∗ > 0 suh that, for all 0 < τ ≤ τ∗, there exists p ∈ R3N with
Π1Φτ (q0, p) = q1.



3.2 Stohastially perturbed Moleular Dynamis methods 69Proof. A similar idea is used in [301℄ in a slightly di�erent ontext. If V is identially equalto zero, then going from q0 to q1 is possible through the hoie of (say) the initial momenta
p∗ = M(q1 − q0)/τ for some evolution time τ > 0. We then onsider the resaled equation

Mq̈ǫ(t) = −ǫ∇V (qǫ(t)) (3.34)and the assoiated �ow φǫ. Setting
F (ǫ, p) = φǫ(τ, q0, p) − q1,the funtion F is C1(R × R3N ) (we use here the assumption D2V ∈ L∞(R3)), F (0, p∗) = 0 and

∂pF (0, p∗) = τM−1 is invertible. In view of the impliit funtion theorem, there exists ǫ∗ > 0 suhthat for all 0 ≤ ǫ ≤ ǫ∗, there exists pǫ suh that F (ǫ, pǫ) = 0.This shows (by the hange of variables t→ ǫt in (3.34) for 0 < ǫ ≤ ǫ∗) that Π1Φǫτ (q0, pǫ/ǫ) =

q1. ⊓⊔Condition (3.8) an then be obtained in the same way as for the lassial HMC sheme, theproof following the same lines as for Lemma 3.2.Lemma 3.5 (RTHMC irreduibility). Provided that V ∈ C1(M) and D2V ∈ L∞(M), thetransition kernel (3.33) of the RTHMC Markov hain satis�es ondition (3.8).Proof. Consider B ∈ B(M) suh that µLeb(B) > 0, and q ∈ M. We want to show that P (q,B) > 0for P de�ned by (3.33). For the sake of simpliity, we assume here that all partile masses areequal to 1.The proof relies on the fat that, for a given q and for τ > 0 small enough, the mapping
p 7→ Π1Φτ (q, p) is invertible. Denote JB(q, τ) = {p ∈ R3N | Π1Φτ (q, p) ∈ B}, and onsider
ψτ : JB(q, τ) → B suh that ψτ (p) = Π1Φτ (q, p).We �rst show that ψτ is an injetive funtion for τ > 0 small enough. From the equations ofmotion,

ψτ (p) = q + pτ −
∫ τ

0

(τ − s)∇V (ψs(p)) ds.Hene
∇pψτ (p) = τ Id −

∫ τ

0

(τ − s)D2V (ψs(p)) · ∇pψs(p) ds. (3.35)Set αR(s) = sup
|p|≤R

||∇pψs(p) − sId||∞. Sine ∇V is a globally Lipshitz funtion, we have
αR(τ) ≤ C

(∫ τ

0

(τ − s)αR(s) ds+
τ3

6

) (3.36)with C = ‖D2V ‖L∞(M). We now onsider τRc = sup{τ ′; αR(τ) ≤ τ/2 for all τ ∈ [0, τ ′]}. From(3.36), we obtain that τRc ≥
√

2/C. Hene, we have
∀τ ∈

[
0,
√

2/C
]
, αR(τ) ≤ τ

2
.Inserting this inequality in (3.36), we also obtain that

∀τ ∈
[
0,
√

2/C
]
, αR(τ) ≤ C

τ3

4
.It follows that

α(s) = sup
p∈R3N

||∇pψs(p) − sId||∞ ≤ C
τ3

4
. (3.37)



70 3 Phase-spae sampling tehniquesNow,
(ψτ (p1) − ψτ (p2)) · (p1 − p2) =

∫ 1

0

(p1 − p2) · ∇pψτ (p2 + s(p1 − p2)) · (p1 − p2) ds

=

∫ 1

0

(p1 − p2) · (∇pψτ (p2 + s(p1 − p2)) − τId) · (p1 − p2) ds

+ τ |p1 − p2|2Let us suppose that ψτ (p1) = ψτ (p2). Then
τ |p1 − p2|2 ≤ α(τ) |p1 − p2|2 ≤ τ

2
|p1 − p2|2and we obtain p1 = p2. Hene, the mapping JB(q, τ) ∋ p 7→ ψτ (p) ∈ B is an injetive funtion for

τ ≤
√

2/C.We now show that this mapping is onto. We onsider, for q′ ∈ B, the C1 funtion
G(τ, p, q′) = ψτ (p) − q′.Let us �x q∗ ∈ B suh that, for all ǫ > 0, µLeb(B ∩ Bǫ(q

∗)) > 0. Lemma 3.4 shows that thereexists τ∗ > 0 suh that
∀τ, 0 < τ < min(τ∗,

√
2/C), ∃p ∈ R3N s.t. G(τ, p, q∗) = 0.Sine ∂pG = ∂pψτ is invertible (using (3.35) and the bound (3.37)), we obtain from the impliitfuntion theorem that there exists a neighborhood Vτ (p) of p and a neighborhood Vτ (q∗) of q∗suh that, for any q′ ∈ Vτ (q∗), there exists p′ ∈ Vτ (p) with G(τ, p′, q′) = 0. This gives the desiredresult.Thus, for 0 < τ < min(τ∗,

√
2/C), the mapping ψτ is one-to-one from Vτ (p) onto Vτ (q∗).Using (3.37), we also have Det(∇pψτ (p)) = τ3N (1 + o(1)) uniformly in p. Hene, the mapping ψτis invertible and Det(∇pψ

−1
τ (q)) = τ−3N (1 + o(1)).We are now in position to show that P (q,B) > 0. By ontradition, assume P (q,B) = 0. Then∫

R3N

1{Π1Φτ (x,p)∈B}P(p) dp = 0 for almost all τ . Therefore, for almost all 0 < τ < min(τ∗,
√

2/C),we have ∫
R3N

1{Π1Φτ (x,p)∈B∩Vτ(q∗)}P(p) dp = 0. Thus, a hange of variable shows that
∫

B∩Vτ (q∗)

P(ψ−1
τ (q)) |Jac(ψ−1

τ (q))| dq = 0for almost all 0 < τ < min(τ∗,
√

2/C). This is however not possible sine P is ontinuous andpositive, µLeb(B ∩ Vτ (q∗)) > 0, and |Jac(ψ−1
τ (q))| ∼ τ−3N when τ → 0 so that |Jac(ψ−1

τ (q))| > 0for τ small enough.We then get onvergene of the average along a sample path (see Theorem 3.1):Theorem 3.10. Assume that V ∈ C2(M) and D2V ∈ L∞(M). Let (qn)n∈N be the sequene ofpoints generated by the RTHMC algorithm where the NVE equations of motion (3.16) are exatlyintegrated. Then
1

N

N−1∑

n=0

A(qn) →
∫

M
A(q) dπ a.s.for almost all starting points q0 ∈ M.



3.2 Stohastially perturbed Moleular Dynamis methods 71We also obtain ergodiity and onvergene of the densities as for the lassial HMC shemeunder the assumptions of Lemma 3.5 (see Theorem 3.3).For the numerial disretization, we have to onsider times τn = n∆t, and a probability T on
N suh that T (n) > 0 for all n (a Poisson law for instane). The time-step ∆t has to be hosensmall enough suh that no resonane e�et an appear.3.2.3 Biased Random-WalkThe so-alled biased Random-Walk, also known as the Brownian dynamis, or the overdampedLangevin dynamis, is de�ned by the �titious dynamis

dqt = −∇V (qt) dt+ σ dWt, (3.38)where (Wt)t≥0 is a 3N -dimensional standard Wiener proess and σ = (2/β)1/2. The term �biased�refers to the fat that the brownian trajetories are a�eted by the drift term −∇V whih tendsto draw them toward the loal minima of V . The in�nitesimal generator A assoiated with thebiased Random-Walk (3.38) is de�ned by
Ag = −∇V · ∇g +

σ2

2
∆g, (3.39)for g ∈ C2(R3N ). We denote by P t the Markov semigroup assoiated with (3.38). Trajetorialexistene and uniqueness for (3.38) is lassial for globally Lipshitz fore-�elds [152,224℄, namelyfor potential energies V satisfying for some positive onstant L

∀(x, y) ∈ R3N × R3N , |∇V (x) −∇V (y)| ≤ L |x− y|. (3.40)When this ondition is not satis�ed, it is possible to onlude to trajetorial existene and uni-queness for loally Lipshitz fore-�elds under the following hypothesis [152, 224℄: there exist afuntion W (q) ∈ C2(R3N ) that goes to in�nity at in�nity and a positive onstant c suh that
AW ≤ cW. (3.41)Besides, under assumption (3.40) or (3.41), one an prove that the Markov proess (3.38) isFeller [241℄.From the Fokker-Plank equation assoiated with (3.38), it is easy to hek that

π is an invariant probability measure of (3.38), (3.42)where π is the anonial position spae distribution (3.6).Convergene of the time average along one sample pathLet us onsider the time average
ST (A) =

1

T

∫ T

0

A(qxt ) dt, (3.43)where qxt is a sample path of (3.38) with the deterministi initial ondition q0 = x. Convergeneresults analogous to the results obtained for Markov hains an be extended to Markov proesses,with an average (3.43) still taken only over one realization of the proess (see [335℄ for a seminalontribution (that also onsiders disretization issues), [336,337℄ for improvements and re�nements,and [265℄ for a reent review).



72 3 Phase-spae sampling tehniquesTo obtain an almost sure onvergene of ST (A) to the position spae average (and thus apositive answer to Question 1), the following theorem an be used:Theorem 3.11 ( [241, Theorem 8.1℄). Assume that the proess qt de�ned by (3.38) is Feller,that ondition (3.42) holds true as well as the following ondition:for all t, for all q ∈ R3N and all open sets O ⊂ R3N , P t(q,O) > 0. (3.44)Then, for π-almost every q ∈ R3N and for any A ∈ L1(π),
lim
T→∞

ST (A) =

∫

R3N

A(q)dπ a.s.If ∇V is globally Lipshitz, then (3.44) holds true by standard results [287℄. In other ases, a simpleway to hek ondition (3.44) is to use a ontrollability argument inspired from [231, Lemma 3.4℄.Central Limit Theorems (whih would provide a onvergene rate of ST (A) towards its limit andthus provide an answer to Question 2) an also be stated. We refer for example to [172℄.Convergene of the densitiesErgodiity holds true whenever onditions (3.42) and (3.44) are satis�ed (see [241, Theo-rem 6.1℄). Question 3 an therefore be answered positively. To get an exponential onvergenerate (in the W -total variation norm (3.15)), that is, to answer Question 4, one needs to show thestronger ondition
AW (q) ≤ −cW (q) + b1C(q), (3.45)where W ≥ 1 is a measurable funtion going to in�nity at in�nity, c > 0, b ∈ R and C is aompat set (ompare this ondition with ondition (3.31) for Markov hains). We do not addressthis question in the present here (see [231,336,337℄ for examples of suh studies).Numerial implementationThe Euler-Maruyama numerial sheme assoiated to (3.38) reads, when taking integrationsteps h = ∆t2/2:

qn+1 = qn − ∆t2

2
∇V (qn) + β−1/2∆tRn, (3.46)where (Rn)n∈N is a sequene of i.i.d. 3N -dimensional standard Gaussian random vetors.For globally Lipshitz fore-�elds, the Euler-Maruyama sheme (3.46) onverges: if the proess

qt de�ned by (3.38) is ergodi, then the numerial Markov hain is ergodi and its invariant measureis lose to the invariant measure of the original proess (for ∆t small enough) [231, Theorem 7.3℄.However, for non-globally Lipshitz fore-�elds, it is not su�ient to onsider the disretiza-tion (3.46) of the di�usion proess alone. Indeed, examples of non-globally Lipshitz fore-�eldsare known for whih the Euler-Maruyama sheme fails [231, 283℄. There are two ways out ofthis situation. First, onvenient disretizations of (3.46) using some impliit integration an beused. Under some assumptions on the potential energy V , the orresponding numerial shemeonverges: (i) there exists an invariant probability measure for the Markov hain formalizing thealgorithm; (ii) empirial averages of observables (with at most polynomial growth) onverge to po-sition spae averages up to O(∆t) terms (see [337℄). However, impliit methods beome untratablefor large systems. Another approah may then be onsidered, the so-alled �Metropolis-adjustedLangevin3 algorithm� (MALA), proposed by Roberts and Tweedie in [283℄, whih orrets the
3 The term �Langevin� does not refer here to the Langevin dynamis as known in the Physis literature(see Setion 3.2.4). In the Probability and Statistis �elds, it is, for some authors, the name for thebiased Random-Walk.



3.2 Stohastially perturbed Moleular Dynamis methods 73Euler-Maruyama disretization (3.46) by an additional aeptane/rejetion step in a Metropolis-Hastings fashion. Therefore, there is no bias in the measure sampled. The algorithm onsists ingenerating proposal steps using (3.46), and aepting or rejeting them aording to a Metropolis-Hastings rule with the proposal density
P(q, q′) =

√
β

2π∆t2
exp

(
− β

2∆t2

∣∣∣∣q′ − q +
∆t2

2
∇V (q)

∣∣∣∣
2
)
.In the ase of the MALA algorithm, using a potential energy V ∈ C1(R3N ) is enough tosatisfy ondition (3.8). Sine π is by onstrution an invariant probability measure (and thereforeondition (3.7) holds true), the Markov hain formalizing the algorithm is ergodi for almost allstarting points, and the onvergene results stated in Theorems 3.1 and 3.3 apply. On the otherhand, onditions ensuring the Central Limit Theorem and geometri ergodiity (onditions (3.11)and (3.31), see Theorems 3.2 and 3.8) are not easy to hek. We refer to [283,285℄ for suh studies.The only adjustable parameter of the algorithm is the time-step ∆t. The rejetion rate is agood indiator of e�ieny. It is indeed well-known that a good sampling is a trade-o� betweendeorrelation (to this end, larger time-steps are required) and aeptane rate (the larger thetime-step, the larger the rejetion rate). We refer for example to [284℄ where it is shown that,for tensorized distributions, the asymptotial optimal aeptane rate, when the dimension ofthe position spae M goes to in�nity, is 0.574. This theoretial result does not extend to moreompliated situations. However, numerial experiments show that an aeptane/rejetion rateabout 50% leads to a rather e�ient method.In Setion 3.4, we present numerial results obtained both with the Euler-Maruyama shemeand with the MALA sheme.Comparison of MALA and the one-step HMC shemeNote that hoosing the time step h of the MALA algorithm suh that h = ∆t2/2 makes theomparison between the MALA algorithm and the one-step Hybrid Monte Carlo methods easiersine both shemes use (3.46) to generate a proposal. Indeed, when τ = ∆t andM = I3N , the HMCveloity is randomized every time-step and thus formally reads pn =

√
1
βMRn, where Rn is a 3N -dimensional standard Gaussian random variable. Notie however that the aeptane/rejetionsteps di�er sine the HMC aeptane/rejetion step involves the omparison of total energiesand the Biased Random-Walk aeptane/rejetion step involves the omparison of the potentialenergies alone. As far as the aeptane/rejetion step is onerned, the MALA sheme uses theaeptane rate

rMALA(qn, q̃n+1) = min

{
1, exp

(
−β
[
1

2
∆t(q̃n+1 − qn) · (∇V (qn) −∇V (q̃n+1)) + O(∆t2)

])}
,and q̃n+1 − qn =

√
1
βR

n + O(∆t2). On the other hand, onsidering Algorithm 3.3, the aep-tane/rejetion rate of the hybrid Monte Carlo algorithm reads
rHMC(qn, q̃n+1) = min



1,

exp
(
−βH̃n+1

)

exp (−βHn)



 ,where Hn is the initial energy and H̃n+1 is the energy at the end of the trajetory. If a Veloity-Verlet sheme is used to ompute the trajetory,

rHMC(qn, q̃n+1) = min

{
1, exp

(
−β
[
∆t

2
M−1pn · (∇V (qn) −∇V (q̃n+1)) + O(∆t2)

])}
.



74 3 Phase-spae sampling tehniquesSo the aeptane/rejetion steps of the MALA algorithm on the one hand and of the HMCalgorithm on the other are the same up to seond order terms.3.2.4 Langevin dynamisThe paradigm of Langevin dynamis is to introdue in the Newton equations of motion (3.16)some �titious brownian fores modelling �utuations, balaned by visous damping fores model-ling dissipation. More preisely, the equations of motion read here
{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− ξM−1pt dt+ σ dWt,
(3.47)where (Wt)t≥0 is a 3N -dimensional Wiener proess. The parameters ξ and σ represent the ma-gnitude of the �utuations and of the dissipation respetively, and are linked by the �utuation-dissipation relation:

σ = (2ξ/β)1/2, (3.48)where β = 1/kBT . Therefore, there remains one adjustable parameter in the model. Let us remarkthat the biased Random-Walk (3.38) is obtained from the Langevin dynamis (3.47) by lettingthe mass matrix M go to zero and by setting ξ = 1, whih amounts here to resaling the time.The in�nitesimal generator A assoiated to the SDE (3.47) reads:
Ag(q, p) = M−1p · ∇qg(q, p) − (ξM−1p+ ∇V (q)) · ∇pg(q, p) +

σ2

2
∆pg(q, p), (3.49)for g ∈ C2(Rd × R3N ). The proof of trajetorial existene and uniqueness follows the same linesas for the biased Random-Walk ase, with the same kind of assumptions (globally Lipshitz fore�elds ∇V or a Lyapunov ondition analogous to (3.41)). It is straightforward to show that theanonial probability measure (3.3) is a steady state of the Fokker-Plank equation assoiatedwith (3.47).Convergene resultsThe same results hold true for the Langevin proess as the ones stated in Setions 3.2.3 and 3.2.3for the biased Random-Walk, the proofs following the same lines. We refer to [231℄ for furtherdetails onerning ondition (3.44) (where R3N is to be replaed by R3N ×R3N and P t is now theMarkov semigroup assoiated with the Langevin dynamis). We also refer to [159℄ for a remarkablework allowing, under some assumptions of loal regularity and growth at in�nity on the potentialenergy V , to obtain geometrial onvergene of the density P t(q, ·) toward the invariant measure,in some weighted Sobolev norms. In partiular, estimates of the onvergene rate involving M , ξ,

β and V , an be expliitely derived.Questions 1 and 3 an therefore be answered positively. Question 4 an also be answeredpositively when a onvenient drift ondition an be stated (ondition (3.45) where A is now thein�nitesimal generator assoiated to (3.47)).Numerial implementationThere are several ways to ompute numerially an invariant distribution using a Langevindynamis:(i) with a Metropolized sheme as for the biased Random-Walk ase (see [298℄ and Se-tion 6.1.2 for an appliation to Variational Monte-Carlo);(ii) with onvenient disretizations and a step-size ∆t su�iently small ensuring the samplingfrom an invariant measure lose to the anonial measure (3.3);



3.2 Stohastially perturbed Moleular Dynamis methods 75(iii) by extending usual NVE shemes used in deterministi MD simulations to the ase of theLangevin dynamis (the quasi-sympleti shemes of [242℄);(iv) by using splitting ideas borrowed from integration methods for deterministi �ows (seee.g. [146℄).It is not ompletely understood whih integration sheme is the most e�ient [244, 311, 369℄,espeially beause the omparison benhmarks vary from one �eld to another. The last two waysare the most onvenient in many appliations, and allows usually to take larger time steps thanfor pure NVE simulations sine the sheme is intrinsially more stable in view of its dissipativeproperties. Unfortunately, to our knowledge, there is no theoretial proof of onvergene for theresulting shemes. Let us now detail suessively the last three approahes.First-order shemes with invariant probabilityGeneral results of error analysis hold true for the numerial disretization of the Langevinequation for globally Lipshitz fore �elds [231℄. In this ase, the resulting numerial Markovhain is ergodi for usual disretization shemes (inluding the Euler-Maruyama disretization)and their invariant measures are lose to the invariant measure of the original proess (for ∆tsmall enough).The results are not the same for only loally Lipshitz fore �elds. Some lasses of disretizedshemes however behave properly under additional assumptions on the potential energy. This isthe ase for the so-alled split-step Bakward Euler-method proposed in [231℄. Applied to theLangevin equation (3.47), this algorithm reads



qn+1= qn +∆t M−1p∗

p∗ = pn − ξ∆tM−1p∗ −∆t∇V (qn+1)

pn+1= p∗ + σ
√
∆tGn

(3.50)where (Gn)n∈N is a sequene of 3N -dimensional i.i.d. Gaussian random vetors. Unfortunately,this method is impliit (see the �rst two equations, to be solved for (qn+1, p∗)), therefore notonvenient for MD simulations of large systems. The following expliit sheme is therefore prefered




p∗ = pn − ξ∆tM−1p∗ −∆t∇V (qn)

qn+1= qn +∆tM−1p∗

pn+1= p∗ + σ
√
∆tGn

(3.51)where (Gn)n∈N is a sequene of 3N -dimensional i.i.d. Gaussian random vetors.We now turn to the numerial analysis of (3.51). Let us denote by Fn the σ-algebra of events upto and inluding the n-th iteration. We need to prove ondition (3.7) and ondition (3.8) to statea Law of Large Number theorem (see Theorem 3.1). The aessibility ondition (3.8) is easily seento be satis�ed (by arguments similar to those of Setion 3.2.3 in this time disrete ase). We nowprove ondition (3.7), that is, the existene of an invariant probability measure. For this purpose,we need to make some assumptions on the potential energy V , similar to those of [231℄, to statea Lyapunov inequality for the disretized proess. Indeed, we want to make use of the followingtheorem:Theorem 3.12 ( [231, Theorem 2.5℄). Denote by P the transition kernel assoiated with theMarkov hain formalizing (3.51), assumed to be Feller. Assume that (3.8) is satis�ed and thatthere exist a funtion W∆t(q, p) ≥ 1, going to in�nity at in�nity, and two real numbers b ∈ (0, 1)and c > 0 suh that
E(W∆t(q

n+1, pn+1) | Fn) ≤ b E(W∆t(q
n, pn)) + c, (3.52)where (qn, pn) is the disrete trajetory given by (3.51). Then there exists an invariant probabilitymeasure µ∆t, and ondition (3.7) holds true.



76 3 Phase-spae sampling tehniquesThe numerial sheme then onverges (with respet to the measure dµ∆t) in the sense ofQuestions 1 to 4. The question of estimating the distane between µ∆t and the anonial measure
µ has been addressed in e.g. [231,337℄.Let us now �nd W∆t, b and c satisfying (3.52). We assume that the potential energy V is in
C2(R3N ) and satis�es a one-sided Lipshitz ondition: there exists C > 0 suh that

∀a, b ∈ R3N , (∇V (a) −∇V (b)) · (a− b) ≤ C|a− b|2. (3.53)We also assume that there exist A,B > 0 suh that
∀q ∈ R3N , −∇V (q) ·M−1q ≤ A−B

(
V (q) +

ξ2

4
qTM−1q

)
. (3.54)These onditions are satis�ed for example for potential energies growing quadratially at in�nity.The following result, strongly inspired from [231℄, an then be stated:Lemma 3.6. Let (qn, pn) be the disrete trajetory given by (3.51). Let us assume that V is boun-ded from below and let us set m = max {m1, . . . ,mN},

W (q, p) = 1 +
1

2
pTM−1p+

ξ2

4
qTM−1q + V (q) − inf V +

ξ

2
pTM−1q (3.55)and W∆t(q, p) = W (q, p) +

ξ

4m2
∆t|p|2. When (3.53) and (3.54) are satis�ed, and that

0 ≤ ∆t ≤ ξ

ξ2/m+ 4C
. (3.56)Then W∆t satis�es (3.52) for some c > 0, 0 < b < 1.Proof. Consider the numerial sheme (3.51). Some omputations give

W (qn+1, p∗) −W (qn, pn) ≤ − ξ∆t

2m2

(
1 − ξ∆t

2m

)
|p∗|2 − ξ∆t

2
∇V (qn) ·M−1qn

+ V (qn +∆tM−1p∗) − V (qn) −∆t∇V (qn) ·M−1p∗.The one-sided Lipshitz ondition (3.53) allows to handle the term V (qn +∆tM−1p∗) − V (qn) −
∆t∇V (qn) ·M−1p∗. The ondition (3.54) allows to handle the term −ξ∆t

2
∇V (qn) ·M−1qn. When(3.56) is satis�ed, it then follows

W (qn+1, p∗) −W (qn, pn) ≤ A
ξ∆t

2
−B

ξ∆t

2

(
V (qn) +

ξ2

4
qn ·M−1qn

)
− ξ

4m2
∆t|p∗|2. (3.57)Realling W∆t(q, p) = W (q, p) +

ξ

4m2
∆t|p|2, we obtain

W∆t(q
n+1, p∗) −W∆t(q

n, pn) ≤ A
ξ∆t

2
−B

ξ∆t

2

(
V (qn) +

ξ2

4
qn ·M−1qn

)
− ξ

4m2
∆t|pn|2

≤ A
ξ∆t

2
−B′W∆t(q

n, pn)for some B′ > 0. The �nal step pn+1 = p∗ + σ
√
∆tGn leads to

E(W∆t(q
n+1, pn+1) | Fn) = E(W∆t(q

n+1, p∗)) + E|σ
√
∆tGn|2,



3.2 Stohastially perturbed Moleular Dynamis methods 77so that
E(W∆t(q

n+1, pn+1) | Fn) ≤ b E(W∆t(q
n, pn)) + c (3.58)for some c > 0, 0 < b < 1.Algorithms derived from the Verlet shemeLet us now turn to the seond approah, and desribe algorithms generalizing the Verlet algo-rithm, and therefore widely used in pratie; on the other hand, there are no onvergene results atthis date to our knowledge (only onsisteny results are known). One suh algorithm is the BBK al-gorithm, proposed by Brünger, Brooks and Karplus [45℄. Another example is the quasi-sympletialgorithm of [242℄.We fous in the sequel on the BBK algorithm, whih is well-suited only for small values of ξ [244,299℄ (otherwise, algorithms from [4℄ or the Langevin impulse sheme [310℄ (see below) shouldbe used). It is a modi�ation of the usual veloity-Verlet sheme obtained by adding a term

−ξ pi
mi

+
σi√
∆t

Gni to the fore fi exerted on partile i (the relation between ξ and σi will bemade preise below). This may explain its popularity sine it only asks for slight modi�ations ofstandard MD odes. The random foring terms Gni (i ∈ {1, . . . , N} is the label of the partiles, nis the iteration index) are standard i.i.d. Gaussian random variables. The sheme reads:




p
n+1/2
i = pni +

∆t

2

(
−∇qiV (qn) − ξ

pni
mi

+
σi√
∆t

Gni

)
,

qn+1
i = qni +∆t

p
n+1/2
i

mi
,

pn+1
i =

1

1 + ξ∆t
2mi

(
p
n+1/2
i − ∆t

2
∇qiV (qn+1) + σi

√
∆t

2
Gn+1
i

)
.

(3.59)We now make preise the relation between ξ and σi by onsidering the ase when there are nofores. When ∇V = 0, the BBK algorithm reads
(

1 +
ξ

2mi
∆t

)
pn+1
i =

(
1 − ξ

2mi
∆t

)
pni + σi

√
∆t

2

(
Gni +Gn+1

i

)
. (3.60)We see that, if E(pni ) = 0, then E(pn+1

i ) = 0. Choosing p0
i suh that E(p0

i ) = 0, we have E(pni ) = 0for all n. Let us now denote by Kn
i = E((pni )2) the variane of pni . Setting γi =

ξ∆t

2mi
, one has

Kn+1
i =

(
1 − γi
1 + γi

)2

Kn
i +

3σ2
i∆t

(1 + γi)3
.The above reursion is of the general form xn+1 = axn + b, and has a �xed point provided a < 1,whih is always the ase here sine γi > 0. This �xed point K∞

i is suh that
1

mi
K∞
i =

3σ2
i

2ξ(1 + γi)
. (3.61)Setting σi to the value

σ∆ti =

√
2ξ(1 + γi)

β
=

√
2ξ

β

(
1 +

ξ∆t

2mi

)
, (3.62)we see that K∞

i =
3mi

β
, whih is indeed the expeted value (the kineti temperature is orret).Note that (3.62) gives the magnitude of the random foring that should be used in numerial



78 3 Phase-spae sampling tehniquessimulations if one wants the kineti temperature to be orret. Otherwise, if σ is hosen aordingto (3.48), the time-averaged kineti temperature is lower than the target temperature T , and theerror is of order ∆t, as an be seen from (3.61). This is onsistent with the results obtained in [369℄from a modi�ed equation approah. Note that using (3.62) instead of (3.48) does not improve theon�gurational sampling auray (the error on the on�gurational sampling is of order ∆t withboth hoies (3.48) and (3.62)).Another modi�ation of the BBK algorithm has been proposed in [306℄. It amounts to usingthe same Gaussian random variables in the �rst and the third lines of (3.59). In this ase, there isno bias on the kineti temperature with the hoie (3.48).Shemes based on splittingA third approah, more reent, is to design algorithms based on a operator splitting method.The Langevin Impulse algorithm, proposed in [310℄, is suh an algorithm. When ∇V = 0 and
M = Id, the Langevin dynamis

{
dqt = pt dt,

dpt = −γpt dt+ σ dWt,
(3.63)an be integrated expliitely by integrating �rst the Ornstein-Uhlenbek proess on the momentum,and integrating one again to obtain the evolution of the positions. It holds

pt = e−γtp0 + σ

∫ t

0

e−γ(t−s) dWs = e−γtp0 + Pt,where Pt is a gaussian proess suh that
E(P 2

t ) = σ2

∫ t

0

e−2γ(t−s) ds =
1 − e−2γt

β
.Then,

qt = q0 +

∫ t

0

ps ds = q0 +
1 − e−γt

γ
p0 + σ

∫ t

0

∫ s

0

e−γ(s−u) dWu ds = q0 +
1 − e−γt

γ
p0 +Qt,where the random variable Qt an be rewritten as

Qt =

∫ t

0

∫ t

u

σe−γ(s−u) ds dWu.Therefore, Qt is a entered gaussian proess of variane
E(Q2

t ) =

∫ t

0

[∫ t

u

σe−γ(s−u) ds

]2
du =

σ2

γ2

∫ t

0

(
1 − e−γ(t−u)

)2

du =
1

βγ

[
2t− 3 − 4e−γt + e−2γt

γ

]
.However, the variables Qt and Pt are orrelated sine

E(PtQt) = E

[(∫ t

0

σ

γ

(
1 − e−γ(t−u)

)
dWu

)(∫ t

0

e−γ(t−u) dWu

)]
.Therefore

E(PtQt) =
σ

γ

∫ t

0

(
1 − e−γ(t−u)

)
e−γ(t−u) du =

1

γβ

(
1 − e−γt

)2
.Combining the integration of the �ow (3.63) with the straightforward integration of the �ow



3.3 Deterministi moleular dynamis sampling 79
{
dqt = 0,

dpt = −∇V (qt) dt,the disretization proposed in [311℄ is reovered. Other disretizations of Langevin dynamis wereobtained using splitting ideas (see e.g. [107, 280℄ and Setion 4.3.1 for a preise statement of theorresponding sheme).This approah is more rigorous than other lassial algorithms to integrate the Langevin dy-namis suh as the ones desribed in [4℄. The idea of those algorithms is to exatly integrate thedynamis when the fores vary linearly with respet to time. In pratie, fores are interpolatedin time between two suessive time steps.3.3 Deterministi moleular dynamis samplingWe now turn in this setion to purely deterministi methods. These methods rely on thefollowing idea: a system in the anonial ensemble an be onsidered as a system interatingwith an external heat bath, the interation being suh that, at equilibrium, the physial systemvariables are distributed aording to the anonial measure (3.3). Thus, the idea is to onsideran extended system omposed of the physial variables and some additional variables modellingthe bath. Various dynamis have been proposed in this vein.In this setion, we �rst onsider the Nosé-Hoover dynamis and its generalization to the Nosé-Hoover hains [171, 229, 260, 346℄. Then, we onsider the Nosé-Poinaré method [35℄ and the Re-ursive Multiple Thermostats method, whih has been reently proposed in [206℄.3.3.1 The Nosé-Hoover and Nosé-Hoover hains methodsThe Nosé-Hoover (NH) method, proposed by Hoover, onsists in desribing the heat bath bytwo salar variables, its �position� η and its �momentum� ξ, and to postulate the following dynamisfor the extended set of variables [171,260℄:




dqi
dt

=
pi
mi

,

dpi
dt

= −∇qiV − piξ

Q
,

dη

dt
=

ξ

Q
,

dξ

dt
=

N∑

i=1

p2
i

mi
− gkBT,

(3.64)
where V is the potential energy of the system, g is a parameter we will �x later and T is the targettemperature. The parameter Q represents the mass of the thermostat; it is a free parameter thatthe user has to hoose. The quantity

H̃NH =
N∑

i=1

p2
i

2mi
+ V (q) +

ξ2

2Q
+ gkBTη (3.65)is an invariant of the dynamis (3.64), whih also preserves the measure

dµNH = exp(3Nη) dq dp dη dξ. (3.66)



80 3 Phase-spae sampling tehniquesWe refer to [113℄ for details on the origin of this dynamis. Let us just note here that (3.64) is nota Hamiltonian dynamis4. Sine the dynamis preserves (3.65), it annot be ergodi with respetto dµNH. Let us introdue the manifold MNH(E0) =
{
(q, p, η, ξ) ∈ R6N+2 | H̃NH(q, p, η, ξ) = E0

}and the measure
dρNH =

dσNH

‖∇H̃NH‖2

, (3.67)where dσNH is the area measure indued onMNH(E0) by the measure (3.66),∇H̃NH is the gradientof (3.65) with respet to all variables and ‖ · ‖2 is the Eulidian norm. Then dρNH is an invariantmeasure for the Nosé-Hoover dynamis (3.64).Suppose now that the dynamis is ergodi with respet to dρNH (note that this implies that
H̃NH is the unique invariant of (3.64)). Let us set g = 3N , where N is the number of partiles.An easy omputation (see [204, 346℄) shows that the dynamis (q(t), p(t)) is ergodi with respetto the anonial measure (3.3), and thus provides a sampling of the phase spae aording to theanonial measure (at least before numerial disretization).We emphasize the fat that, to the best of the authors knowledge, there is no rigorous proofin the literature showing that (3.64) is ergodi with respet to dρNH. Furthermore, it has beennumerially observed that, for some systems, the dynamis (q(t), p(t)) does not seem to samplethe phase spae aording to the anonial measure. For instane, this is the ase with the one-dimensional harmoni osillator, for whih it is atually observed that the trajetory stays in aring, namely that there exist c, C > 0 suh that c ≤ q2(t) + p2(t) ≤ C for all t (see [229, 346℄).Some mathematial analysis of this fat an be read in [204℄.To irumvent this di�ulty, a generalization of the Nosé-Hoover dynamis (3.64) has beenproposed by Martyna et al. in [229℄. The idea onsists in oupling the physial variables with a�rst thermostat as in (3.64), and to ouple this thermostat with a seond one, whih an be oupledto a third one, and so on. The variables now inlude 2M additional salar variables ηj and ξj ,
j = 1, . . . ,M , where the number M of thermostats is arbitrary. The orresponding dynamis isthe so-alled Nosé-Hoover hain dynamis (NHC) [229℄, in whih there are M free parameters,
Q1, . . . , QM , representing the masses of the M thermostats. The dynamis preserves an invariant
H̃NHC and a measure dµNHC (whih are the generalization of (3.65) and (3.66)).As for the Nosé-Hoover dynamis, if the NHC dynamis is ergodi with respet to a measure
dρNHC built in the same way as dρNH, then the dynamis (q(t), p(t)) is ergodi with respet tothe anonial measure. Provided that the number M of thermostats is large enough (M ≥ 3 or 4in pratie), numerial simulations seem to show that this dynamis samples the phase spae a-ording to the anonial measure, even for systems suh as the harmoni osillator. Again, thereis no rigorous proof showing that the NHC dynamis is atually ergodi with respet to dρNHC.Regarding numerial integration, it seems interesting to work with algorithms that preservethe qualitative struture of the dynamis, that is time reversibility and measure preservation.Reversible-in-time and measure-preserving algorithms have been proposed in [230℄ (let us justmention here that they are based on a splitting of the dynamis). Simulation results disussed inSetion 3.4 have been obtained with these algorithms.3.3.2 The Nosé-Poinaré and the Reursive Multiple Thermostat methodsBoth the Nosé-Hoover and the Nosé-Hoover hain dynamis su�er from not being Hamiltoniandynamis. As a onsequene, the quasi-onservation by the numerial �ow of the invariants H̃NH

4 The Nosé-Hoover dynamis an be reast, after hanging variables and time, as a Hamiltonian dynamis,the so-alled Nosé dynamis [259℄. However, the time of this dynamis does not orrespond anymore tothe physial time.



3.4 Numerial illustrations 81(see (3.65)) and H̃NHC is not guaranted. On the ontrary, when working with a Hamiltoniandynamis, it is known that the energy an be preserved by the numerial �ow over very longtimes, provided sympleti algorithms are used (see [146, Chap. IX℄ and [278℄). Another problemwith Nosé-Hoover hains is the hoie of the number of thermostats as well as their masses Qj ,whih seem to have an in�uene on the results.The Reursive Multiple Thermostat method (RMT) has been reently proposed by Leimkuhlerand Sweet [206℄ to solve the di�ulties that have just been highlighted. It is a Hamiltonian dyna-mis whih, like the Nosé-Hoover or Nosé-Hoover hains dynamis, ouples the physial variableswith a heat bath. This dynamis is a generalization of the Nosé-Poinaré (NP) method [35℄, whihis also a Hamiltonian method. The Nosé-Poinaré method onsists in adding a single thermostat,whereas the RMT method onsists in adding an arbitrary number M of thermostats, whih areall oupled together and to the physial partiles. This is not the ase in the Nosé-Hoover haindynamis, where only the �rst thermostat is oupled to the physial partiles (and not the otherthermostats).The Nosé-Poinaré method is based on the following Hamiltonian:
HNP(q, p, η, ξ) = η

(
H

(
q,
p

η

)
+
ξ2

2Q
+ gkBT ln η −H0

)
, (3.68)where H is given by (3.4), H0 is hosen suh that HNP = 0 for the initial onditions, and where

Q is some free parameter. Sampling properties and numerial algorithms are disussed in [35℄. Letus just mention here that, as for the Nosé-Hoover dynamis, one has to set g = 3N if the onlyinvariant of the dynamis is HNP.The motivation for introduing the RMT method is the observation that, at least for somesystems, numerial results seem to depend muh less on the thermostat masses (whih are user-hosen parameters) than with the Nosé-Poinaré method (see [206,333℄).The numerial results that are presented in Setion 3.4 have been obtained with the algorithmsproposed in [35℄ and [206℄. Let us note that di�erent algorithms may have di�erent numerialstabilities, and so di�erent abilities to adequately sample the phase spae with a trajetory ofa given number of time steps. A new algorithm for the RMT dynamis has been proposed veryreently in [20℄.3.4 Numerial illustrationsThe di�erent methods presented above an be used to ompute numerial approximations ofphase spae integrals. In some ases, theoretial onvergene rates an be obtained. Typially,when a CLT holds true, the error is bounded by Cn−1/2 (where n is the number of evaluations ofthe potential energy and/or of the fores; see the Central Limit Theorem 3.2) for some unknownprefator C, depending on both the system and the observable A. An important issue is the valueof the prefator in numerial omputations, whih an greatly vary from one method to anotherone.However, sine this prefator depends on A, it is not easy to ompare the di�erent methodsin a general way. After a brief desription of the alkane model in Setion 3.4.1, we present inSetion 3.4.2 an abstrat riterion de�ned without any expliit dependene on an observableA. Theriterion measures the deviation between the empirial distributions and the anonial distribution.This omparison an be performed for a �xed sample size (bearing in mind the omputationof autoorrelation funtions with a �xed omputational ost for example), or, more fairly, ata �xed omputational ost. Some improvements an also be ahieved when ombining di�erentsampling tehniques, or when resorting to strategies di�erent from the omputation of a single longtrajetory. This is made preise in Setion 3.4.5. In Setion 3.4.6, we onsider a spei� ase of atime-dependent observable A, whih orresponds to a orrelation funtion. The numerial results



82 3 Phase-spae sampling tehniquesthat are obtained with this physial hoie illustrate the onlusions drawn from the abstratriterion in Setion 3.4.2.3.4.1 Desription of the linear alkane moleuleLinear alkanes are hemial ompounds of the form CH3-(CH2)n-CH3. In this study, the so-alled united-atom model [294℄ is used, in whih the onformation of the moleule is ompletelyharaterized by the positions of the Carbon atoms. The presene of the Hydrogen atom is impli-itely taken into aount in the de�nition of the interation potential energy the Carbon atomsare subjeted to. The Carbon atoms of the linear alkane moleule are indexed from 1 to N , andtheir positions are desribed by the vetor q = (q1, . . . , qN ) ∈
(
R3
)N . We set ri,j = qj − qi and wedenote by di,j = |ri,j | the distane between the Carbon atoms i and j.In the model presented here, the interatomi potential energy involves two-, three-, and four-body interations :(1) two Carbon atoms onneted by a ovalent bond interat via a harmoni potential energy

V2(d) =
1

2
k0(d− d0)

2; (3.69)(2) two Carbon atoms that are separated by three ovalent bonds or more interat via a Lennard-Jones potential energy
VLJ(d) = 4ǫ

((σ
d

)12

−
(σ
d

)6
)
.The parameters ǫ and σ depend on the atoms that interat, and an have three values:

ǫCH3−CH3 and σCH3−CH3 when two CH3 groups interat (the end groups), ǫCH3−CH2 and
σCH3−CH2 when an interior group interats with an end group, and ǫCH2−CH2 and σCH2−CH2when two CH2 groups interat;(3) three onseutive Carbon atoms Ci-Ci+1-Ci+2 interat via the three-body interation po-tential energy

V3(θi) =
1

2
kθ(θi − θ0)

2, (3.70)where
θi = aros( ri,i+1 · ri+1,i+2

|ri,i+1| · |ri+1,i+2|

) (3.71)is the bending angle of the Ci-Ci+1-Ci+2 hain;(4) lastly, four onseutive Carbon atoms Ci-Ci+1-Ci+2-Ci+3 experiene the four-body intera-tion potential energy
V4(φi) = utors(cosφi), (3.72)where φi is the dihedral angle de�ned by

cosφi = − (ri,i+1 × ri+1,i+2) · (ri+1,i+2 × ri+2,i+3)

|(ri,i+1 × ri+1,i+2)| · |(ri+1,i+2 × ri+2,i+3)|
(3.73)and where the funtion utors is given by

utors(x) = c1(1 − x) + 2c2(1 − x2) + c3(1 + 3x− 4x3).The potential energy of the linear alkane moleule eventually reads
V (q) =

N−1∑

i=1

V2(di+1,i) +
N−2∑

i=1

V3(θi) +
N−3∑

i=1

V4(φi) +
N−4∑

i=1

N∑

j=i+3

VLJ(di,j), (3.74)



3.4 Numerial illustrations 83where the term VLJ depends on the type of interation onsidered.The values of the parameters d0, ǫ, σ, kθ, θ0, c1, c2 and c3 are taken from [228℄. In the systemof units where the length unit is l0 = 1.53 × 10−10 m and the energy unit is suh that kBT = 1at T = 300 K, the time unit is t̄ = 364 fs, and the numerial values of the parameters are d0 = 1,
ǫCH3−CH3 = 0.294, ǫCH3−CH2 = 0.241, ǫCH2−CH2 = 0.198, σCH3−CH3 = σCH3−CH2 = σCH2−CH2 =

2.55, kθ = 208 rad−2, θ0 = 1.187 rad, c1 = 1.18, c2 = −0.23 and c3 = 2.64. Notie that for thesevalues of the parameters ci, the funtion utors has a unique global minimum (at φ = 0) and twoloal non-global minima. As far as the parameter k0 is onerned, we set k0 = 1000 (anotherpossibility [228℄ is to onstrain the C-C ovalent bond length to be equal to d0). We set the unitof mass suh that the mass of eah partile is equal to 1.We note that ∑N
i=1 ∇qiV = 0, and that ∑N

i=1 qi × ∇qiV = 0. As a onsequene, the Newtonequations (3.16) not only preserve the energy, but also preserve the linear momentum∑N
i=1 pi andthe angular momentum∑N

i=1 qi×pi. Similarly, the Nosé-Hoover dynamis (3.64) also has additionalinvariants: besides (3.65), it preserves eη∑N
i=1 pi and eη∑N

i=1 qi× pi. As a onsequene, it annotbe ergodi with respet to (3.67). One an nevertheless reover orret sampling properties in the
q variables by� starting from an initial ondition that satis�es ∑N

i=1 pi(0) = 0 and ∑N
i=1 qi(0) × pi(0) = 0,so that the linear and angular momenta are always equal to 0;� setting g = 3N−Nc, whereNc is the number of onservation laws (besides the energy (3.65)).In the ase under study here, Nc = 6. The same kind of remarks also hold true for the Nosé-Hooverhain dynamis, the Nosé-Poinaré dynamis and the RMT method. The simulation results thatwe present below have been obtained with these hoies. Note that there is no need for anymodi�ation for the stohastially perturbed MD methods.The linear pentane CH3-(CH2)3-CH3 is the shortest linear alkane for whih a two-bodyLennard-Jones interation (oupling the variables di,i+1, θi and φi all together) has to be ta-ken into aount. In addition, it involves only two dihedral angles and these two angles essentiallydetermine the onformation of the moleule. Indeed, the ovalent strething and bending potentialenergies (namely, V2 and V3) are sti� and onsequently the bond lengths and bending angles arestatistially lose to their equilibrium values at room temperature. Therefore, the linear pentanemoleule is a good test ase for it allows a simple redued representation of the onformation whilebeing a non-trivial model in whih the internal degrees of freedom are oupled all together. Forompleteness, tests on longer moleules are performed in order to investigate the robustness of thenumerial methods with respet to inreasing on�gurational spae dimensions.Some referene empirial densities for the dihedral angles obtained through Importane sam-pling tehniques are presented in Figure 3.1. They orrespond to pentane, with N = 109 samplepoints.3.4.2 Disrepany of sample pointsIn order to quantitatively assess the quality of the samples generated by the various methodsdesribed above, we use a disrepany riterion. Reall that the disrepany Dn of a sequene

x = {xm}0≤m≤n−1 with values in [0, 1]d is de�ned as (see [200℄)
Dn(x) = sup

y∈[0,1]d

∣∣∣∣∣
1

n

n−1∑

m=0

1{xm∈[0,y]} −Volume([0, y])∣∣∣∣∣ , (3.75)where, for d-dimensional vetors y, z, we write y ≤ z when yi ≤ zi for all 1 ≤ i ≤ d, and note
[0, y] = {z ∈ [0, 1]d, z ≤ y}. The fat that Dn(x) → 0 when n→ ∞ is equivalent (see [200, p.15℄)to the fat that, for any Riemann integrable funtion A de�ned on [0, 1]d,
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Fig. 3.1. Empirial probability distribution of the dihedral angles (φ1, φ2) of the pentane moleulegenerated with Importane sampling, for β = 1 (Left) and β = 2 (Right), with sample size N = 109 and
ǫCH3−CH3 = 0.29, ǫCH3−CH2 = 0.

lim
n→∞

1

n

n−1∑

m=0

A(xm) =

∫

[0,1]d
A(x) dx.In addition, for funtions A whih have bounded variations VHK(A) in the sense of Hardy andKrause [257℄, the following error estimate holds true:

∣∣∣∣∣
1

n

n−1∑

m=0

A(xm) −
∫

[0,1]d
A(x) dx

∣∣∣∣∣ ≤ VHK(A)Dn(x). (3.76)If A ∈ Cd([0, 1]d), then its variation VHK(A) has a simple expression (see [257, page 19℄). If d = 2,whih is the ase we will be interested in below, then
VHK(A) =

∫

[0,1]2

∣∣∣∣
∂2A

∂x1∂x2

∣∣∣∣ dx+

∫ 1

0

∣∣∣∣
∂A

∂x1
(x1, 1)

∣∣∣∣ dx1 +

∫ 1

0

∣∣∣∣
∂A

∂x2
(1, x2)

∣∣∣∣ dx2.As a onsequene of (3.76), the onvergene of Dn(x) toward 0 implies the Law of Large Numbers,and the rate of onvergene ofDn(x) gives information about the onvergene rate of the observableaverage.In this framework, we intend for example to haraterize the repartition of sample points inthe subset [−π, π]2 of the (φi, φj)-plane for two of the dihedral angles φi, φj . This an be ahievedby onsidering the marginal νij of the anonial density π with respet to the other degrees offreedom. Unfortunately, there is no simple exat expression of this marginal. We therefore onsiderthe situation when all ǫ = 0 (that is when the Lennard-Jones interations are all turned o�), inwhih ase the marginal has the simple expression
dνij(φi, φj) = Z−2

φ e−βV4(φi)e−βV4(φj) dφidφj , (3.77)with V4 given by (3.72).We then introdue the disrepany riterion
Dn({qm}) = sup

(φi,φj)∈[−π,π]2

∣∣∣∣∣
1

n

n−1∑

m=0

1{φm
i ≤φi,φm

j ≤φj} −
∫

{ψi≤φi,ψj≤φj}
dνij(ψi, ψj)

∣∣∣∣∣ , (3.78)



3.4 Numerial illustrations 85whih provides a bound on the L∞ distane between the empirial distribution funtions and theexat ones. Notie that the seond integral fatorizes as
∫

{ψi≤φi,ψj≤φj}
dνij(ψi, ψj) = Z−2

φ

∫

ψi≤φi

e−βV4(ψi) dψi

∫

ψj≤φj

e−βV4(ψj) dψj ,and an therefore easily be omputed using standard numerial tehniques.Numerially, we ompute an approximate value of Dn as follows. Suppose that we have par-tioned the (φi, φj)-plane into K2 boxes Bkl = [Φk, Φk+1[×[Φl, Φl+1[ with Φk = −π + 2kπ
K for

0 ≤ k ≤ K − 1. The supremum in (3.78) is now taken over a �nite set of elements:
DK
n (q) = sup

1≤k,l≤K

∣∣∣∣∣
1

n

n−1∑

m=0

1{φm
i ≤Φk,φm

j ≤Φl} −
∫

{ψi≤Φk,ψj≤Φl}
dνij(ψi, ψj)

∣∣∣∣∣ . (3.79)We then ompute the disrepanies for the sample points obtained by di�erent methods with a�xed omputational ost. The omputational ost measures here the number of fore or energyevaluations.3.4.3 Choie of parametersWe desribe here how we hoose the parameters of the numerial methods for a �xed omputa-tional ost in the ase of pentane. The ost has to be understood with respet to fores or energiesevaluations. Notie that there is no parameter to tune for purely stohasti method suh as theRejetion method and Importane sampling. For the Metropolized independene sampler, the onlyimprovement that ould be done is an undersampling. However, the quality of the samples is nothanged by some reasonable undersampling (in the range 1 − 100).Stohasti methodsFor the purely stohasti methods, we have worked with g(q) = Z̃−1
q exp(−βṼ (q)), where

Ṽ (q) =

N−1∑

i=1

V2(di+1,i) +

N−2∑

i=1

V3(θi)and Z̃q is a normalization onstant. When expressed in internal oordinates (with the hange ofvariables R = (d2,1, . . . , dN,N−1, θ1, . . . , θn−2) = h(q)), the funtions V2 and V3 are quadrati (see(3.69) and (3.70)), whih makes it possible to atually sample from g(R) dR (and so, from g(q) dqup to a Jaobian term).Hybrid Monte CarloThe only relevant parameters are the time τ = k∆t and the time-step ∆t. We generate severalsamples of size N with a omputational ost equal to 106 fores or energies evaluations. Therefore,the produt kN is a onstant equal to 106. We ompute the disrepany (3.79) for eah parametervalues, averaging over 10 realizations (see Table 3.2). We found no systemati improvement usingan undersampling proedure. We present the results under the form m (σ) where m is the meanof the disrepanies and σ the square-root of the variane.The optimal hoie within this set of parameters is ∆t = 0.025 and τ = 10. This orrespondsto an aeptane rate of 0.7. When β 6= 1 and/or the moleule is longer, we hoose a new timestep ∆t suh that the aeptane/rejetion rate is still around 0.7. Atually, the hoie ∆t = 0.025remains onvenient (though maybe not optimal) for a broad range of temperatures and sizes.



86 3 Phase-spae sampling tehniquesTable 3.2. Disrepany results for the HMC algorithm.
∆t τ Disrepany (ǫ = 0)0.02 1 0.106 (0.0310)5 0.0750 (0.0143)10 0.0532 (0.0141)20 0.400 (0.0107)50 0.0389 (0.00869)100 0.0550 (0.0163)0.025 1 0.103 (0.0406)5 0.467 (0.0249)10 0.0389 (0.0183)20 0.0447 (0.0114)50 0.0481 (0.0201)100 0.0524 (0.0181)

∆t τ Disrepany (ǫ = 0)0.01 1 0.0224 (0.0894)10 0.0692 (0.0352)100 0.0690 (0.0242)0.03 1 0.0860 (0.0322)5 0.0486 (0.00875)10 0.503 (0.00704)20 0.410 (0.0111)50 0.0563 (0.0176)100 0.0540 (0.0157)0.035 1 0.130 (0.0458)10 0.0478 (0.195)100 0.561 (0.347)Biased Random-WalkThe only relevant parameter is ∆t. We study the quality of the sampling for di�erent valuesof this parameter for samples of size N = 106 (there is one omputation of fores and energies pertime step), see Table 3.3. We found no systemati improvement using an undersampling proedure.Table 3.3. Disrepany results for the biased random-walk.
∆t Rejetion rate Disrepany (ǫ = 0)0.01 0.022 0.190 (0.466)0.02 0.18 0.125 (0.0298)0.025 0.33 0.0920 (0.0362)0.028 0.45 0.104 (0.0446)0.03 0.53 0.110 (0.0362)0.035 0.73 0.112 (0.0544)The hoie ∆t = 0.025 or ∆t = 0.028 seem reasonable. Notie that aording to the disussionin Setion 3.2.3, the optimal hoie of ∆t at β = 1 (giving the best symmetry estimate and thelowest disrepany) is indeed expeted to orrespond to a rejetion rate lose to to the asymptotioptimal rejetion rate for tensorized distributions (whih is 0.426 [284℄). When β 6= 1 and/or themoleule is longer, we hoose a new time step ∆t suh that the aeptane/rejetion rate is stillaround 0.5. Atually, the hoie ∆t = 0.025 remains onvenient (though maybe not optimal) fora broad range of temperatures and sizes.Disretized Langevin proessThe only relevant parameters are the frition oe�ient ξ and the time-step ∆t. We study thequality of the sampling for di�erent values of this parameter for samples of size N = 106 (thereis one omputation of fores and energies per time step), see Table 3.4. We found no systematiimprovement using an undersampling proedure.The results show that too small values of ξ have to be avoided (the random �utuations arenot large enough to ross barriers) as well as large values of ξ (where the stohastiity prevents thesystem to follow the physial dynamis). We set ξ = 1 and ∆t = 0.02 in the sequel. This hoieremains onvenient (though maybe not optimal) for a broad range of temperatures and sizes.



3.4 Numerial illustrations 87Table 3.4. Disrepany results for the Langevin dynamis.
∆t ξ Disrepany (ǫ = 0)0.01 0.1 0.0582 (0.0175)0.5 0.0580 (0.0208)1 0.0689 (0.0219)5 0.0548 (0.0232)10 0.0427 (0.00849)

∆t ξ Disrepany (ǫ = 0)0.02 0.1 0.0529 (0.0144)0.5 0.0354 (0.00740)1 0.0339 (0.0142)5 0.0350 (0.0106)10 0.0441 (0.0161)
∆t ξ Disrepany (ǫ = 0)0.03 0.1 0.0487 (0.0134)0.5 0.0376 (0.00937)1 0.0311 (0.0120)5 0.0488 (0.0140)10 0.0575 (0.0155)Nosé-Hoover hainsThe parameters are the number M of thermostats, their masses, and the integration time step

∆t. We set ∆t = 0.003, whih ensures a onservation of the energies up to a few perents ingeneral. We use the two above statistial indiators of the quality of the sampling, as well as thetime average of
A2 =

1

3N

N∑

i=1

∑

α=x,y,z

p2
i,α, A4 =

1

3N

N∑

i=1

∑

α=x,y,z

p4
i,α.In the long time limit, they should onverge to 1/β and 3/β2. We also display △H̃/H̃, whih isthe relative onservation of energies. We have observed that, in the ase ǫ = 0, the invariant ispreserved with a muh better auray than in the ase ǫ = 0.29 (this is due to the fat that, when

ǫ 6= 0, the end atoms of the hain should not be too lose; we thus have to handle ollisions, whihlower the energy onservation auray). The results are presented in Table 3.5 for N = 1, 000, 000and β = 1 (the values for △H̃/H̃, 〈A2〉 and 〈A4〉 have been omputed in the ase ǫ = 0.29).Table 3.5. Disrepany results for the Nosé-Hoover dynamis.
M Q △H̃/H̃ 〈A2〉 〈A4〉 Disrepany (ǫ = 0)1 0.1 6 % 0.999981 3.06987 0.1271.0 4 % 0.999962 3.01696 0.07410.0 0.3 % 0.999922 4.37835 0.2382 0.05; 0.05 1.5 % 1.00007 2.95343 0.0800.1; 0.1 1.2 % 1.00009 2.91847 0.1430.3; 0.3 3 % 1.00043 2.95486 0.1691.0; 1.0 0.4 % 0.999555 2.88511 0.23210.0; 10.0 0.1 % 0.997356 2.92125 0.1890.15; 0.01 3.7% 0.998261 2.92262 0.2170.75; 0.05 3.3% 0.998902 2.95794 0.1631.5; 0.1 0.1 % 0.993824 2.92667 0.2424.5; 0.3 0.2 % 0.995765 2.89965 0.27715.0; 1.0 0.2 % 0.971896 2.80145 0.338150.0; 10.0 0.15 % 0.988531 2.89529 0.352We �rst see that the Nosé-Hoover hain dynamis is more stable than the Nosé-Hoover dy-namis (for a given time step and given values of the thermostats, the drift of the invariant issmaller). The best results in term of disrepany and loseness of 〈A2〉 and 〈A4〉 to their targetvalues (1 and 3 here) are obtained here forM = 1 with Q = 1 orM = 2 with Q1 = Q2 = 0.05. Wehoose to work with the latter hoie beause the onservation of the invariants is better in thisase. Note that di�erent initial onditions lead to di�erent disrepany results. However, making



88 3 Phase-spae sampling tehniquesagain the same test with di�erent initial onditions (but still with ∆t = 0.003), we have observedthat the hoie Q1 = Q2 = 0.05 seems to give better results than other hoies.On the other hand, if we set the time step to ∆t = 0.001, it seems that the best hoiesare now Q1 = Q2 = 0.1 and Q1 = 0.15, Q2 = 0.01. In the following, when appropriate, we willomment the results obtained with these two di�erent hoies. Unless otherwise stated, we workwith Q1 = Q2 = 0.05.The Nosé-Poinaré and RMT methodsThe parameters are the number M of thermostats, their masses, and the integration timestep ∆t. We set ∆t = 0.001, whih ensures a onservation of the hamiltonian up to a few perentsin general. Note that we have dereased the time step in omparison to the Nosé-Hoover typemethod. This derease is not due to energy onservation problems (the hamiltonian is preservedwith a reasonnable auray when ∆t = 0.003), but beause it is quite hard, from the numerialresults at ∆t = 0.003, to selet parameter values. In partiular, disrepany results vary in a largerange for di�erent initial onditions, so it is hard to assess that one parameter hoie is betterthan another one. Seleting parameters has proved to be easier when working with ∆t = 0.001.We use the two above statistial indiators of the quality of the sampling, as well as the timeaverage of A2 and A4 given above. As with the NHC method, we have observed that, in the ase
ǫ = 0, the invariant is preserved with a muh better auray than in the ase ǫ = 0.29. The resultsare presented in Table 3.5 for N = 1, 000, 000 and β = 1 (the values for △H̃/H̃, 〈A2〉 and 〈A4〉have been omputed in the ase ǫ = 0.29).Table 3.6. Disrepany results for the Nosé-Poinaré dynamis.

M Q △H̃/H̃ 〈A2〉 〈A4〉 Disrepany (ǫ = 0)1 0.1 0.02 % 0.999981 3.21418 0.2691.0 0.08 % 1.0 2.69515 0.30410.0 0.2 % 1.00024 4.98638 0.3502 0.05; 0.05 0.15 % 1.0059 2.46228 0.3200.1; 0.1 0.2 % 1.00905 2.63986 0.4600.3; 0.3 0.3 % 1.01655 3.35365 0.3601.0; 1.0 0.06 % 1.01059 3.03896 0.37310.0; 10.0 4 % 1.0292 2.85634 0.3280.15; 0.01 1 % 1.00538 3.09675 0.3440.75; 0.05 0.3 % 1.00799 2.82565 0.2971.5; 0.1 0.1 % 1.01253 3.00398 0.2814.5; 0.3 0.1 % 0.996809 2.84965 0.22515.0; 1.0 0.6 % 1.03506 3.16739 0.377150.0; 10.0 0.03 % 1.02456 3.26963 0.3100.05; 0.1 1 % 1.00577 2.91749 0.2770.1; 0.2 1 % 1.00094 2.87149 0.2920.3; 0.6 2 % 1.02247 3.34102 0.3471.0; 2.0 0.03 % 0.999142 2.73679 0.26310.0; 20.0 1.2 % 1.02031 3.15916 0.341The best result in terms of disrepany leads to selet Q1 = 4.5, Q2 = 0.3. This hoie seemsrobust with respet to the initial ondition. Depending on the numerial results at hand, otherhoies ould be made. For a trajetory length of 106 steps, Q1 = 1.0, Q2 = 2.0 seems to give alsogood results. However, when the trajetory length is inreased to 107 steps, the two more robustshoies seem to be Q1 = 4.5, Q2 = 0.3, that we seleted above, and Q1 = 0.1, Q2 = 0.2. We will



3.4 Numerial illustrations 89omment in the following the results obtained with the latter hoie. Unless otherwise stated, wework now with Q1 = 4.5, Q2 = 0.3.3.4.4 Numerial resultsThe results are presented in Tables 3.7 to 3.9. For eah method, 10 di�erent simulations havebeen performed, and we give in the Tables the mean and the square-root of the variane (inbrakets) of the 10 di�erent results.Table 3.7. Numerial results for the disrepany (3.79) for the pentane (φ1, φ2) distribution in the ase
β = 1 and K = 100.Method Parameters Disrepany Disrepanyfor 106 evaluations for 107 evaluationsImportane sampling - 0.00428 (0.00114) 0.00115 (1.60.10−4)Rejetion - 0.00856 (0.00204) 0.00256 (4.98.10−4)MIS - 0.0228 (0.00416) 0.0225 (7.75.10−4)HMC τ = 10∆t, ∆t = 0.025 0.0389 (0.0183) 0.0119 (4.87.10−4)BRW (Euler-Maruyama) ∆t = 0.028 0.0791 (0.0265) 0.0231 (0.00619)BRW (MALA) ∆t = 0.028 0.104 (0.0446) 0.0343 (0.0139)Langevin ∆t = 0.02, ξ = 1 0.0339 (0.0142) 0.0157 (0.00393)NHC Q1 = Q2 = 0.05, ∆t = 0.0025 0.103 (0.036) 0.0456 (0.0117)RMT Q1 = 5, Q2 = 7.5, ∆t = 0.0025 0.196 (0.142) 0.178 (0.177)Table 3.8. Numerial results for the disrepany (3.79) for the (φ1, φ3) distribution for C9H20 in thease β = 1 and K = 100. The omputational ost is �xed to 107 fore or energy evaluations.Method Parameters DisrepanyImportane sampling - 0.0205 (0.00544)Rejetion - 0.192 (0.0379)MIS - 0.521 (0.0151)HMC τ = 10∆t, ∆t = 0.02 0.0261 (0.00846)BRW (Euler-Maruyama) ∆t = 0.025 0.0402 (0.0229)BRW (MALA) ∆t = 0.025 0.0477 (0.0129)Langevin ∆t = 0.025, ξ = 1 0.0144 (0.00544)NHC Q1 = 0.15, Q2 = 0.01, ∆t = 0.0025 0.0292 (0.0102)NP Q = 5, ∆t = 0.0025 0.0386 (0.0095)One an see that purely stohasti methods are very e�ient for small alkane hains, butrapidly loose their e�ieny when the length of the hain inreases. Thus, the Langevin dynamisand the HMC method seem to be the most e�ient methods, although other non purely stohastimethods also give good results. The Langevin, the HMC and the BRW (with Euler-Maruyamaalgorithm) methods keep the same e�ieny whatever the length of the hain. This seems also tobe the ase for the NHC method. The e�ieny of the BRW (with the MALA algorithm) dereaseswhen the hain length inreases. There seems to be a problem with the RMT method applied tothe pentane moleule. A areful analysis of the results show that the numerial dihedral angledistribution orresponds to (3.77) but with a temperature signi�antly di�erent from the targettemperature. If longer hains are onsidered, this problem disappears and the RMT method resultsare of the same order of magnitude as the results from other methods (see Tables 3.8 and 3.9).



90 3 Phase-spae sampling tehniquesTable 3.9. Numerial results for the disrepany (3.79) for the (φ1, φ3) distribution for C12H26 in thease β = 1 and K = 100. The omputational ost is �xed to 107 fore or energy evaluations.Method Parameters DisrepanyImportane sampling - 0.102 (0.0436)Rejetion - 1.0 (0.0)MIS - 0.493 (0.222)HMC τ = 10∆t, ∆t = 0.02 0.0207 (0.00730)BRW (Euler-Maruyama) ∆t = 0.023 0.0312 (0.0102)BRW (MALA) ∆t = 0.023 0.0610 (0.0201)Langevin ∆t = 0.025, ξ = 1 0.0173 (0.00726)NHC Q1 = 0.15, Q2 = 0.01, ∆t = 0.0025 0.0350 (0.00865)RMT Q1 = 5, Q2 = 7.5, ∆t = 0.0025 0.0428 (0.0194)We an also see that, for short hains, the biased Random-Walk (MALA) is more e�ient thanthe NHC method. However, for hains of 9 and 12 partiles, the NHC method is more e�ient.The biased Random-Walk with the Euler-Maruyama algorithm always seems to be a little moree�ient than the biased Random-Walk with the MALA algorithm.3.4.5 Improvement of the onvergene ratesConvergene rate improvements using several shorter realizationsWe already mentionned that, instead of running a single long trajetory, it might be moree�ient, for a given omputational ost, to run several shorter trajetories. This an be donefor methods of Type 2 to 4. For methods of Type 2 and 3, this strategy relies on the followingnumerial approximation. Assuming that the methods are ergodi, it follows
Ex(A(qN1)) →

∫

M
A(q) dπ (3.80)when N1 → +∞. In some ases, this onvergene is exponentially fast. The term Ex(A(qN1)) isthe expetation of the realizations of the hain onditioned at starting from x ∈ M. It an beapproximated by N2 independent realizations of the Markov hain. Eah realization is labelled byan index k ∈ {1, . . . , N2}, and the assoiated sample path is (q0,k, . . . , qN−1,k). Notie that, for allsamples, q0,k = x. An approximation of Ex(A(qN1)) is then obtained as

Ex(A(qN1)) ≃ IN1

N2
(x) =

1

N2

N2∑

k=1

A(qN1,k). (3.81)Notie that we expet the error between IN1

N2
(x) and the spae average ∫

M
A(q) dπ to be of theform C(x)ρN1 + C(x,N1)N

−1/2
2 for some 0 < ρ < 1.When a short trajetory of length N1 is omputed for N2 realizations starting from a giveninitial point x, we an also onsider the following approximation of the position spae average

∫

M
A(q) dπ ≃ 1

N1

N1−1∑

m=0

ImN2
(x), (3.82)where the right hand side is the Cesaro average of (3.81).The results are presented in Table 3.10 in the ase of a Langevin sampling for the pentanemoleule at β = 1. As an be seen, there is a slight improvement when generating several shorter



3.4 Numerial illustrations 91trajetories, provided these trajetories remain long enough. Note however that suh an improve-ment is not always observed. But we emphasize that there is no degradation of the results either.This is an interesting point sine it allows a straightforward parallelization of the method.Table 3.10. Numerial results for the disrepany (3.79) for the pentane (φ1, φ2) distribution in the ase
β = 1 and K = 100, using a Langevin method with ξ = 1 and ∆t = 0.02. The disrepany has beenomputed with all points appearing in (3.82) (that is all points of the N2 trajetories of length N1), witha omputational ost �xed to 107 fore or energy evaluations.Number N2 of realizations Disrepany1 0.0157 (0.00393)5 0.0117 (0.00388)10 0.0132 (0.00210)20 0.0149 (0.00701)50 0.0120 (0.00330)100 0.0112 (0.00263)200 0.0130 (0.00419)500 0.0308 (0.00834)1000 0.0528 (0.00740)Convergene rate improvements at �xed omputational ost, using an appropriateinitial distributionAnother improvement is as follows. Instead of onsidering a �xed initial point, we an make a�rst approximation of the anonial distribution. Let us denote by πN3 the following approximationof π:

πN3 =
1

N3

N3∑

i=1

δxi .For eah initial point xi (1 ≤ i ≤ N3), an approximation (3.82) an be omputed, for N2 realiza-tions of the Markov hain with trajetories of length N1. The total number of points generated inthis way is therefore N1N2N3. The important issue is then to optimize the hoies of N1, N2 and
N3 in order to have the best auray for a given total ost.For the method to be e�ient, the empirial measure πN3 has to be a good approximation of π.To this end, the points xi are hosen as follows. We �rst generate N tot points (y1, . . . , yN

tot

) withweights (w1, . . . , wNtot), using (say) an Importane sampling method. We then generate N3 pointsfrom this list with replaement with probabilities (w1

W
, . . . ,

wNtot

W

) whereW =
∑Ntot

i=1 wi, and runone or several trajetories for eah starting point. This an improve the rate of onvergene of somemethods. An example is the biased Random Walk at β = 1 with ∆t = 0.028 for 106 operations.We onsider N tot = 104, N3 = 99, N1 = 104 and N2 = 1. The disrepany is lowered from
0.104 (0.0446) (with N1 = 106, N2 = 1 and N3 = 1, see Table 3.7) to 0.0430 (0.0144). In general,it is observed that onvergene ours faster when starting from an approximate distribution.E�et of undersamplingAs a �nal improvement, we an test the in�uene of a systemati undersampling, whih onsistsin piking only some of the points generated instead of onsidering all of them. Indeed, sometehniques generate points (q0, . . . , qN−1) that may be very muh orrelated, and it an happenthat the sequene (q0, qr, . . . , qsr), the undersampling rate r being suh that N − 1 = rs, is betterdistributed than the original sequene.



92 3 Phase-spae sampling tehniquesThe results are presented in Table 3.11 in the ase of a Langevin sampling for pentane at β = 1.As an be seen, the e�ieny of the method remains stable when undersampling the data. This ispartiularly interesting when omputing autoorrelation funtions or time-dependent integrals ofthe form (3.2) sine a NVE trajetory has to be omputed for eah starting point generated fromthe anonial distribution.Of ourse, it is still possible to try to improve the quality of a single realization by �ltering outthe orresponding sequene of on�gurations, as is done for NVE simulations in [48, 49℄, but wewill not detail this strategy any further.Table 3.11. Numerial results for the disrepany (3.79) for the pentane (φ1, φ2) distribution in the ase
β = 1 and K = 100, using a Langevin method with ξ = 1 and ∆t = 0.02. The omputational ost is �xedto 106 fore or energy evaluations.Undersampling rate Disrepany1 0.0339 (0.0142)5 0.0369 (0.0121)10 0.0350 (0.00996)50 0.0391 (0.0194)100 0.0385 (0.0169)500 0.0343 (0.0102)1000 0.0539 (0.0173)3.4.6 Computation of orrelation funtionsWe present, as a �nal appliation, the omputation of some orrelation funtion, namely thetransition rate from the set A = {q ∈ M ; |φ1| ≥ 1, |φ2| ≥ 1} (both dihedral angles are not intheir ground states) to the set B = {q ∈ M ; |φ1| ≤ 1, |φ2| ≤ 1} (both dihedral angles are in theirground states). This transition rate is expressed as

C(t) =
〈1A(q0) 1B(Π1Φt(q, p))〉

〈1A(q0)〉 . (3.83)We proeed as follows. We �rst sample M = 104 initial onditions aording to the anonialmeasure dµ (at β = 1) using 106 fore evaluations and the parameters given in Table 3.7 (i.e. in allases exept for the HMC algorithm, we undersample at rate 100 a single trajetory that alwaysstarts from the same equilibrium position; the HMC trajetory is undersampled at rate 10 onlysine τ = 10∆t). We then integrate the Newton equations of motion from eah initial onditionusing the veloity Verlet sheme (3.17), for a time t = 100 (with ∆t = 0.005). This proedure isrepeated 100 times. The results are presented in Figure 3.2, and are ompared with a refereneresult obtained starting from 106 initial onditions sampled with a rejetion method.As an be seen from the results, the methods yielding large disrepanies (suh as Nosé-Hooverand BRW) predit a orrelation C(t) quite di�erent from the referene result. On the other hand,the HMC and Langevin methods give muh better results, espeially HMC.3.5 Stohasti boundary onditionsThe vast majority of moleular dynamis simulations use periodi boundary onditions to si-mulate bulk onditions (see Setion 2.2.1). When averages at �xed temperature are omputed,Newton's equation of motion (assoiated with onstant energy simulations) are modi�ed so that
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Fig. 3.2. Plot of the orrelation funtion C(t) starting from initial onditions generated with the rejetionmethod (solid line), BRW/EM (x), Langevin/BBK (+), HMC (*) and Nosé-Hoover hain (⋄).the resulting dynamis is (hopefully) ergodi with respet to the anonial measure. Examples ofsuh modi�ations are the Nosé-Hoover or the Langevin dynamis (see respetively Setion 3.3and 3.2.4). However, the quantities to ompute may be time-dependent quantities, suh as orre-lation funtions:
〈B〉(t) =

∫

T∗M
B(Φt(q, p), (q, p)) dµ,where µ is the anonial measure and Φt the �ow of the dynamis. It is not lear whih dynamisshould be used in this de�nition. It turns out that the results depend in general of the spei�tiesof the hosen dynamis. For instane, the response of the system to an inreased thermostattemperature depends on the parameters hosen for the Nosé-Hoover dynamis [113℄.The system under study is usually a small system whih should be embedded in a muhlarger miroanonial system. The larger system ats as an energy reservoir whih ensures thatthe temperature is orret (this is atually the usual derivation of the anonial ensemble [61℄).Some ways to obtain suh a oupling between the simulated subsystem and the ideal energyreservoir (whih should not be expliitely simulated, due to its size), present through some meanation, have been proposed. Setion 3.5.1 reviews the most important ones (to our knowledge). InSetion 3.5.2, a very simple model of stohasti boundary onditions (already used in [82℄, but onlyroughly desribed) is presented preisely: the ore region of the simulated system is governed byNVE dynamis, while the parts of the system lose to the boundary follow a Langevin dynamiswith random perturbations dereasing as the distane to the boundary inreases. In this way, aseamless oupling an be ahieved.3.5.1 Review of some lassial stohasti boundary onditionsThe �rst steady-state nonequilibrium moleular dynamis simulations were performed in the70s by Ashurst and Hoover (see e.g. [12℄). Their model uses perturbations limited to the boundaryof the system (external fore �eld or thermal �utuations). This idea of partitioning the systembetween inner region (governed by Newton's equation of motion) and outer region (the surfae ofthe system, or some small region around the surfae), where the e�ets of the environment are takeninto aount, has been widely used. It is possible to propose a somehow arbitrary lassi�ation ofstohasti boundary onditions:� thermal boundary onditions;� mehanial boundary onditions;



94 3 Phase-spae sampling tehniques� mixed thermal and mehanial boundary onditions;� �grand-anonial� boundary onditions to model system whose number of partiles may vary.Let us also notie that some diretions of the system an still be modelled using periodi boundaryonditions, while the remaining ones are treated with stohati boundary onditions.Thermal boundary onditionsThe methods presented in this setion take into aount the thermal �utuations of a systemthrough its exhanges with its environment. These exhanges an be modelled� by onstraining the kineti temperature in the regions lose to the boundaries;� by using �thermal walls�, whih lead, mathematially speaking, to jump proesses (pertur-bations of the momenta of the impating partiles);� by using a Langevin dynamis for the region of the system lose to the boundary, and theusual Hamiltonian dynamis elsewhere, so that the resulting proess is a di�usive proess,whih is (hopefully, but not trivially) hypoellipti.Veloity renormalizationIn the �rst studies [12℄, the kineti temperature in the regions lose to the boundaries waskept �xed. This was done by veloity resaling. Some re�nings were proposed (see e.g. [27, 133℄),resaling only some omponents of the veloities (in one diretion, typially), or by inludingthe renormalization step diretly in the equations of motion. This method is not used anymorenowadays.Thermal wallsFollowing a work of Lebowitz and Spohn [201℄, Ciotti and Tenenbaum introdue thermalwalls modelling the ontat of impating partiles with a heat reservoir [67℄. The system has freeboundary onditions, but when a partile leaves the simulation domain, another one enters at thesame plae where the leaving partile went out, with a momentum generated from the probabilitydistribution C−1(e · p)fT (p)1e·p>0, where e is the loal normal vetor, fT the distribution of themomenta at equilibrium at the temperature T (maxwellian distribution) and C is a normalizationonstant. Therefore, the momenta of the entering partiles are not drawn aording to a maxwelliandistribution of momenta. A numerial study for an ideal gas or a hard sphere gas on�rms thatthe model of [67, 201℄ is indeed the right strategy [339℄.The �rst simulations relying on thermal walls [67, 340℄ with di�erent temperatures on bothsides of the system have shown that dynamial properties ould be omputed, but that surfaee�ets were important near the thermal walls (espeially the loal density and the temperature).This is why suh a strategy asks for additional mehanial boundary onditions (see Setion 3.5.1)to limit surfae e�ets.Coupling with a Langevin dynamisOne of the �rst simulation oupling a Hamiltonian and Langevin dynamis is due to Adelmanand Doll [1℄. The aim of this oupling was to redue the number of degrees of freedom in thesimulation by replaing the environing partiles by some mean ation, modelled by a randomforing term and a frition with memory (in the Mori-Zwanzig way). The �rst study were onlya part of the system is governed by a Langevin dynamis, whereas the remaining part obeysHamiltonian dynamis was proposed by Berkowitz et MaCammon [28℄, with a mehanial foringto on�ne the system (some slies of a rystalline lattie at rest). To redue surfae e�ets, the ideaof oupling Langevin and Hamiltonian dynamis was re�ned by Brooks et Karplus [43, 45℄, usingespeially some averaged on�ning fore. Some studies also mention the use of a Langevin dynamiswith a frition depending on the distane to the boundary of the system [82℄. Similar ideas were



3.5 Stohasti boundary onditions 95used in the framework of Nosé-Hoover dynamis [165, 209℄; a seamless oupling is however lesslear (Nosé masses depending on the distane to the boundary should be onsidered). These ideaswere developed in the �eld of biology and the referene textbooks for ondensed matter moleulardynamis (suh as [113℄) do not mention it.Mehanial boundary onditionsFree boundary onditions and some thermal boundary onditions (suh as thermal walls) mayreate surfae e�ets (loal density variations, or temperature di�erenes). Periodi boundaryonditions are a onvenient way to redue surfae e�ets, though numerial studies [223℄, and thentheoretial studies [273, 274℄, have shown that periodi boundary onditions also have spuriouse�ets, espeially for small systems. More importantly, PBC are problemati when long-rangeinterations are onsidered - suh as oulombi fores for non-neutral systems (harged defets insolids) or solvant e�ets (dipole orretions) for biologial systems. As an alternative to PBC toon�ne free boundary systems, one may onsider� fores or onstraints arising from short-ranged interations;� mean-fore e�ets arising from avarges over a large number of (non-simulated) degrees offreedom.The seond approah was developed in the �eld of biology. For example, in [192℄, the sys-tem is split into three regions, a ore region (Hamiltonian dynamis and averaged eletrostatipotential), a bu�er region (thermal �utuations through some Langevin dynamis, fores on theboundaries and averaged eletrostati potential), and an outer region (not expliitely simulated)whih determines the averaged eletrostati potential. Suh a modelling is re�ned in [181℄.The �rst approah, more used for mehanial studies of solids, an be implemented in severalways. For instane, a given (marosopi) displaement an be modelled by layers of surfae atomsfollowing rigidly the displaement, and kept �xed for the simulation [68, setion II.2.C℄."Grand-anonial" boundary onditionsThere are two general strategies to deal with systems whose number of partiles varies:� onsider that the system is open and speify a �ux of ingoing partiles to ompensate partilelosses;� use grand-anonial sampling tehniques.The �rst approah is used in [123℄ for a model ase of non-interating partiles, in whih asepartile �uxes an be derived. The extension to interating partiles requires additional foringterms on the boundaries, as well as density-dependent ingoing partile �uxes.The seond approah was presented in [182℄, for a model system of ioni hannel, and re�nedin [372℄ to deal with protein solvatation. In a bu�er region aroung the boundary, partiles areinserted and deleted aording to the loal hemial potential, using standard grand-anonialsampling tehniques [113℄. Therefore, the number of partiles is preserved in average, and the oreregion is not perturbed.3.5.2 An example of thermal boundary onditionsWe present more preisely in this setion a seamless oupling between a Langevin and a Ha-miltonian dynamis (in the spirit of [28, 43, 45, 82℄), with periodi boundary onditions. The aimof this oupled model is therefore only to provide interesting thermal boundary onditions, sothat time-dependent observables an be omputed by averages performed in the ore region of thesystem.



96 3 Phase-spae sampling tehniquesDesription of the modelWe onsider a simulation box Ω ⊂ Rd (d = 2 or 3) with periodi boundary onditions (theon�guration spae therefore has the geometry of a torus). The simulation box Ω is deomposedinto two non-overlapping domains Ωi and Ωe (see Figure 3.3), the outer region Ωe being forexample the set
Ωe = {x ∈ Ω | d(x, ∂Ω) < rc},where d(x, ∂Ω) is the distane from x ∈ Ω to the boundary ∂Ω, and rc some positive ut-o�radius.

Fig. 3.3. Deomposition of the simulation box Ω into two non-overlapping domains Ωi and Ωe.The dynamis we propose is as follows. The partiles that are loated in Ωi are only subjetedto the fores that derive from the interation potential V , whereas the partiles that are loatedin Ωe also experiene some random foring. More preisely, we onsider the dynamis
{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− Γ (qt)M
−1pt dt+Σ(qt) dWt,

(3.84)where (Wt)t≥0 is a dN -dimensional Wiener proess, and where the matries Σ and Γ representthe magnitude of the �utuations and of the dissipation respetively. They are linked by the�utuation-dissipation relation:
Σ(qt)Σ(qt)

T =
2

β
Γ (qt). (3.85)In this expression, β = (kBT )−1 is the inverse temperature of the bath. In the sequel, we hoosea diagonal matrix for Γ (q):

Γ (q) = Diag(γ(q1), . . . , γ(qN )),where the funtion γ is taken to be a smooth dereasing funtion of d(x, ∂Ω) suh that γ(x) = 0in Ωi and γ(x) > 0 in Ωe. We also onsider
Σ(q) = Diag(σ(q1), . . . , σ(qN )), with σ(·) =

√
2γ(·)
β

. (3.86)It is easy to hek that the anonial probability measure (3.3) is an invariant probability measurefor (3.84) sine it is a stationary solution of the assoiated Fokker-Plank equation.It is not lear whether the stohasti di�erential equation (3.84) is ergodi sine Σ = 0 in
Ωi. However, in the following numerial simulations, it is observed that, whatever the startingdistribution, the orret kineti temperature is quikly attained.



3.5 Stohasti boundary onditions 97In the numerial examples presented in Setion 3.5.2 and 3.5.2, we have used the followingnumerial implementation of (3.84), inspired from the lassial BBK sheme used to integrate theLangevin equation [45℄:
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(3.87)where σ is still given by (3.86), and {Gni }1≤i≤N,n∈N are idential and independently distributed(i.i.d.) standard gaussian random variables.Thermal ondutivity of Lennard-Jones systemsWe �rst desribe the Lennard-Jones system and the thermalization proedure we have onsi-dered. The NVE-NVT heating and ooling proesses are then dealt with in Setion 3.5.2, andalternative approahes to determine the thermal ondutivity are brie�y reviewed. Some simula-tion results are �nally provided.Desription of the systemWe onsider a three-dimensional (d = 3) Lennard-Jones system, with standard periodi boun-dary onditions. The potential energy is given by

V (q) =
∑

1≤i<j≤N
VLJ(|qi − qj |) +

1

2

N∑

i,j=1

∑

k∈R\{0}
VLJ(|qi − qj + k|), (3.88)where R is the Bravais lattie and VLJ the usual Lennard-Jones potential

VLJ(r) = 4ǫ

((a
r

)12

−
(a
r

)6
)
, (3.89)with ǫ > 0 and a > 0.The system is �rst thermalized at an inverse temperature β using a full Langevin dynamis(that is, Γ (q) = γ0I3N in (3.84)) for a time tinit large enough, starting from an equilibrium positionsuh as a FCC lattie for solid state simulations, or a square lattie for liquid phase simulations,5and generating the momenta of the partiles from the kineti part of the anonial measure.Computation of the thermal ondutivityThe thermal ondutivity λ of a system an be omputed either at equilibrium, using a Green-Kubo formula [113℄, or in a non-equilibrium setting. The former method relies on the integrationof the heat �ux orrelation funtion, and often requires long simulation times for the time integralto onverge. Non-equilibrium moleular dynamis (NEMD) approahes assume a linear responseregime, so that the heat �ux depends linearly on the temperature gradient. To speify this linearrelation, external �titious mehanial fores an be added [100, 128℄ to the NVE dynamis, or atemperature gradient an be spei�ed, while the heat �ux is then measured. Sine these methodsalso su�er from slow onvergene, a di�erent approah has been proposed, where the heat �ux isspei�ed, and the temperature �eld is measured [251℄.

5 This initial on�guration is muh less stable than a FCC lattie, and thermalization is therefore expetedto our faster.



98 3 Phase-spae sampling tehniquesA reent interesting alternative method [175℄ relies on transient simulations. A small frationof the system is instantaneously heated, and the kineti temperature relaxation is monitored.The thermal ondutivity an then be omputed by omparison with the Fourier law. However,the approah of [175℄ is based on NVE simulations of relatively small systems, so that ompleterelaxation toward the anonial ensemble annot be observed.We now show that the NVE-NVT model (3.84) is fairly suited for thermal ondutivity ompu-tations. Let us onsider a Lennard-Jones system modeled by (3.84) initially at thermal equilibriumwith temperature T1 (suh an equilibrium state is obtained as desribed in Setion 3.5.2) and let ussuddently hange the temperature of the thermostat to T2. The inner system Ωi is then heated orooled down through energy exhanges with Ωe, itself thermostated by the environing heat-bath,and the kineti temperature of Ωi as a funtion of time an be monitored. To redue statistialerrors, several independent relaxations must be performed, starting from initial on�gurationssampled independently from the anonial measure.The thermal ondutivity an then be reovered as follows. Assuming that the Fourier lawholds in the domain Ωi =]0, L[3, the loal temperature obeys the heat equation
ρCv∂tT = λ∆T,where ρ denotes the density of the system (expressed in mol/m3), Cv the spei� heat apaity(in J/K/mol), and λ the thermal ondutivity (in W/m/K). For variations in a small temperaturerange, it an indeed be assumed that Cv and λ remain onstant in spae and time. The spei�heat apaity an be found in thermodynami tables, or omputed as a time-independent anonialaverage aording to

Cv =
Na

NkBT 2
(〈H2〉 − 〈H〉2),where Na is the Avogadro number and 〈·〉 denotes a anonial average.Setting σ =

λ

ρCv
, it follows

∂tT = σ∆T.Consider the heating or ooling of the sytem from T1 to T2 = T1 + δT with |δT | ≪ T1, T2. Setting
u = (T2 − T )/δT , the evolution of u is governed by the Cauhy problem





∂tu = σ ∆u in Ωi,
u|t=0 = 1 in Ωi,
u = 0 on ∂Ωi. (3.90)The initial ondition u0 an be expanded on the Fourier modes
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φklm, it follows,
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u(t, x, y, z) =

64

π3
h(t, x)h(t, y)h(t, z).The deviation to the target temperature T2 is therefore, on average on the domain Ωi,

ū(t) =
1

L3

∫

]0,L[3
u(t, x, y, z) dx dy dz =

512

π6
k(t)3,where, setting A = σπ2L−2,

k(t) =
∑

k≥0

1

(2k + 1)2
exp

(
−σ (2k + 1)2π2

L2
t

)
= e−At

(
1 +

1

9
e−8At +

1

25
e−24At + . . .

)
. (3.91)It then holds

ū(t)

ū(t0)
=

(
k(t)

k(t0)

)3

∼ e−3A(t−t0)for t ≥ t0 and t0 large enough. Therefore, the value of A (and thus of λ provided Cv is known)an be omputed by �tting ū(t)/ū(t0) to an exponential funtion.Numerial resultsThe kineti temperature for a given number Ni of partiles is de�ned as
Tkin =

2

3NikB

Ni∑

n=1

p2
n

2mn
.We also de�ne, in analogy with the previous setion, ukin = (T2 − Tkin)/δT .Figure 3.4 shows a plot of the instantaneous kineti temperature in Ωi in the ase of a heatingproess for �uid Argon from T1 to T2, and the orresponding plot of ūkin/ūkin(t0) (with t0 = 5 ps),averaged over 30 realizations of the heating proess onduted from independent initial onditions.The parameters of the model are N = 64, 000, ǫ/kB = 119.8 K, a = 3.405 × 10−10 m, T1 = 400 K,

T2 = 420 K, ∆t = 2.5 × 10−15 s. We use a trunated Lennard-Jones potential with a ut-o� radius
rc = 2.5 a. The molar mass is M = 39.95 × 10−3 kg/mol, and the density is ρ = 35044 mol/m3.The simulation ell Ω is then a ubi box of edge length L = 37.51 a. The parameters used for thethermalization are γ0/m = 1012 s−1 and tinit = 20 ps. Then, the independent initial on�gurationsare obtained from this thermalized on�guration by running an additional Langevin dynamis for15 ps before eah realization of the heating proess.For the oupled NVE-NVT dynamis, we have used

γ(·) = γ1 cos

(
π·
2rc

) (3.92)with γ1/m = 5 × 1012 s−1. We have heked that the thermal response is not sensitive to thespei� shape of the frition funtion nor to the value of γ1 in a broad range.As an be seen from Figure 3.4 (Left), the kineti temperature in the inner region of thesystem onverges toward the target value determined by the temperature of the thermostat. Thefuntion ūkin/ūkin(t0) is plotted on the time interval [t0, t1] with t0 = 5 ps and t1 = 75 ps.Notie that, as we disard the initial relaxation, the higher order exponential terms in (3.91)an be negleted, so that we an indeed approximate ūkin/ūkin(t0) by e−3A(t−t0). A least-square�t gives A = 0.01438 s−1. A numerial omputation of Cv at T = 400 K (using a LangevinNVT sampling with 6 × 105 time-step as desribed in [51℄) gives Cv = 18.01 J/K/mol, in good
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Fig. 3.4. Left: Kineti temperature in Ωi as a funtion of time. Right: Plot of ūkin/ūkin(t0) as a funtionof time with t0 = 5 ps (solid line), as well as its exponential �tting funtion (dashed line). Notie that theexponential approximation seems to be justi�ed.agreement with the experimental value Cv = 18.12 J/K/mol6. Therefore, the omputed value of λis λ = 0.1509W/m/K, whih is in good agreement with the experimental value λ = 0.1557W/m/Kat T = 400 K.Thermal relaxation of a displaement asade in PuWe �nally present in this setion some simulation results on the irradiation indued displae-ment asades in metalli rystals. When an atom of a rystal ('the primary knok-on atom', PKA)undergoes a nulear reation or is hit by a high-energy partile, its kineti energy is dramatiallyinreased. This will give rise to a asade of ollisions between the neighboring atoms, togetherwith a sudden inrease of the loal kineti temperature. These asades result in the produtionof numerous defets in the lattie (suh as interstitial atoms or vaanies), the so-alled 'primarydamage state'. A large fration of the defets quikly disappear due to the reombination betweeninterstitial atoms and vaanies, while the system returns to its original temperature (the kinetienergy in exess is dissipated). This �rst stage of relaxation lasts about a nanoseond. An experi-mental investigation of these phenomena is di�ult, sine the time and length sales involved aretoo small for a diret observation, but it an be simulated by MD. The remaining defets reatedby the various asade relaxations will then interat on muh larger time sales (from a seondto several years) to form lusters of defets, that will alter the marosopi mehanial behaviorof the material. This is the soure of the ageing of radioative and irradiated materials. KinetiMonte-Carlo (KMC) models [77℄ are neessary to deal with suh long time sales; these modelsan be parametrized by the results of MD simulations of the �rst stage of the asade relaxation.Our purpose is to model the thermalization ouring in this �rst stage. It is important todesribe orretly this proess, sine it has an in�uene on the distribution of the remainingdefets, hene on the parametrization of the KMC model. More spei�ally, we fous on theexample of a FCC Pu rystal (reall that Pu undergoes alpha deay). Sine the PKA is launhedwith a large kineti energy, the kineti temperature of the system inreases at the beginning of thesimulation. Therefore, unless the system is in�nitely large (in whih ase the temperature inreaseis negligible, and the initial energy exess onentrated in the enter of the rystal di�uses overthe whole system), there is a need for some dissipation, in order to ensure thermal relaxation.The MD model of [77℄ onsiders a rystal with PBC, where the atoms in the unit ells loseto the boundary obey a full Langevin dynamis, while the other atoms experiene a pure NVE
6 The experimental values used in this setion are taken from the NIST Chemistry Webbook,http://webbook.nist.gov/hemistry/fluid/



3.6 Some bakground on ontinuous state-spae Markov hains and proesses 101dynami. We propose here to onsider a Langevin foring of dereasing magnitude as explainedin Setion 3.5.2. This an heuristially aount for the �nite size of the rystal, dissipation beingthen understood as energy transfer from the simulated box to the rest of the rystal.Simulations have been arried out for a FCC Pu lattie of 13,500 atoms at T0 = 300 K,using a MEAM potential [21,22,24℄ for Pu [23℄. An initial thermalization is performed for a time
t0 = 10 ps, using a full Langevin dynamis. The PKA is then launhed with an energy of 100 eVin the diretion 〈5 1 3〉. The �rst stage of the simulation is performed during the time t1 = 4 pswith the time step ∆t = 5.10−5 ps. The seond part is performed during the time t2 = 35 ps. Thefrition funtion used in this simulation is still given by (3.92), with γ0/m = 2 × 1012 s−1 and
rcut = 4.5 × 10−10 m (this is the ut-o� range used for the MEAM potential). The evolutions ofthe kineti energy of the whole system as a funtion of the iteration step are displayed in Figure 3.5for both simulation stages.
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Fig. 3.5. Kineti temperature as a funtion of the iteration step for a FCC Pu system experieninga self-deay-indued asade of 100 eV. The time-step is ∆t = 5 × 10−5 ps for the piture on the left(�rst stage of the simulation), and ∆t = 5 × 10−4 ps for the piture on the right (seond stage of thesimulation).At the end of the seond stage of the simulation, the kineti temperature of the system hasreturned to the desired value T = T0.3.6 Some bakground on ontinuous state-spae Markov hains andproesses3.6.1 Some bakground on ontinuous state-spae Markov hainsThis setion is intented to give a quik overview of the most important notions and results forontinuous state-spae Markov hains. We refer the interested reader to [240℄, and to [127, Chap-ter 4℄ for a simple short introdution to ontinuous state-spae Markov hains. The artile [349℄is also a beautiful introdution to the topi, making remarkable parallels between the ountablease and the ontinuous state-spae ase.Di�erent levels of stability for Markov hains.We �rst present in an informal manner the spirit of the haraterization of stability for Markovhains {Φn}n∈N on a general state spae X (in partiular, we do not restrit ourselves to ountablespaes). This general introdution is strongly inspired from [240, Setion 1.3℄. A useful onept isthe �rst hitting time from a point to a set. De�ne
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τB = inf {n ≥ 1 | Φn ∈ B},the �rst time when the hain reahes the set B. The weakest form of stability is that the spaeaessible to the hain does not dramatially hange when taking another initial ondition, sothat all �reasonably sized� sets an be reahed from any starting point. This is the onept of

φ-irreduibility, whih an be stated as follows, for x ∈ X ,
φ(B) > 0 ⇒ Px(τB <∞) > 0,where Px is the probability indued by the Markov hain starting at x (i.e. the probability ofevents onditional on the hain starting from x). The measure φ preises the lass of sets that anbe �reasonably� reahed.A strengthening of this ondition is that not only all sets an be reahed, but in fat they areattained almost surely, in the sense that

∀x ∈ X, φ(B) > 0 ⇒ Px(τB <∞) = 1.This an be further strenghtened by requiring the expeted hitting time to be �nite:
φ(B) > 0 ⇒ Ex(τB) <∞,where Ex is the expetation under Px. This level of stability is refered to as reurrene. Heuristially,it ensures that the hain does not drift, but returns often enough to �entral� parts of the spae.This kind of behaviour already implies some onvenient behaviour along sample paths (Φ0, Φ1, . . . ),leading to a Law of Large Numbers (LLN).The last level of stability is relevant for reurrent hains, and deals with onvergene to alimiting regime independently of the initial ondition. This is known as ergodiity, and is linkedto the onvergene of the distribution of the hain. In this ase, Central Limit Theorems (CLT)an be stated to preise the behaviour along one sample path.The di�erent levels of stability introdued are summarized in Figure 3.6, together with ondi-tions ensuring them. Denoting by B(X) the Borel σ-algebra of X and by µLeb the Lebesguemeasure on X , these onditions read(C1) ∀x ∈ X, ∀B ∈ B(X), µLeb(B) > 0 ⇒ P (x,B) > 0,(C2) π is an invariant probability measure,There exist measurable funtions L ≥ min{1, A}, W ≥ 0, a real number b(C3) and a petite set C suh that∫

X

P (x, dy)W (y) −W (x) ≤ −L(x) + b1C(x), π(W 2) < +∞.There exist a measurable funtion W ≥ 1, real numbers c > 0 and b,(C4) and a petite set C suh that
∆W (x) ≤ −cW (x) + b1C .The notion of petite set C will be preised below. Notie that Conditions (C1) and (C2) areusually quite easy to show in a MD setting, already giving ergodiity (without onvergene ratehowever). Conditions (C3) and (C4) an be easily shown when the state spae X is ompat (whenit is a d-dimensional torus for example, as in MD with periodi boundary onditions), under ertainregularity onditions on the transition kernel.These onepts are preised below, and presented in a more rigorous way. We end this setionwith a simple example, the Random Walk on a (half-)line, in order to see the theory of generalstate-spae Markov hains at work.
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Fig. 3.6. The di�erent levels of stability for Markov hains.Some fundamental results.We �rst preise the probability struture indued by a Markov hain on the state spae. Weonsider a ontinuous state-spae Markov hain given by its transition probability kernel
P = {P (x,B), x ∈ X, B ∈ B(X)}where B(X) is the set of Borel sets of X . The transition probability kernel is suh that P (·, B) isa non-negative measurable funtion on X for all B ∈ B(X), and P (x, ·) is a probability measureon B(X) for all x ∈ X . Given a transition probability kernel, one an de�ne a time-homogeneousMarkov hain Φ = (Φ0, Φ1, . . . ) with initial distribution µ. This hain is de�ned on Ω =

∏∞
i=1Xi(where eah Xi is a opy of X), and is measurable with respet to the produt σ-�eld F =

⊗∞
i=1B(Xi). There exists a probability measure Pµ on F suh that, for any any n ∈ N and anymeasurable Bi ∈ B(Xi) (1 ≤ i ≤ n),

Pµ(Φ0 ∈ B0, . . . , Φn ∈ Bn) =

∫

y0∈B0

. . .

∫

yn−1∈Bn−1

µ(dy0)P (y0, dy1) . . . P (yn−1, Bn).If an event ours Px = Pδx-a.s. for all x ∈ X , we say that it ours P∗-a.s. We also indutivelyde�ne Pn, the n-step transition probability by P 0(x,B) = δx(B) and the indution rule
Pn(x,B) =

∫

X

P (x, dy)Pn−1(y,B).We then suessively turn to the three important notions presented in the introdution of thissetion.



104 3 Phase-spae sampling tehniquesIrreduibility.De�nition 3.2. The hain Φ is said to be φ-irreduible if there exists a measure φ on B(X) suhthat, for all x ∈ X and B ∈ B(X) suh that φ(B) > 0, there exists some n (possibly depending on
x and B) suh that Pn(x,B) > 0.Notie that the Condition (C1) above implies µLeb-irreduibility. When a hain is φ-irreduible,there exists a maximal irreduibility measure ψ (see [240, Theorem 4.2.2℄). The maximality is tobe understood with respet to the domination relation for two measures, denoted as φ ≺ ψ,and de�ned through ψ(B) = 0 ⇒ φ(B) = 0. Any other irreduibility measure is absolutelyontinuous with respet to ψ. The equivalene of maximal irreduibility measures allows then tode�ne B+(X) = {B ∈ B(X) | ψ(B) > 0}.De�nition 3.3. A set B is full if ψ(Bc) = 0 and absorbing if P (x,B) = 1 for all x ∈ B.Reurrene.As in the ountable ase, irreduible ontinuous state-spae hains have essentially two possiblebehaviours: they may drift to in�nity (transient behaviour) or remain almost always in a boundedregion of spae (reurrene). The oupation time ηB is de�ned as the number of visits of Φ to aset B ∈ B(X):

ηB =

∞∑

n=1

1{Φn∈B}.Reall that Ex denotes the expetation under Px = Pδx , that is, the expetation under the proba-bility generated by the hain starting from x.De�nition 3.4. A hain Φ is alled reurrent if it is ψ-irreduible and Ex(ηB) =
∑∞
n=1 P

n(x,B) =

+∞ for all x ∈ B and B ∈ B+(X).Let us preise some riteria ensuring that a Markov hain is reurrent. A simple ase is whenan invariant probability measure exists for the system. Let us emphasize that the existene of a(non-normalized) invariant measure is not su�ient, sine this measure may be non-normalizable(see an example below).De�nition 3.5. A ψ-irreduible hain Φ is said to be positive if it admits an invariant probabilitymeasure π.It is heuristially lear in this ase that the hain annot be transient. The following propositionholds:Proposition 3.2 ( [240℄, Proposition 10.1 and Theorem 10.4.9 ). If a hain Φ is positivethen it is reurrent and admits a unique invariant probability measure equivalent to ψ.Notie that Conditions (C1) and (C2) above imply positive reurrene for the hain. When noinvariant probability measure is known, stronger onditions are needed to get reurrene, suh asdrift riteria [240, Chapter 8℄. In statistial physis however, it is often the ase that an invariantprobability measure is known.Law of Large Numbers.The onept of reurrene an (and has to) be somewhat strengthened to get onvergeneresults suh as the Law of Large Numbers (LLN).



3.6 Some bakground on ontinuous state-spae Markov hains and proesses 105De�nition 3.6. A set B ∈ B(X) is alled Harris reurrent if Px(ηB = ∞) = 1 for all x ∈ B. Aset B is alled maximal Harris if it is a maximal absorbing set suh that Φ restrited to B is Harrisreurrent. A hain Φ is alled Harris reurrent if it is ψ-irreduible and if every set in B+(X) isHarris reurrent. A Harris reurrent and positive hain Φ is alled a positive Harris hain.Atually, any reurrent hain is already almost a Harris reurrent hain. Indeed, the followingtheorem holds:Theorem 3.13 ( [240℄, Theorem 9.1.5 ). If Φ is reurrent, then X = H ∪ N where H is anon-empty maximal Harris set, and N is ψ-null.Therefore, starting from an initial value x ∈ H , a positive hain remains in H and is positiveHarris on H . This amounts to replaing the whole spae X by its full subset H . Note that π isalso an invariant measure for the hain on H .We now turn to the onvergene of the average along one sample path. Consider the sum
SN (A) =

∑N
i=1 A(Φn). We reall a Law of Large Numbers (LLN) result:Theorem 3.14 ( [240℄, Theorem 17.1.7 ). Suppose Φ is positive Harris. Then, for any mea-surable funtion A ∈ L1(π),

lim
n→∞

1

N
SN (A) =

∫

X

Adπ a.s. [P∗].Remark 3.3. Therefore, sine the hain starting from H remains in H and is positive Harris on
H, the LLN holds true for any hain {Φn}n∈N starting from Φ0 = x ∈ H. Therefore, it holds fora.e. starting point, H being a subset of full measure by Theorem 3.13. This result an atually beextended to all starting points [239,241℄. It holds whenever Conditions (C1) and (C2) are veri�ed.Small sets and petite setsThe following de�nitions of small and petite sets are used for the onveniene of other de�nitionsand are partiularly well-suited for general proofs in the Markov hain setting. However, they willnot be used as suh in this hapter, for we will be able to work with ompat sets, that are smallor petite under ertain regularity onditions on the Markov transition kernel. We also warn thereader that the terms 'small' and 'petite' do not refer to the size of the spaes involved. Theymerely refer to some useful uniform lower bounds on the transition kernel.De�nition 3.7. A set C ∈ B(X) is alled a νm-small set if there exist m > 0 and a non-trivialmeasure νm suh that for all x ∈ C and B ∈ B(X),

Pm(x,B) ≥ νm(B).Though it is far from obvious from this de�nition, any ψ-irreduible hain has small sets C ⊂ Bfor any B ∈ B(X)+ (see [240, Theorem 5.2.2℄). In fat, the whole spae X an be reovered bya ountable union of small sets (see [240, Proposition 5.2.4℄). This allows many properties ofontinuous state spae Markov hains to be stated in the same manner as for ountable statespae Markov hains.The notion of small sets is generalized with the notion of petite sets. Setting Ka(x,B) =∑∞
n=0 P

n(x,B)a(n) for x ∈ X,B ∈ B(X) and with a = {a(n)}n∈N a probability measure on N,the expression Ka de�nes a transition kernel.De�nition 3.8. Let νa be a non-trivial measure on B(X). A set C ∈ B(X) is νa-petite if
Ka(x,B) ≥ νa(B)for all x ∈ C and all B ∈ B(X).



106 3 Phase-spae sampling tehniquesNotie that a νm-small set is νδm-petite. We will now see that ompat sets are petite, underertain regularity onditions on the transition kernel.De�nition 3.9. If x 7→ P (x,O) is a lower semi-ontinuous funtion for any open set O ∈ B(X),then the hain is said to be weak Feller.Notie that the lower semi-ontinuity ondition is usually easy to hek in pratie. It will evenoften be the ase that P (·, B) is a ontinuous funtion for any Borel set B. We then have thefollowingTheorem 3.15. If the ψ-irreduible hain Φ is weak Feller and if supp ψ has a non-empty interior,then all ompat subsets of X are petite.Ergodiity.We �rst introdue the total variation norm for a signed Borel measure µ. It is given by
||µ|| = sup

h measurable, |h|≤1

|µ(h)| = sup
{A∈B(X)}

µ(A) − inf
{A∈B(X)}

µ(A).Notie that onvergene in total variation implies weak onvergene.De�nition 3.10. A hain Φ is ergodi when
∀x ∈ X, lim

n→∞
||Pn(x, ·) − π|| = 0.In partiular, ergodiity implies Ex(A(Φn)) →
∫
X A(Φ) dπ when n → +∞ for any boundedmeasurable funtion A.Ergodiity is atually quite easy to get one the hain has been shown to be reurrent. It issu�ient to show that the hain is aperiodi. We need here the notion of small and petite setsto state the de�nition of aperiodiity, though in pratie muh simpler riteria will be used. Weintrodue the set EC assoiated with a νM small set C:

EC = {n ≥ 1 | the set C is νn-small with νn = κnνM for some κn > 0}.We see that M ∈ EC . Let us denote by d the greatest ommon divisor of the set EC . In fat d isindependent of the initial small set hosen. Therefore, the following de�nition makes sense:De�nition 3.11. Suppose that Φ is a ψ-irreduible Markov hain. If d = 1, the hain is alledaperiodi. If there exists a ν1-small set C with ν1(C) > 0, the hain is alled strongly aperiodi.It is often easy to hek strong aperiodiity in the MD setting using some global aessibilityresults. In partiular, Condition (C1) implies aperiodiity (see [240, Theorem 5.4.4℄). The followingtheorem then states the ergodiity of reurrent aperiodi hains.Theorem 3.16 ( [240℄, Theorem 13.3.4). If Φ is positive reurrent and aperiodi, then for everyinitial distribution λ suh that λ(N) = 0 (where N is the π-null set de�ned in Theorem 3.13),
∣∣∣∣
∣∣∣∣
∫
λ(dx)Pn(x, ·) − π

∣∣∣∣
∣∣∣∣→ 0 as n→ ∞.In partiular, the ase λ = δx an be onsidered for a.e. point x (i.e. for x ∈ H). This result holdsas soon as onditions (C1) and (C2) are veri�ed.The onvergene in total variation norm implies onvergene of the expetations for boundedobservables A. It is therefore not su�ient in pratie for non-bounded observables A (see forinstane the examples presented in the Introdution). Fortunately, the ergodiity results an be



3.6 Some bakground on ontinuous state-spae Markov hains and proesses 107strengthened in a straightforward way. For a given measurable non-negative funtion W , let usde�ne the W -total variation norm for a signed Borel measure µ as
||µ||W = sup

h measurable, |h|≤W
|µ(h)|.Then Theorem 3.16 an be readily extended to integrable funtions A.Theorem 3.17 ( [240℄, Theorem 14.0.1). Suppose that A ≥ 1 is measurable and π(|A|) < +∞.If Φ is positive reurrent and aperiodi, then for π-a.e. x ∈ X,

∣∣∣∣
∣∣∣∣
∫
λ(dx)Pn(x, ·) − π

∣∣∣∣
∣∣∣∣
A

→ 0 as n→ ∞.Rate of onvergene for the LLN: a Central Limit Theorem.Additional onditions are required to get not only a LLN, but a CLT, preising the rate ofonvergene of a sample path average toward its limit. The drift ∆W is de�ned, for x ∈ X , as
∆W (x) =

∫

X

P (x, dy)W (y) −W (x).We then onsider the followingCriterion 3.1. Assume Φ is ergodi, and there exist a measurable funtion L : X → [1,∞[, apetite set C ∈ B(X), b < +∞ and a �nite-valued measurable funtion W suh that
∆W (x) ≤ −L(x) + b1C(x), ∀x ∈ X.Denoting by π the invariant measure of the hain, we also assume π(W 2) <∞.Heuristially, this drift ondition ensures that ∆W is dereasing outside a petite set C (in pratie,a ompat set). Therefore, we expet the hain to spend most of its time in the set C. The dynamisof the hain is then almost that of a hain in a ompat set. That is why we an expet somestronger reurrene properties and some better onvergene results.For a given measurable funtion A suh that π(|A|) < ∞, we formally de�ne the funtion Âby the following Poisson equation:

Â− PÂ = A− π(A).It is not lear in general whether Â is well-de�ned. This turns out to be the ase when Criterion 3.1is veri�ed, and allows to state a CLT (see [240, Theorem 17.5.3℄):Theorem 3.18 (CLT). Assume Criterion 3.1 holds, and let A be a funtion suh that |A| ≤ L.Then the onstant γ2
A := π(Â2 − (PÂ)2) is well-de�ned, non-negative and �nite. If γ2

A > 0, then,de�ning Ā = A− π(A), it holds
(nγ2

A)−1/2Sn(Ā) → N (0, 1),this onvergene being in law.Notie that we get onvergene results only for observables |A| ≤ L, while the LLN applies forany integrable funtion. Theorem 3.18 holds true as soon as Conditions (C1), (C2) and (C3) areveri�ed.Remark 3.4. In partiular, under the assumptions of Theorem 3.15, the whole state spae is petitewhen it is ompat. Therefore, Condition (C3) is straightforwardly veri�ed with the hoie C = Xand W and L arbitrary smooth funtions (taking b large enough).



108 3 Phase-spae sampling tehniquesGeometri ergodiity.The ergodiity property implies the onvergene Ex(A(Φn)) →
∫
X A(q) dπ for measurableintegrable funtions A. A onvergene rate an be obtained by resorting to the stronger notion ofgeometri ergodiity, generalizing the notion of ergodiity. The following Criterion, analogous tothe drift ondition for Criterion 3.1, is of paramount importane.Criterion 3.2. There exist a funtion W ≥ 1 �nite at some x0 ∈ X, a petite set C ∈ B(X), and

b < +∞, c > 0 suh that
∆W (x) ≤ −cW (x) + b1C(x), ∀x ∈ X. (3.93)This drift riterion an be heuristially interpreted in the same way as Criterion 3.1. We then getthe followingTheorem 3.19 ( [240℄, Theorem 15.0.1). Assume Criterion 3.2 holds. Then there exist ρ < 1and R < +∞ suh that, for all x ∈ {y ∈ X | W (y) < +∞},

||Pn(x, ·) − π||W ≤ RW (x)ρn.In partiular, we get ∣∣∣∣Ex(A(Φn)) −
∫

X

A(Φ) dπ

∣∣∣∣ ≤ RW (x)ρnfor any starting point x ∈ X suh that W (x) < +∞. This result holds as soon as Conditions (C1),(C2) and (C4) are veri�ed.Remark 3.5.When X is ompat, Condition (C4) is straightforwardly veri�ed with the hoie
C = X for any arbitrary smooth funtion W (taking b large enough). When X is not bounded andthe hain is weak Feller (with an irreduibily measure of non-empty interior), Condition (C4) issatis�ed when (3.93) holds for a ompat set C and for a smooth funtion W suh that W (x) →
+∞ when |x| → +∞.A simple example: The Random-Walk on a (half-)line.We now present a simple example, taken from [240℄. We hope that it illustrates relevantlymany of the notions introdued in this setion. The setting is the following. Consider a olletionof real-valued random variables Φ = {Φ0, Φ1, . . .}, de�ned as

Φk+1 = Φk +Wk+1,where {Wk} are independent and identially distributed (i.i.d.) random variables, that we do notpreise further for the moment. The distribution of Φ0 an be hosen arbitrarily. A onvenienthoie is for example to initialize the hain with a deterministi point x0 ∈ R, whih amounts toonsidering the initial measure δx0 . The so-de�ned Markov hain is alled a �random-walk� (RW).We an also onsider a random-walk on the half-line (RWHL), de�ned as
Φk+1 = [Φk +Wk+1]+ ,where [a]+ = max(a, 0). We examine suessively to the questions of irreduibility, reurrene andergodiity for those two Markov hains.



3.6 Some bakground on ontinuous state-spae Markov hains and proesses 109Irreduibility.Under reasonable assumptions on the inrements {Wk}, irreduibility is easy to hek, andasks only for little omprehension of the behaviour of the system.Consider �rst the ase of random-walk when the Wk have values in Q and are suh that
P(Wk = x) > 0 for all x ∈ Q. Starting then from x0 ∈ Q, it is easily seen that Q is absorbing. Ifthe hain was irreduible, any irreduibility measure φ would be supported by Q. For x0 6∈ Q, thehain has values in x0 + Q. So, onsidering the hain starting from x0, we see that Pn(x0,Q) = 0for all n ∈ N. This shows that φ annot be an irreduibility measure. The hain is not irreduiblein this ase, and it has an unountably in�nite number of absorbing sets.In the ase when Wk has a smooth positive density γ, the hain is seen to be irreduible withrespet to the Lebesgue measure µLeb (more general onditions ould also be onsidered [240℄).Indeed, for any x ∈ R and B ∈ B(R) suh that µLeb(B) > 0

P (x,B) = P (W1 ∈ B − x) =

∫

B−x
γ(y)dy > 0.In addition, there exists δ, η > 0 suh that γ(x) ≥ δ > 0 for |x| ≤ 2η. Setting C = {|x| ≤ η}, andonsidering x ∈ C and B ⊂ C, one has

P (x,B) = P (W1 ∈ B − x) =

∫

B−x
γ(y)dy ≥ δµLeb(B) > 0. (3.94)Setting for example φ = (µLeb(C))−11C(·), the relation (3.94) shows that C is a φ-small set.For the random-walk on the half-line, we assume that P(W1 < 0) > 0. It is then straightforwardto show that, for all x ∈ R+, there exists n suh that Pn(x, {0}) > 0. This shows that δ0 is anirreduibility measure for RWHL.ReurreneIn the ase of RWHL, it is intuitive that the hain will be reurrent when the mean displaementis negative. In the ase when the mean displaement is positive, we expet on the ontrary thehain to drift to in�nity without oming bak (exept maybe a �nite number of times in average).We now preise these heuristi arguments. Set m =

∫

R

xγ(x)dx. When m > 0, Proposition 9.5.1in [240℄ shows that the hain is transient (the proof uses a omparison with a onvenient Markovhain on ountable state-spae). When m < 0, a drift riterion an be stated, ensuring reurreneof the hain (see [240℄, Setion 8.5). Indeed, onsider x∗ < 0 suh that ∫ +∞

x∗

xγ(x)dx ≤ m

2
, andtake W (x) = x. Then, for x in [0,−x∗],

∆W (x) =

∫

R

P (x, dy)(y − x) =

∫

y≥0

P (x, dy)(y − x) =

∫

y≥0

(y − x)γ(y − x)dy ≤ m

2
≤ 0.This shows that a drift riterion holds with C = [0,−x∗]. Heuristially, this means that the valuesof W annot grow too muh, whih implies that the hain remains in a viinity of the origin. Weresort to Theorem 8.0.2 in [240℄ to prove that the hain is reurrent. It then has a unique invariantmeasure (see below for onditions ensuring that this invariant measure is �nite).For the random-walk on the full line, it is still quite lear that non-zero mean inrements willlead to a transient behaviour. Conditions for reurrene in the ase when the mean inrement is zeroan be preised when the inrements have bounded range. We refer to [240, Setion 9.5℄. However,the hain an never be positive reurrent sine the Lebesgue measure is invariant (see [240, Setion



110 3 Phase-spae sampling tehniques10.5℄), and is therefore at best null reurrent. Ergodiity does not make sense for the general RWmodel.Ergodiity for the Random-Walk on the half-lineWe still assume that the mean drift m =

∫

R

xγ(x)dx is negative in order to ensure reurreneof the hain, and the existene of an invariant measure. We need however a better drift riterionto ensure that the invariant measure is a probability measure (that is, a �nite measure) and to getergodiity. To this end, we assume in addition that ∫ +∞
0

estγ(t)dt < +∞ for 0 < s ≤ η for some
η > 0. Notie that this an be interpreted as su�ient fast derease in the inrements. Then, for
0 < s < η, and L(x) = esx,

1

s

∫
R
P (x, dy)(L(y) − L(x))

L(x)
=

∫

R

γ(x)
esx − 1

s
dx→ mwhen s → 0 by dominated onvergene. There exists 0 < s0 < η suh that, setting W (x) =

exp(s0x),
∆W (x) ≤ m

2
s0W (x) + b1C(x)for some b > 0 and with C = [0, c] for some c > 0 large enough (see [240, page 399℄ for preisions).The hain is therefore W -uniformly ergodi, in the sense that there exists R > 0 and 0 < r < 1suh that

∀x ∈ R+, ||Pn(x, ·) − π||W ≤ RW (x)r−n.3.6.2 Some onvergene results for Markov proesses.We extend here the results of Appendix 3.6.1, stated for Markov hains, to Markov proesses.We will fous on di�usion equations of the form
dΦt = b(Φt)dt+ΣdWt, (3.95)where Φt is a stohasti proess with values in X , b is a C∞ funtion, Σ is a matrix of dimension

d = dim(X), and Wt is a d-dimensional standard Wiener proess.We assume that trajetorial existene and uniqueness hold true for (3.95). This is lassial forglobally Lipshitz drifts [152, Theorem III.3.2℄, namely for funtions b satisfying for some positiveonstant D
∀(x, y) ∈ X2, |b(x) − b(y)| ≤ D |x− y|. (3.96)When this ondition is not satis�ed, it is possible to onlude to trajetorial existene and unique-ness under the following hypothesis (see [152, Theorem III.4.1℄): there exist a C2 funtion W (x)that goes to in�nity at in�nity and a positive onstant c suh that

AW ≤ cW. (3.97)Besides, under assumption (3.96) or (3.97), one an prove that the Markov proess (3.95) is Feller.That means that, for eah bounded measurable funtion g : X → R, the mapping
x 7→ Ex(g(Φ

x
t ))is ontinuous, where Φxt is the solution of (3.95) with initial ondition Φx0 = x. We assume in thesequel that either (3.96) or (3.97) is satis�ed. Some extensions for less smooth funtions b and

Σ ≡ Σ(x) an be found in [328℄.The transition kernel P t is de�ned, for t > 0 and B ∈ B(X), as
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P t(x,B) = Px(Φt ∈ B),where Px is the probability generated by the proess starting at x. The in�nitesimal generator Aassoiated with (3.95) is

Ag(x) = b(x) · ∇g(x) +
1

2
[ΣΣT ]ij

∂2g

∂xi∂xj
(x) (3.98)for g ∈ C2(X).Main onvergene results.
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Fig. 3.7. The di�erent levels of stability for Markov proesses.Figure 3.7 summarizes the main results, as in the disrete time ase. The de�nitions of thedi�erent onepts and the proofs of the impliations an be found in the remainder of this Setion.Reall that we made the following general assumption throughout this Setion(C0') Condition (3.96) or (3.97) holds.The onditions (C1'), (C2'), and (C3') read:(C1') For all q ∈ X and open set O ∈ B(X), P t(q,O) > 0,(C2') π is an invariant probability measure for the proess,There exist a measurable funtions W ≥ 1 going to in�nity at in�nity,(C3') real numbers c > 0, b ∈ R and a ompat set C suh that
AW (x) ≤ −cW (x) + b1C .



112 3 Phase-spae sampling tehniquesNotie that onditions (C1') and (C2') are usually quite easy to show in a MD setting, alreadygiving ergodiity (without onvergene rate however). Conditions (C3') an be easily shown whenthe state spae X is ompat (when it is a d-dimensional torus for example).Stability onepts.We �rst preise the onepts of irreduibility, Harris reurrene and ergodiity in the ontinuoustime setting, whih are quite analogous to the orresponding disrete time onepts [86, 241℄.Consider, for B ∈ B(X), the random variables
τB = inf{t ≥ 0 | Φt ∈ B}, ηB =

∫ +∞

0

1{Φt∈B} dt.De�nition 3.12. A Markov proess is said to be φ-irreduible if for a σ-�nite measure φ,
∀x ∈ X, ∀B ∈ B(X), φ(B) > 0 ⇒ Ex(ηB) > 0.A proess is Harris reurrent if, for a σ-�nite measure ψ,

∀x ∈ X, ∀B ∈ B(X), ψ(B) > 0 ⇒ Px(τB < +∞) = 1.When a Harris reurrent proess has a �nite invariant measure (whih an be normalized into aprobability measure), it is alled positive Harris reurrent.Note also that a Harris reurrent proess is irreduible.Irreduibility an be heked in two steps. First, one an show open set irreduibility, whihis usually easy to hek using ontrollability arguments (see e.g [231, 336, 337℄). We then getirreduibility using the ontinuity of the transition kernel (resulting from the Feller property).When an invariant probability measure for the stohasti di�erential equation (3.95) exists,and when the proess is irreduible, it is also reurrent, sine there is also a dihotomy betweenreurrene and transiene as in the disrete-time ase [348, Theorem 2.3℄. When Φ is reurrent,we also have existene of a maximal absorbing Harris set of full measure, and uniqueness ofthe invariant measure [348℄. Therefore, the results of the disrete-time ase an be ompletelytransposed.(Weak) Regularity of the transition kernel.In ontradition with the Markov hain ase, we often need some (weak) regularity propertieson the transition kernel in the ontinuous-time setting. The minimal assumption that has to bemade is that the proess is a T -proess.De�nition 3.13. The Markov proess is a T -proess if there exists a probability measure a on R+and a kernel T suh that T (·, B) is lower semi-ontinuous for all B ∈ B(X) and
Ka =

∫ +∞

0

a(dt)P t ≥ T.In partiular, this property holds whenever the proess is Feller sine in this ase, for all t0 > 0and all B ∈ B(X), P t0(·, B) is ontinuous.Convergene of the average along one sample path.The onepts introdued above allow us to state a result onerning the asymptoti behaviourof the average
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ST (A) =

1

T

∫ T

0

A(Φt) dt,for some observable A ∈ L1(π). Notie that this average is in fat a random variable.Theorem 3.20 ( [241℄, Theorem 8.1). Suppose that Φ is a positive reurrent T -proess. Thenfor any π-a.e. x ∈ X and A ∈ L1(π),
ST (A) →

∫

X

A(q) dπ Px − a.s.Therefore, as in the disrete time ase, we obtain onvergene over a single sample path reali-zation. Notie that this result an be extended to all starting points in X , and not only for startingpoints in the full maximal Harris subset [241℄. Some results also exist for non-irreduible Markovproess [241℄, but we restrit here to positive reurrent proesses, whih is the natural MD setting.Central Limit Theorems an also be stated for the onvergene of ST (A). However, the settingis not as lear as in the disrete time ase. We refer for example to [172℄.(Geometri) Ergodiity.As for the disrete time ase, onvergene of the expetations Ex(A(Φt)) to the state spaeaverage ∫X A(Φ) dπ an be stated under ertain onditions. This is preisely the notion of ergodi-ity. As in Appendix 3.6.1, || · || denotes the total variation norm, and || · ||W the W -total variationnorm.De�nition 3.14. The Markov proess is alled ergodi if an invariant probability π exists and
∀x ∈ X, ||P t(x, ·) − π|| → 0when t→ +∞.The fat that the proess is Harris reurrent and that some skeleton hain is irreduible isenough to ensure ergodiity. A skeleton hain is a Markov hain obtained by sampling the proessat times ∆ > 0, and is thus the Markov hain with the assoiated transition kernel P∆.Theorem 3.21 ( [241℄, Theorem 6.1). Suppose that Φ is positive Harris reurrent. Then Φ isergodi if and only if some skeleton hain is irreduible.Notie that Condition (C1') immediately gives the irreduibility of the skeleton hain. There-fore, ergodiity holds whenever (C1') and (C2') are veri�ed. This gives the onvergeneEx(A(Φt)) →∫

X A(Φ) dπ for bounded measurable funtions A.A rate of onvergene an also be obtained and extensions to non-bounded funtions an bestated, as in the time-disrete ase, using drift riteria. These riteria have to be heked on thegenerator A given by (3.98). We still need the proess to be aperiodi. The de�nition of thisnotion for Markov proesses is quite analogous to the orresponding disrete-time de�nition. Wetherefore refer to [86, 241℄ for more preisions, and simply note that the Feller property of thehain and (C1') are su�ient to onlude to aperiodiity. The de�nition of petite sets is also astraightforward extension of the disrete-time ase, so we also refer to [86, 241℄ for example for amore formal de�nition. The following result shows that it is often enough to onsider ompat setsin appliations.Theorem 3.22 ( [241℄, Theorem 4.1). For a Harris reurrent T -proess, every ompat set ispetite.We then have the following



114 3 Phase-spae sampling tehniquesTheorem 3.23 ( [86℄, Theorem 5.2). Consider a ψ-irreduible aperiodi Markov proess, andassume there exist a measurable funtion W ≥ 1 suh that
AW ≤ −cW + b1C (3.99)for c > 0, b < +∞ and a petite set C ∈ B(X). Then the proess is W -geometrially ergodi in thesense that there exist R > 0 and 0 < ρ < 1 suh that for every t ≥ 0,

||P t(x, ·) − π||W ≤ RW (x)ρt.Together with onditions (C1') and (C2'), Condition (C3') then gives geometri ergodiity.As in the time-disrete ase, Condition (C3') holds whenever the state spae is ompat. Anotherommon situation is when the drift ondition (3.99) is veri�ed for some smoothW going to in�nityat in�nity and for some ompat set C.



4Computation of free energy di�erenes
4.1 Nonequilibrium omputation of free energy di�erenes . . . . . . . . . . . 1164.1.1 The Jarzynski equality (The alhemial ase) . . . . . . . . . . . . . . . . . . . . . . 1164.1.2 The Jarzynski equality (The reation oordinate ase) . . . . . . . . . . . . . . 1184.1.3 Pratial omputation of free energy di�erenes . . . . . . . . . . . . . . . . . . . . 1274.1.4 Numerial results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304.2 Equilibration of the nonequilibrium omputation of free energydi�erenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344.2.1 The IPS and its statistial properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354.2.2 Consisteny through a mean-�eld limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1374.2.3 Numerial implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394.2.4 Appliations of the IPS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394.3 Path sampling tehniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1444.3.1 The path ensemble with stohasti dynamis . . . . . . . . . . . . . . . . . . . . . . 1464.3.2 Equilibrium sampling of the path ensemble . . . . . . . . . . . . . . . . . . . . . . . . 1484.3.3 (Non)equilibrium sampling of the path ensemble . . . . . . . . . . . . . . . . . . . 1594.4 Adaptive omputation of free energy di�erenes . . . . . . . . . . . . . . . . . 1654.4.1 A general framework for adaptive methods . . . . . . . . . . . . . . . . . . . . . . . . 1664.4.2 Rigorous onvergene results for the Adaptive Biasing Fore method . . 175The free energy of a system is a quantity of paramount importane in statistial physis. It isde�ned as

F = − 1

β
lnZ, Z =

∫

T∗M
e−βH .The onstant Z is the partition funtion of the system, and the spae T ∗M is phase-spae (seeSetion 2.2 for notations). In many appliations, the quantity of interest is the free energy di�erenebetween an initial and a �nal state. These di�erenes are related to transitions from an initial toa �nal state, and an be lassi�ed in two ategories:(i) the so-alled alhemial ase onsiders transitions indexed by an external parameter λ.The system is then governed by a Hamiltonian Hλ (or a potential Vλ), suh as Hλ(q, p) =

(1 − λ)H0(q, p) + λH1(q, p). The orresponding free energy di�erene is
∆F = −β−1 ln




∫

T∗M
e−βH1(q,p) dq dp

∫

T∗M
e−βH0(q,p) dq dp


 ,



116 4 Computation of free energy di�erenes(ii) in the reation oordinate ase, the transition is indexed through some level set fun-tion ξ(q) indexing disjoint submanifolds of the on�guration spae, and
∆F = −β−1 ln




∫

T∗M
e−βH(q,p) δξ(q)−z1 dq dp

∫

T∗M
e−βH(q,p) δξ(q)−z0 dq dp


 .Therefore, free energies an be expressed in both ases as

F = −β−1 lnZ, Z =

∫

Σ

exp(−βV ) dν (4.1)where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann onstant). The Boltzmann-Gibbs measure exp(−βV )dν is de�ned for a referene positive measure dν, whih has support Σ.We will onsider here that Σ is a submanifold of R3N , but all the results extend to the ase when
Σ is a submanifold of T3N (the 3N -dimensional torus, whih arises when using periodi boun-dary onditions). The statistis of the system are ompletely de�ned by (V, ν). We onsider herethat (V, ν) is labeled using a d-dimensional parameter z (with d≪ 3N) whih haraterizes the sys-tem at some oarser level. Examples of suh parameters are ξ(q) or λ with the above notations. Inthe alhemial ase, the parameter z = λ is independent of the urrent on�guration of the system.This hapter is organized as follows. In Setion 4.1, we reall the usual Jarzynski equality whenomputing free-energy di�erenes using nonequilibrium dynamis (stated for alhemial transi-tions), and present an extension to the reation oordinate ase. We then present, in Setion 4.2,an equilibration of the nonequilibrium dynamis, whih ensures that the sample is always anoni-ally distributed even for fast swithings. In Setion 4.3, we present a new algorithm for samplingpaths governed by stohasti dynamis. Sampling paths an be useful to ompute free energydi�erenes, and in any ases, uses tehniques reminisent from free energy omputation shemes.Finally, we present adaptive dynamis in Setion 4.4, proposing a uni�ed framework, new parallelimplementations and a proof of onvergene using entropy estimates in a spei� ase.4.1 Nonequilibrium omputation of free energy di�erenes4.1.1 The Jarzynski equality (The alhemial ase)Markovian nonequilibrium simulationsThe usual way to ahieve a nonequilibrium swithing is to perform a time inhomogeneousirreduible Markovian dynamis

t 7→ Xt, X0 ∼ µ0, (4.2)for t ∈ [0, T ], and a smooth shedule t 7→ λ(t) verifying λ(1) = 0 and λ(T ) = 1. The variable xan represent the whole degrees of freedom (q, p) of the system, or only the on�guration part q.Depending on the ontext, the invariant measure µ will therefore be the anonial measure
dµλ(q, p) =

1

Zλ
e−βHλ(q,p) dq dp, (4.3)with Zλ =

∫
T∗M e−βHλ(q,p) dq dp or its marginal with respet to the momenta, whih reads

dµ̃λ(q) =
1

Z̃λ
e−βVλ(q) dq,



4.1 Nonequilibrium omputation of free energy di�erenes 117with Z̃λ =
∫
M e−βVλ(q) dq. When we do not wish to preise further the dynamis, we simply all

x the on�guration of the system, Hλ(x) its energy and dµλ(x) the invariant measure. The atualinvariant measure should be lear from the ontext.The dynamis is suh that for a �xed λ ∈ [0, 1], the Boltzmann distribution dµλ is invariant.For example, the Langevin dynamis (3.47) or its overdamped limit (3.38) an be onsidered. Inthis last ase, Xt = qt and the evolution of the system is given by
dqt = −∇V (qt) dt+ σ dWt,with σ2 = 2/β and Wt a standard Wiener proess.Denoting by ps,t(x, y)dy = E (Xt ∈ dy|Xs = x) the density kernel of the proess, the evolutionof the proess law is haraterized by the bakward Kolmogorov equation (t and y being given):

∂sps,t(., y) = −Lλ(s) (ps,t(., y)) ,or its forward version (s and x being given):
∂tps,t(x, .) = L∗

λ(t) (ps,t(x, .)) .The operator Lλ(t) is alled the in�nitesimal generator of the dynamis, and L∗
λ(t) is its dual. Theinvariane of µλ(t) under the instantaneous dynami an then be expressed through the balaneondition:

∀ϕ,
∫
Lλ(t)(ϕ)dµλ(t) = 0. (4.4)When the shedule is su�iently slow, the dynamis is said quasi-stati, and the law of theproess Xt is assumed to stay lose to its loal steady state throughout the transformation. Thisis out of reah at low temperature (more preisely, large deviation results [112℄ ensure that thetypial esape time from metastable states grows exponentially fast with β, whih ompells quasi-stati transformations to being exponentially slow with β). It is therefore interesting to onsiderapproahes built on swithed Markovian dynamis, but able to deal with reasonably fast transitionshemes.Importane weights of non equilibrium simulations.For a given nonequilibrium run Xt we denote by

Wt =

∫ t

0

∂Hλ(s)

∂λ
(Xs)λ

′(s) dsthe out of equilibrium virtual work indued on the system during the time interval [0, t]. Thequantity Wt gives the importane weights of nonequilibrium simulations with respet to the targetequilibrium distribution. Indeed, it was shown in [187℄ that
E(e−βWt) = e−β(F (λ(t))−F (0)). (4.5)This �utuation equality is known as the Jarzynski's equality, and an be derived through aFeynman-Ka formula [177℄, as follows: onsider the Feynman-Ka density kernel de�ned by

∫
ϕ(y)pws,t(x, y)dy = E

(
ϕ(Xt)e

−β(Wt−Ws)|Xs = x
)
, (4.6)and haraterized by the following extended bakward Komogorov evolution:
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∂sp

w
s,t(., y) = −Lλ(s)

(
pws,t(., y)

)
+ β

∂Hλ(s)

∂λ
λ′(s)pws,t(., y).Using this identity and the balane equation (4.4) gives:

∂s

∫
pws,t(x, y)e

−βHλ(s)(x)dx = 0and thus after integration on [0, t], we get the fundamental Feynamn-Ka �utuation equality:
Zt
Z0

∫
ϕdµλ(t) = E

(
ϕ(Xt)e

−βWt
)
. (4.7)Therefore, taking ϕ = 1, it follows

E(e−βWt) = e−β(F (λ(t))−F (0)),and Jensen's inequality then gives
E(Wt) ≥ F (λ(t)) − F (0).This inequality is an equality if and only if the transformation is quasi-stati on [0, t]; in this asethe random variable Wt is atually onstant and equal to ∆F . When the evolution is reversible,this means that equilibrium is maintained at all times.As an improvement, we will see how to avoid the exponential importane weights of the none-quilibrium paths by a seletion rule between replias (see Setion 4.3.3).4.1.2 The Jarzynski equality (The reation oordinate ase)Nonequilibrium omputations of free energy di�erenes in the reation oordinate setting usingstohasti dynamis ould be performed using soft onstraints to swith between the initial stateentered on the submanifold {ξ(q) = z0} and the �nal state entered on {ξ(q) = z1}. Steeredmoleular dynamis tehniques use for example a penalty term K(ξ(q) − z)2 in the energy of thesystem [267℄ (with K large) to 'softly' onstraint the system to remain lose to the submanifold

{ξ(q) − z = 0}, and varying the value z from 0 to 1 in a �nite time T . It is shown in [177℄ how touse suh a biasing potential to exatly ompute free energy di�erenes (even for a �nite K), whihis of partiular interest for experimental studies. From a omputational viewpoint however, it isexpeted that large values of K require small integration time steps. Moreover, it is observed inpratie that the statistial �utuations inrease with larger K (see [267℄). Instead, we propose toreplae the sti� onstraining potential K(ξ(q)− z)2 by a projetion onto the submanifold {ξ(q)−
z = 0}. This situation is reminisent of the ase of moleular onstraints, that an be enforedusing a sti� penalty term, or more elegantly and often more e�iently, using some projetionof the dynamis involving Lagrange multipliers. This is the spirit of the well known SHAKEalgorithm [295℄.We present here a nonequilibrium stohasti dynamis and an equality that allow to omputefree energy di�erenes between states de�ned by di�erent values of a reation oordinate. Thedynamis relies on a projetion onto the urrent submanifold at eah time step, and we use theLagrange multipliers assoiated with this projetion to estimate the free energy di�erene. Morepreisely, we use the di�erene between these Lagrange multipliers and the external foring termrequired for the �nite time swithing (see for example the disretization (4.43)). The main resultsof this setion are the Feynman-Ka equality of Theorem 4.1 (whih extends the proof of [177℄ tohard onstraints), as well as the assoiated disretizations (4.45) and (4.46).We �rst present the equilibrium omputation of free energy di�erenes using projeted sto-hasti di�erential equations, before turning to the extension to the non-equilibrium ase.



4.1 Nonequilibrium omputation of free energy di�erenes 119Equilibrium omputation of free energy di�erenes in the reation oordinate aseThe aim of this setion is to introdue the de�nitions of the free energy and the mean fore in thereation oordinate setting, and to reall how thermodynami integration is used to ompute freeenergy di�erenes. The omputation of the mean fore is based on projeted stohasti di�erentialequations (SDE). The presentation is done for a one-dimensional reation oordinate (the extensionto the multi-dimensional ase being postponed until the end of this setion) and the dynamis usedis an extension of the overdamped Langevin dynamis.Free energy and mean foreThe state of the system is haraterized by the value of a reation oordinate ξ : M → [0, 1].The funtion ξ is supposed to be smooth and suh that ∇ξ(q) 6= 0 for all q ∈ M. For a given value
z ∈ [0, 1], we denote by Σz the submanifold

Σz = { q ∈ M, ξ(q) = z } (4.8)and we assume that ⋃z∈[0,1]Σz ⊂ M. For eah point q ∈ Σz, we also introdue the orthogonalprojetion operator P (q) onto the tangent spae to Σz at point q de�ned by:
P (q) = Id − ∇ξ ⊗∇ξ

|∇ξ|2 (q), (4.9)where ⊗ denotes the tensor produt. The orthogonal projetion operator on the normal spae to
Σz at point q is de�ned by P⊥(q) = Id − P (q).The free energy is then de�ned as

F (z) = −β−1 ln (Zz) , (4.10)with
Zz =

∫

Σz

exp(−βV ) dσΣz , (4.11)where for any submanifold Σ of R3N , σΣ denotes the Lebesgue measure indued on Σ as asubmanifold of R3N . The assoiated Boltzmann probability measure is
dµΣz = Z−1

z exp(−βV ) dσΣz . (4.12)Remark 4.1 (On the de�nition of the free energy). Two omments are in order aboutformula (4.10). First, this formula is valid up to an additive onstant, whih is not importantwhen onsidering free energy di�erenes. Seond, the potential V in (4.11) may be a potentialdi�erent from the atual potential seen by the partiles. More preisely, if the partiles evolve ina potential V , the standard de�nition of the free energy in the physis and hemistry literatureis (4.10) with
Zz =

∫
exp(−βV ) δξ(q)−z ,where δξ(q)−z is a measure supported by Σz and de�ned by: for all test funtions φ,

∫
φ(q)δξ(q)−z =

∫

Σz

φ|∇ξ|−1 dσΣz .This amounts to onsidering (4.10)�(4.11) with V replaed by an e�etive potential V +β−1 ln |∇ξ|(see Remark 4.2 for the ase of a multi-dimensional onstraint). With this de�nition,
∫

M
A(ξ(q))e−βV (q) dq =

∫

M
A(z)e−βF (z) dz,



120 4 Computation of free energy di�erenesbut the free energy di�erenes F (z1)−F (z2) depend on the hoie of the reation oordinate (andnot only on the level sets Σz).Sine the results we present here hold irrespetive of the physial signi�ation of the poten-tial V , we may assume without loss of mathematial generality that the free energy is indeed givenby (4.10)�(4.11), and the hoie of the de�nition of the free-energy is left to the user. Let usemphasize that, in pratie, the umbersome omputation of the gradient of the additional term
β−1 ln |∇ξ| in the modi�ed potential (whih intervenes in the projeted SDEs we use, see (4.39)�(4.40) or (4.41)�(4.42)) an be avoided resorting to some �nite di�erenes, as explained in [66℄.Using the o-area formula (see (4.33) and Proposition 4.3 for a proof in the multi-dimensionalase), it is possible to derive the following expression of the derivative of the free energy F withrespet to z (the so-alled mean fore) (see [83, 320℄):

F ′(z) = Z−1
z

∫

Σz

∇ξ
|∇ξ|2 · (∇V + β−1H) exp(−βV )dσΣz , (4.13)where

H = −∇ ·
( ∇ξ
|∇ξ|

) ∇ξ
|∇ξ| (4.14)is the mean urvature vetor �eld of the surfae Σz. The free energy an thus be expressed as anaverage with respet to µΣz :

F ′(z) =

∫

Σz

f(q)dµΣz(q), (4.15)where f is the loal mean fore de�ned by:
f =

∇ξ
|∇ξ|2 · (∇V + β−1H). (4.16)We explain next how it is possible to ompute this average with respet to µΣz , without expliitlyomputing f , by using projeted SDEs. This avoids in partiular the omputation of the meanurvature vetor H whih involves seond-order derivatives of ξ.The priniple of thermodynami integration is to reast the free energy di�erene

∆F (z) = F (z) − F (0) (4.17)between two reation oordinates 0 and z as an integral over the mean fore:
∆F (z) =

∫ z

0

F ′(y) dy. (4.18)Therefore, in pratie, thermodynami integration omputation of free-energy is as follows. First,the free energy di�erene ∆F (z) is estimated using quadrature formulae for the integral in (4.18),suh as for example a Gauss-Lobatto sheme:
∆F (z) ≃

K∑

i=0

ωiF
′(yi)where the points {y0, y1, . . . , yK} are in [0, z] and {ω0, ω1, . . . , ωK} are their assoiated weights.Seond, the derivatives F ′(yi) are omputed as anonial averages over the submanifolds Σyi ,using projeted SDEs (see next setion).To obtain a free-energy pro�le (and not only a free-energy di�erene for a �xed �nal state),it is possible to approximate the funtion ∆F (z) on the interval [0, 1] by a polynomial. This an



4.1 Nonequilibrium omputation of free energy di�erenes 121be done for example by interpolating the derivative F ′ by splines, and integrating the resultingfuntion (onsistently with the normalization ∆F (0) = 0).Projeted stohasti di�erential equationsWe now explain how to ompute the mean fore F ′(z) de�ned by (4.13) using projeted SDEs,for a �xed parameter z. We onsider the solution Qt to the following SDE:
{
Q0 ∈ Σz,

dQt = −P (Qt)∇V (Qt) dt+
√

2β−1P (Qt) ◦ dBt,
(4.19)where Bt is the standard 3N -dimensional Brownian motion and ◦ denotes the Stratonovih pro-dut. It is possible (see [66℄) to hek that µΣz is an invariant probability measure assoiatedwith the SDE (4.19). Under suitable assumptions, whih we assume in the rest of the setion, onthe potential V and the surfae Σz, the proess Qt is ergodi with respet to µΣz . Moreover, theSDE (4.19) an be rewritten in the following way:

dQt = −∇V (Qt) dt+
√

2β−1dBt + ∇ξ(Qt)dΛt, (4.20)where Λt is a real valued proess, whih an be interpreted as the Lagrange multiplier assoia-ted with the onstraint ξ(Qt) = z (see the disretization in Setion 4.1.3). This proess an bedeomposed into two parts:
dΛt = dΛm

t + dΛf
t. (4.21)The so-alled martingale part Λm

t (whose �utuation is of order √∆t over a timestep ∆t) is
dΛm

t = −
√

2β−1
∇ξ

|∇ξ|2 (Qt) · dBt, (4.22)where · impliitly denotes the It� produt. The so-alled bounded variation part Λf
t (whose �u-tuation is of order ∆t over a timestep ∆t) is

dΛf
t =

∇ξ
|∇ξ|2 (Qt) · ∇V (Qt) dt+ β−1 ∇ξ

|∇ξ|2 (Qt) ·H(Qt) dt = f(Qt) dt, (4.23)
f being the loal mean fore de�ned above by (4.16). Thus, sine Qt is ergodi with respet to
µΣz the mean fore an be obtained as a mean over the Lagrange multiplier Λt:Proposition 4.1. The mean fore is given by:

F ′(z) = lim
T→∞

1

T

∫ T

0

dΛt = lim
T→∞

1

T

∫ T

0

dΛf
t. (4.24)Notie that the martingale part dΛm

t , whih has the largest �utuations, has zero mean. In orderto redue the variane, it is thus numerially onvenient to perform the mean over the boundedvariation part dΛf
t rather than over the whole Lagrange multiplier dΛt (see Setion 4.1.3).We refer to [66℄ for a proof of Proposition 4.1, as well as for formulae involving higher di-mensional reation oordinates. Suh ideas have been used for a long time in the framework ofHamiltonian dynamis (see [83, 320℄).The interest of Equation (4.24) is that the SDE (4.20) an be very naturally disretized asexplained in Setion 4.1.3 below. Then, the average over a disretized trajetory of the proess Λtonverges to F ′(z). This is partiularly onvenient for numerial purposes sine it does not ask forexpliitly omputing the loal fore f . For further details, we refer to [66℄ and to Setion 4.1.3. Inthe next setion, we use these ideas for the omputation of the free energy di�erene given throughthe Jarzynski equality.



122 4 Computation of free energy di�erenesNonequilibrium stohasti methods in the reation oordinate aseWe wish here to extend the Feynman-Ka formula derived in [177℄ (see Setion 4.1.1) for aparameter z whih appears only in the potential V , to the reation oordinate ase, where z labelssubmanifolds Σz (de�ned by Equation (4.8)) of the state spae. To this end, we need to makepreise the evolution of the onstraints.We onsider a C1 path z : [0, T ] → [0, 1] of values of the reation oordinate ξ, with z(0) = 0,and z(T ) = 1. Reall that the assoiated family of submanifolds of admissible on�gurations isdenoted by
Σz(t) = {q ∈ M, ξ(q) = z(t)} ,and that the assoiated Boltzmann probability measures are
dµΣz(t)

= Z−1
z(t) exp(−βV )dσΣz(t)

.We onstrut a di�usion (Qt)t∈[0,T ] so that Qt ∈ Σz(t) for all t ∈ [0, T ] and (Qt)t∈[0,T ] satis�es thefollowing properties:� Q0 ∼ µΣz(0)
,� For all t ∈ [0, T ], Qt+dt is the orthogonal projetion on Σz(t+dt) of the position obtained bythe unonstrained displaement: Qt −∇V (Qt)dt+

√
2β−1dBt.More preisely, the onsidered di�usion reads, in the Stratonovih setting:





Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt + ∇ξ(Qt) dΛext
t ,

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.

(4.25)With a view to the disretization of Qt, let us notie that Qt an be haraterized by the followingproperty:Proposition 4.2. The proess Qt solution to (4.25) is the only It� proess satisfying for somereal-valued adapted It� proess (Λt)t∈[0,T ]:




Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt + ∇ξ(Qt) dΛt,
ξ(Qt) = z(t).Moreover, the proess (Λt)t∈[0,T ] an be deomposed as

Λt = Λm
t + Λf

t + Λext
t , (4.26)with the martingale part

dΛm
t = −

√
2β−1

∇ξ
|∇ξ|2 (Qt) · dBt,the loal fore part (see (4.16) for the de�nition of f)

dΛf
t =

∇ξ
|∇ξ|2 (Qt) ·

(
∇V (Qt) dt+ β−1H(Qt)

)
dt = f(Qt) dt, (4.27)and the external foring (or swithing) term

dΛext
t =

z′(t)

|∇ξ(Qt)|2
dt.



4.1 Nonequilibrium omputation of free energy di�erenes 123The proof of Proposition 4.2 is easy and onsists in omputing dξ(Qt) by It�'s alulus andidentifying the bounded variation and the martingale parts of the stohasti proesses.The di�erene with the projeted stohasti di�erential equation (4.19) onsidered in the ther-modynami integration setting is that the out-of-equilibrium evolution of the onstraints z(t)reates a drift ∇ξ(Qt) dΛext
t along the reation oordinate. This drift an be interpreted as anexternal foring required for the swithing to take plae at a �nite rate, and must be subtratedfrom the Lagrange multiplier Λt in order to obtain a orret expression for the work W(t) involvedin the Feynman-Ka �utuation equality (see Equations (4.43) and (4.45) below). This orretionis quantitatively important when the swithing is not slow.The Feynman-Ka �utuation equalityLet us de�ne the nonequilibrium work exerted on the di�usion (4.25) by:

W(t) =

∫ t

0

f(Qs) z
′(s) ds, (4.28)where f is the loal mean fore de�ned above by (4.16). Notie that, at least formally, in thelimit of an in�nitely slow swithing from z(0) = 0 to z(T ) = 1, Formula (4.30) orresponds to thethermodynami integration formula (4.18). Formula (4.30) enables the omputation of free energydi�erenes at arbitrary rates, through a orretion onsisting in a reweighting of the nonequilibriumpaths.In pratie, the nonequilibrium work W(t) an be omputed by using the loal fore part dΛf

t(see (4.27)), as in the thermodynami integration method (see (4.24)). Thus, the formula we useto ompute W(t) is rather:
W(t) =

∫ t

0

z′(s) dΛf
s, (4.29)sine Λf

t an be obtained by a natural numerial sheme (see Setion 4.1.3), avoiding the umber-some omputations of the mean urvature vetor H in the expression of f (as already explainedabove).We an now state the generalization of the Jarzynski nonequilibrium equality to the ase whenthe swithing is parameterized by a reation oordinate.Theorem 4.1 (Feynman-Ka �utuation equality). For any test funtion ϕ and ∀t ∈ [0, T ],it holds
Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
.In partiular, we have the work �utuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (4.30)As in the alhemial ase [177℄, the proof follows from a Feynman-Ka formula (see Theorem 4.2for a proof in the general multi-dimensional ase ).Extension to the general multi-dimensional ase and proofsIn this setion, we generalize the previous results for nonequilibrium omputation of free energydi�erenes presented for a one-dimensional reation oordinate to the ase of multi-dimensionalreation oordinates.



124 4 Computation of free energy di�erenesGeometri setting and basi notation and formulae.We onsider a d-dimensional system of smooth reation oordinates ξ = (ξ1, . . . , ξd) : R3N →
Rd, non-singular on an open domain M ⊂ R3N

∀q ∈ M, range(∇ξ1(q), . . . ,∇ξd(q)) = d,and a smooth path of assoiated oordinates
z = (z1, . . . , zd) : [0, T ] → Rd.Aordingly, we de�ne for all t ∈ [0, T ] a smooth submanifold of odimension d ontained in M:

Σz(t) =
{
q ∈ R3N , ξ(q) = z(t)

}
⊂ M.In the onstraints spae Rd, oordinates are labeled by Greek letters and we use the summationonvention on repeated indies. In the on�guration spae R3N , oordinates are labeled by Latinletters and we also use the summation onvention on repeated indies. We denote by X ·Y = XiYithe salar produt of two vetor �elds of R3N , by M : N = Mi,jNi,j the ontration of two tensor�elds of R3N , and by (X ⊗ Y )i,j = XiYj the tensor produt of two vetor �elds of R3N .The d× d matrix

Gα,γ = ∇ξα · ∇ξγis the Gram matrix of the onstraints. It is symmetri and stritly positive on M. We denote by
G−1
α,γ the (α, γ) omponent of G−1, the inverse matrix of G. At eah point q ∈ M, we de�ne theorthogonal projetion operator

P⊥ = G−1
α,γ∇ξα ⊗∇ξγonto the normal spae to Σξ(q) and the orthogonal projetion operator

P = Id − P⊥onto the tangent spae to Σξ(q). The mean urvature vetor �eld of the submanifold is de�ned by:
H = −∇ ·

(
(detG)1/2G−1

α,γ∇ξγ
)

(detG)−1/2∇ξα (4.31)and satis�es:
Hi = Pj,k∇jPi,k.We reall the divergene theorem on submanifolds: for any smooth funtion φ : R3N → R3Nwith ompat support, ∫

Σz

divΣ(φ) dσΣz = −
∫

Σz

H · φdσΣz (4.32)where divΣ(φ) = Pi,j∇iφj denotes the surfae divergene, and σΣz is the indued Lebesgue mea-sure on the submanifold Σz of R3N . We will also use the o-area formula: for any smooth funtion
φ : R3N → R, ∫

R3N

φ(q)(detG(q))1/2dq =

∫

Rd

∫

Σz

φdσΣz dz. (4.33)These de�nitions and formulae are provided with more details in [66℄.Free energy and onstrained di�usions for multi-dimensional reation oordinatesAs in the one-dimensional ase, the Boltzmann-Gibbs distribution restrited on the submanifold
Σz is de�ned by:
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dµΣz = Z−1

z exp(−βV )dσΣz ,with
Zz =

∫

Σz

exp(−βV )dσΣz .The assoiated free energy is:
F (z) = −β−1 ln (Zz) .Remark 4.2 (On the de�nition of the free energy: the multi-dimensional ase). As inthe one-dimensional ase (see Remark 4.1), if the partiles initially evolve in a potential V , thelassial de�nition of the free energy is as above, but with V replaed by an e�etive potential

V + β−1 ln
(
(detG)1/2

). The omputation of the gradient of this potential in the dynamis theninvolves seond-order derivatives of ξ, whih an be approximated in pratie by �nite di�erenes(see [66℄).For any 1 ≤ α ≤ d, we now introdue the loal mean fore along∇ξα (whih generalizes (4.16)):
fα = G−1

α,γ∇ξγ ·
(
∇V + β−1H

)
. (4.34)As in the one-dimensional ase (see Equation (4.15)), we obtain the derivative of the mean foreby averaging the loal mean fore:Proposition 4.3. The derivative of the free energy F with respet to zα is given by:

∇αF (z) =

∫

Σz

fα dµΣz .Proposition 4.3 is a orollary ofLemma 4.1. For any test funtion ϕ with ompat support in M, we have:
∇α

(∫

Σz

ϕ exp(−βV )dσΣz

)
=

∫

Σz

(
G−1
α,γ∇ξγ · ∇ϕ− βfαϕ

)
exp(−βV )dσΣz .Proof. It is enough to prove the formula in the ase V = 0, up to a modi�ation of the testfuntion ϕ. For any test funtion g : R → R with ompat support, we have (using suessively anintegration by parts on R, the o-area formula (4.33), an integration by parts on R3N , and �nallyagain (4.33)):

∫

Rd

g(zα)∇α

(∫

Σz

ϕdσΣz

)
dz = −

∫

Rd

∫

Σz

g′(zα)ϕdσΣzdz,

= −
∫

R3N

g′ ◦ ξα ϕ (detG)
1/2

dq,

= −
∫

R3N

G−1
α,γ∇ξγ · ∇(g ◦ ξα) ϕ (detG)

1/2
dq,

=

∫

R3N

g ◦ ξα∇ ·
(
G−1
α,γ ∇ξγ ϕ (detG)

1/2
)
dq,

=

∫

Rd

g(zα)

∫

Σz

∇ ·
(
G−1
α,γ∇ξγ ϕ (detG)

1/2
)

(detG)
−1/2

dσΣz dz,whih gives the result using the expression (4.31) of the mean urvature vetor H .We now de�ne the onstrained di�usion (whih generalizes (4.25)):




Q0 ∼ µΣz(0)
,

dQt = −P (Qt)∇V (Qt)dt+
√

2β−1P (Qt) ◦ dBt + ∇ξα(Qt)dΛ
ext
α,t,

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt, ∀1 ≤ α ≤ d.

(4.35)



126 4 Computation of free energy di�erenesThe stohasti proess Qt an be haraterized by the following property:Proposition 4.4. The proess Qt solution to (4.35) is the only It� proess satisfying for someadapted It� proesses (Λ1,t, . . . , Λd,t)t∈[0,T ] with values in Rd:




Q0 ∼ µΣz(0)
,

dQt = −∇V (Qt)dt+
√

2β−1dBt + ∇ξα(Qt)dΛα,t,

ξ(Qt) = z(t).Moreover, the proess (Λα,t)t∈[0,T ] an be deomposed as
Λα,t = Λm

α,t + Λf
α,t + Λext

α,t,with the martingale part
dΛm

α,t = −
√

2β−1G−1
α,γ∇ξγ(Qt) · dBt,the loal fore part (see (4.34) for the de�nition of fα)

dΛf
α,t = fα(Qt)dt,and the external foring (or swithing) term

dΛext
α,t = G−1

α,γ(Qt)z
′
γ(t)dt.The proof onsists in omputing dξ(Qt) by It�'s alulus and identifying the bounded variationand the martingale parts of the stohasti proesses.The Feynman-Ka �utuation equalityTheorem 4.1 is generalized as:Theorem 4.2 (Feynman-Ka �utuation equality). Let us de�ne the nonequilibrium workexerted on the di�usion Qt solution to (4.35) by:

W(t) =

∫ t

0

fα(Qs)z
′
α(s) ds =

∫ t

0

z′α(s)dΛf
α,s.Then, we have the following �utuation equality: for any test funtion ϕ, and ∀t ∈ [0, T ],

Zz(t)

Zz(0)

∫

Σz(t)

ϕdµΣz(t)
= E

(
ϕ(Qt)e

−βW(t)
)
. (4.36)In partiular, we have the work �utuation identity: ∀t ∈ [0, T ],

∆F (z(t)) = F (z(t)) − F (z(0)) = −β−1 ln
(
E

(
e−βW(t)

))
. (4.37)Proof. For any s ∈ [0, T ] and x ∈ M, let us introdue (Qs,xt )t∈[s,T ], the stohasti proess satisfyingthe SDE (4.35), starting from x at time s:





Qs,xs = x,

dQs,xt = −P (Qs,xt )∇V (Qs,xt )dt+
√

2β−1P (Qs,xt ) ◦ dBt + ∇ξα(Qs,xt )dΛext
α,t,

dΛext
α,t = G−1

α,γ(Q
s,x
t )z′γ(t)dt, ∀1 ≤ α ≤ d.

(4.38)Notie that for any s ∈ [0, T ], there is an open neighborhood (s−, s+)×Ms of (s,Σz(s)) in R×Msuh that the di�usion (Qs,xt )t∈[s,T ] remains in M almost surely. This holds sine this proess



4.1 Nonequilibrium omputation of free energy di�erenes 127satis�es dξ(Qs,xt ) = z′(t) dt and therefore ξ(Qs,xt ) = ξ(x) + z(t) − z(s). This gives usual regularityassumptions su�ient to get a bakward semi-group (t being from now on �xed in (0, T ) and svarying in [0, t]):
u(s, x) = E

(
ϕ(Qs,xt ) exp

(
−β
∫ t

s

fα(Qs,xr )z′α(r) dr

))
,satisfying the following partial di�erential equation (PDE) on (s−, s+) ×Ms:

∂su = −Ls(u(s, .)) + βz′α(s)fαu,where Ls is the generator of the di�usion Qt solution to (4.35):
Ls = β−1P : ∇2 − P∇V · ∇ + β−1H · ∇ + z′γ(s)G

−1
α,γ∇ξα · ∇.Now, using Lemma 4.1, we have:

d

ds

∫

Σz(s)

u(s, .) exp(−βV )dσΣz(s)

=

∫

Σz(s)

(
−Ls(u(s, .)) + z′α(s)G−1

α,γ∇ξγ · ∇u(s, .)
)
exp(−βV )dσΣz(s)

,

= −
∫

Σz(s)

(
β−1P : ∇2u(s, .) − P∇V · ∇u(s, .) + β−1H · ∇u(s, .)

)
exp(−βV )dσΣz(s)

,

= −β−1

∫

Σz(s)

(
divΣ (∇u(s, .) exp(−βV )) +H · ∇u(s, .) exp(−βV )

)
dσΣz(s)

,

= 0,by the divergene theorem (4.32). Therefore
∫

Σz(t)

u(t, .) exp(−βV )dσΣz(t)
=

∫

Σz(0)

u(0, .) exp(−βV )dσΣz(0)
,whih yields

∫

Σz(t)

ϕ exp(−βV )dσΣz(t)
= Zz(0)E

(
ϕ(Qt) exp

(
−β
∫ t

0

fα(Qr)z
′
α(r) dr

))
,where Qt satis�es (4.35). This proves (4.36), and (4.37) is obtained by taking ϕ = 1. ⊓⊔4.1.3 Pratial omputation of free energy di�erenesWe present in this setion numerial strategies suited for the reation oordinate ase, thenumerial disretization of the alhemial ase being trivial.Disretization of the projeted dynamisThe main interest of the above formulae (4.18)�(4.24) and (4.29)�(4.30) is that they admitnatural time disretizations. The priniple is to use a preditor-orretor sheme for the assoiateddynamis (4.19) and (4.25), and to use the Lagrange multiplier Λt to ompute the loal meanfore f .Disretization of the projeted di�usion (equilibrium ase)For the projeted SDE (4.20) onto a submanifold Σz = {ξ(q) − z = 0}, two disretizations ofthe dynamis, extending the usual Euler-Maruyama sheme, are proposed in [66℄. These numerial



128 4 Computation of free energy di�erenesshemes for onstrained Brownian dynamis are in the spirit of the so-alled RATTLE [8℄ andSHAKE [295℄ algorithms lassial used for onstrained Hamiltonian dynamis, and also relatedwith the algorithms proposed in [6, 262,358℄.The �rst one is:
{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn+1),where ∆Λn+1 is suh that ξ(Qn+1) = z, (4.39)where ∆t is the time step and Un is a 3N -dimensional standard Gaussian random vetor. Notiethat (4.39) admits a natural variational interpretation, sine Qn+1 an be seen as the losest pointon the submanifold Σz to the predited position Qn−∇V (Qn)∆t+

√
2∆tβ−1 Un. The real ∆Λn+1is then the Lagrange multiplier assoiated with the onstraint ξ(Qn+1) = z.Another possible disretization of (4.20) is

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn),where ∆Λn+1 is suh that ξ(Qn+1) = z. (4.40)Although this sheme is not naturally assoiated with a variational priniple, it may be morepratial sine its formulation is more expliit. Notie also that we use the same notation ∆Λn forthe Lagrange multipliers for both (4.39) and (4.40) (and later for (4.41) and (4.42)), sine all theformulas we state in terms of ∆Λn are veri�ed whatever the onstrained dynamis.To solve Equation (4.39), lassial methods for optimization problems with onstraints an beused. We refer to [135℄ for a presentation of the lassial Uzawa algorithm, and to [36℄ for moreadvaned methods. Problem (4.40) an be solved using lassial methods for nonlinear problems,suh as the Newton method (see [36℄). We also refer to Chapter 7 of [205℄ where similar problemsare disussed, for the lassial RATTLE and SHAKE shemes used for Hamiltonian dynamis withonstraints.Both shemes are onsistent (the disretization error goes to 0 when the time step ∆t goes to

0) with the projeted di�usion (4.20) (see [66℄). Aordingly, ∆Λn+1 is a onsistent disretizationof ∫ tn+1

tn
dΛt and therefore, it an be proven [66℄:

lim
T→∞

lim
∆t→0

1

T

T/∆t∑

n=1

∆Λn = F ′(z)whih is the disrete ounterpart of the trajetory average (4.24). In [66℄, a variane redutiontehnique is proposed, whih onsists in extrating the bounded variation part ∆Λf
n of ∆Λn(resorting loally to reversed Brownian inrements). We give some details of an adaptation ofthis method for evolving onstraints in next setion.Disretization with evolving onstraintsWhen nonequilibrium dynamis are onsidered, the onstraint is stated as ξ(Qt) = z(t). Thereation oordinate path is �rst disretized as {z(0), . . . , z(tNT )} where NT is the number oftimesteps. For example, equal time inrements an be used, in whih ase ∆t = T

NT
and tn = n∆t(we refer to Remark 4.3 below for some re�nements). The initial onditions Q0 are sampledaording to µΣ0 . A way to do that is to subsample a long trajetory of the projeted SDE on Σ0(using the shemes (4.39) or (4.40)).The projeted SDE on evolving onstraints (4.25) is then disretized with the sheme (4.39)or (4.40), taking into aount the evolution of the onstraint:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn+1),where ∆Λn+1 is suh that ξ(Qn+1) = z(tn+1), (4.41)



4.1 Nonequilibrium omputation of free energy di�erenes 129or {
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λn+1 ∇ξ(Qn),where ∆Λn+1 is suh that ξ(Qn+1) = z(tn+1). (4.42)It remains to extrat the fore part ∆Λf

n+1 from the disretized Lagrange multiplier ∆Λn+1(onsistently with (4.26)). We propose two methods. First, this an be done by simply subtratingthe drift and the martingale part
∆Λf

n+1 = ∆Λn+1 −
z(tn+1) − z(tn)

|∇ξ(Qn)|2 +
√

2∆tβ−1
∇ξ(Qn)

|∇ξ(Qn)|2
· Un. (4.43)Another possibility in the spirit of the variane redution tehniques used in [66℄ an also be used.Consider the following oupled dynami with loally time-reversed onstraint evolution (writtenhere for the sheme (4.41)):

QR
n+1 = Qn −∇V (Qn)∆t−

√
2∆tβ−1 Un +∆ΛR

n+1 ∇ξ(QR
n+1),with ∆ΛR

n+1 suh that:
1

2
(ξ(QR

n+1) + ξ(Qn+1)) = ξ(Qn).The positionQR
n+1 is omputed asQn+1 in (4.41), but with a projetion on Σ2ξ(Qn)−ξ(Qn+1) insteadof Σz(tn+1), and using the Brownian inrement −√

∆tUn instead of √∆tUn. Notie that in aseof a onstant inrement for the onstraints, we have ξ(QR
n+1) = 2ξ(Qn)− ξ(Qn+1) = z(tn−1). Thefore part ∆Λf

n+1 is then obtained through
∆Λf

n+1 =
1

2
(∆Λn+1 +∆ΛR

n+1) (4.44)whih an be shown to be a onsistent time disretization of ∫ tn+1

tn
dΛf

t.Computation of free energy using a Feynman-Ka equalityThe onsistent disretization of Qt, and more preisely of ∫ tn+1

tn
dΛf

t, we have obtained in theprevious setion an now be used to approximate the work W(t) de�ned by (4.29) by




W0 = 0,

Wn+1 = Wn +
z(tn+1) − z(tn)

tn+1 − tn
∆Λf

n+1,
(4.45)using either the dynamis (4.41) or (4.42), and the loal fore part of the Lagrange multiplieromputed by (4.43) or (4.44). Averaging overM independent realizations (the orresponding worksbeing labeled by an upper index 1 ≤ m ≤M), an estimator of the free energy di�erene ∆F (z(T ))is, using Theorem 4.1,

∆̂F (z(T )) = −β−1 ln

(
1

M

M∑

m=1

e−βW
m
NT

)
. (4.46)The estimator ∆̂F (z(T )) onverges to ∆F (z(T )) as ∆t → 0 and M → +∞. It is lear that theestimation of ∆F (z(T )) by (4.46) is straightforward to parallelize sine the (Wm

NT
)1≤m≤M areindependent.For a �xedM < +∞, notie that, even in the limit ∆t→ 0, ∆̂F (z(T )) is a biased estimator. In-deed,

exp(−β∆̂F (z(T ))) is an unbiased estimator of exp(−β∆F (z(T ))), and therefore, using the ona-vity of ln, E(∆̂F (z(T ))) ≥ ∆F (z(T )). Reent works propose orretions to this systemati biasusing asymptoti expansions in the limit M → +∞ (see for instane [286,378℄).



130 4 Computation of free energy di�erenesRemark 4.3 (On pratial implementation). Notie that it may be useful to adaptively re�nethe time step over eah stohasti trajetories, using for example the work evolution rate (Wn −
Wn−1)n≥1 as a re�nement riterion. As notied in [286℄, it is also possible to optimize the evolutionof the onstraint z(t), for example by minimizing the variane of the results obtained for a priorishedules for the evolving onstraint on a small set of preliminary runs.The numerial sheme in the multi-dimensional aseThe adaptation of the algorithm we propose for the one-dimensional ase to the multi-dimensional ase is straightforward. Indeed, the generalizations of shemes (4.41) and (4.42) tothe multi-dimensional ase are, respetively:

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λα,n+1 ∇ξα(Qn+1),where (∆Λα,n+1)1≤α≤d is suh that ξ(Qn+1) = z(tn+1),

{
Qn+1 = Qn −∇V (Qn)∆t+

√
2∆tβ−1 Un +∆Λα,n+1 ∇ξα(Qn),where (∆Λα,n+1)1≤α≤d is suh that ξ(Qn+1) = z(tn+1).The fore part∆Λf

α,n of∆Λα,n is obtained by similar proedures as those desribed in Setion 4.1.3.For example, the generalization of (4.43) is:
∆Λf

α,n+1 = ∆Λα,n+1 −G−1
α,γ(Qn) (zγ(tn+1) − zγ(tn)) +

√
2∆tβ−1G−1

α,γ∇ξγ(Qn) · Un.The generalization of (4.44) is also straightforward.Now, the estimator ∆̂F (z(T )) of the free energy di�erene ∆F (z(T )) is given by (4.46), withthe following approximation of the work W(t):




W0 = 0,

Wn+1 = Wn +
zα(tn+1) − zα(tn)

tn+1 − tn
∆Λf

α,n+1,whih generalizes (4.45). Notie that Remark 4.3 also holds for a multi-dimensional reation o-ordinate.4.1.4 Numerial resultsWe present in this setion some illustrations of the algorithm we have desribed above toompute free energy di�erenes through nonequilibrium paths. In Setion 4.1.4, a two-dimensionaltoy potential V is used, for whih we an ompare the results with analytial pro�les. A morerealisti test ase in Setion 4.1.4 demonstrates the ability of the method to ompute free energypro�les in presene of a free energy barrier.Our aim in this setion is not to ompare the numerial e�ieny of the thermodynamiintegration method presented (or any other method) with nonequilibrium omputations, sine itis di�ult to draw general onlusions about suh omparisons. However, we ompare on a simpleexample in Setion 4.1.4, the numerial e�ieny of out-of-equilibrium omputations using a fewlong trajetories or many short trajetories, at a �xed omputational ost.A two-dimensional toy problemWe onsider the two-dimensional potential introdued in [365℄:
V (x, y) = cos(2πx)(1 + d1y) + d2y

2, (4.47)
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x axisFig. 4.1. Plot of some probability densities orresponding to the potential (4.47) for β = 1, d2 = 2π2,and d1 = 0 on the left or d1 = 10 on the right.where d1 and d2 are two positive onstants. Some orresponding Boltzmann-Gibbs probabilitydensities are depited in Figure 4.1.We want to ompute the free energy di�erene pro�le between the initial state x = x0 = −0.5and the transition state x = x1 = 0. Notie that the saddle point is (x1, y1) = (0, 0) for d1 = 0, butis inreasingly shifted toward lower values of y1 as d1 inreases. We parameterize the transitionalong the x-axis, either with the reation oordinate
ξ(x, y) =

x− x0

x1 − x0
, (4.48)or with the reation oordinate (n ≥ 2)

ηn(x, y) =
1

2n − 1

[(
1 +

x− x0

x1 − x0

)n
− 1

]
. (4.49)For these reation oordinates, the initial state (resp. the transition state) orresponds to a value ofthe reation oordinate z = 0 (resp. z = 1). The analytial expression of the free energy di�erenethat we onsider here is, for a reation oordinate ν(x, y) (suh as ξ or ηn de�ned above)

∆Fν(z) = −β−1 ln

(∫
R2 e−βV (x,y)δν(x,y)−z∫

R2 e−βV (x,y)δν(x,y)

)
,where the distribution δν(x,y)−z is de�ned in Remark 4.1 above. Notie that even though the initialstate Σ0 = {x = −0.5} and the �nal state Σ1 = {x = 0} are the same for the reation oordinates

ξ and ηn, the assoiated free energy di�erenes di�er. This is due to the fat that ∇ξ 6= ∇ηn, andtherefore δξ(x,y)−z 6= δηn(x,y)−z. More preisely,
∆Fξ(z) = − cos(2πx0) + cos(2πxξ(z)) +

(d1)
2

4d2
(cos2(2πx0) − cos2(2πxξ(z))),with

xξ(z) = x0 + z(x1 − x0),and
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∆Fηn(z) = − cos(2πx0) + cos(2πxηn(z)) +

(d1)
2

4d2
(cos2(2πx0) − cos2(2πxηn(z)))

+
n− 1

β
ln

(
1 +

xηn(z) − x0

x1 − x0

)
,with

xηn(z) = x0 + ((2n − 1)z + 1)1/n − 1)(x1 − x0).Free energy pro�les for the two reation oordinates onsidered here an then be omputedusing the disretization proposed in Setion 4.1.3. Averaging over several realizations, error esti-mates an be proposed: in partiular, the standard deviation an be omputed for all intermediatepoints z ∈ [0, 1], so that, for all values z, a on�dene interval around the empirial mean anbe proposed. We represent on Figure 4.2 the analytial pro�les, and the lower and upper boundsof the 95 % on�dene interval for M = 103 and M = 104, using here and heneforth a linearshedule: z(t) = t/T . The initial onditions are reated by subsampling a trajetory onstrainedto remain on the initial submanifold Σ0. As announed above, the pro�les obtained with ηn and ξare not exatly the same, though the general shape is preserved. These �gures also show that thevariane inreases with z. Therefore, to further test the onvergene of the method, it is enoughhere to haraterize the onvergene of the value for the end point at z = 1.
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Fig. 4.2. Free energy pro�les using the potential (4.47) with β = 1, d1 = 30 and d2 = 2π2, and thereation oordinate (4.48) on the left, or the reation oordinate (4.49) with n = 5 on the right. Analytialreferene pro�les are in dotted lines. The dashed lines (resp. the solid lines) represent the upper and lowerbound of the 95 % on�dene interval (obtained over 100 independent realizations) for nonequilibriumomputations with M = 103 replias (resp. with M = 104 replias). The swithing time is T = 1 and thetime step is ∆t = 0.005 on the left and ∆t = 0.0025 on the right.We study the onvergene of the end value ∆F (1) omputed with the out-of-equilibrium dy-namis with respet to the number of repliasM and the time step ∆t, using the reation oordi-nate (4.48) as an example. The results are presented in Table 4.1. The time step ∆t does not seemto have any notieable in�uene on the �nal result, as long as it remains in a reasonable range. Asexpeted, the error gets smaller as M inreases.In Table 4.1, we also show that, in this partiular ase, for a �xed omputational ost andprovided that the swithing time is large enough1, omputing many short trajetories is as e�ientas omputing a few longer ones (the mean and the variane are essentially unhanged). Thisonlusion also holds for the more realisti test ase presented in next setion. The omputationof many trajetories an be straightforwardly and very e�iently parallelized.
1 Of ourse, this threshold time depends on the system under study.



4.1 Nonequilibrium omputation of free energy di�erenes 133We �nally mention that we are able to exhibit the bias of the Jarzynski estimator in thispartiular ase (see Setion 4.1.3 and [378℄). We observe that the estimator ∆̂F (z(T )) is generallygreater than ∆F (z(T )). More preisely, averaging over 104 realizations, with the parameters T = 1and ∆t = 0.005, we obtain the following 95 % on�dene intervals for ∆̂F (z(T )), for various valuesof M : ∆̂F (z(T )) = 2.0576 ± 0.0059 for M = 103, ∆̂F (z(T )) = 2.0095 ± 0.0026 for M = 104, and
∆̂F (z(T )) = 2.00075± 0.0010 for M = 105. As expeted, the bias goes to zero when M → ∞.Table 4.1. Free energy di�erenes ∆F (1) obtained by nonequilibrium omputations for the rea-tion oordinate (4.48) with β = 1, d1 = 1 and d2 = 30. The results are presented as follows:
E

“
d∆F (z(T ))

” „r
Var

“
d∆F (z(T ))

”« (the estimates of these quantities are obtained by averages over100 independent runs). The exat value is ∆F (1) = 2.
∆t T M ∆̂F (z(T ))0.001 1 103 2.056 (0.274)0.0025 1 103 2.033 (0.259)0.005 1 103 2.076 (0.286)0.01 1 103 2.073 (0.278)0.005 1 103 2.076 (0.286)0.005 1 104 2.014 (0.116)0.005 1 105 2.001 (0.045)

∆t T M ∆̂F (z(T ))0.005 1 104 2.014 (0.116)0.005 10 103 1.999 (0.029)0.005 100 102 2.001 (0.025)0.005 1000 101 1.997 (0.022)
Model system for onformational hanges in�uened by solvationWe onsider a system omposed of N partiles in a periodi box of side length l, interatingthrough the purely repulsive WCA pair potential [79, 329℄:

VWCA(r) =





4ǫ

[(σ
r

)12

−
(σ
r

)6
]

+ ǫ if r ≤ r0,

0 if r > r0,where r denotes the distane between two partiles, ǫ and σ are two positive parameters and
r0 = 21/6σ. Among these partiles, two (numbered 1 and 2 in the following) are designated toform a dimer while the others are solvent partiles. Instead of the above WCA potential, theinteration potential between the two partiles of the dimer is a double-well potential

VS(r) = h

[
1 − (r − r0 − w)2

w2

]2
, (4.50)where h and w are two positive parameters. The potential VS exhibits two energy minima, oneorresponding to the ompat state where the length of the dimer is r = r0, and one orrespondingto the strethed state where this length is r = r0 + 2w. The energy barrier separating both statesis h. Figure 4.3 presents a shemati view of the system.The reation oordinate used is

ξ(q) =
|q1 − q2| − r0

2w
, (4.51)where q1 and q2 are the positions of the partiles forming the dimer. The ompat state (resp. thestrethed state) orresponds to a value of the reation oordinate z = 0 (resp. z = 1).The parameters used for the simulations are: β = 1, ǫ = 1, σ = 1, h = 1, w = 0.5 and

N = 16. We still use a linear shedule: z(t) = t/T . The side length l of the simulation box
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Fig. 4.3. Shemati views of the system, when the dimer is in the ompat state (Left), and in thestrethed state (Right). The interation of the partiles forming the dimer is desribed by a double wellpotential. All the other interations are of WCA form.takes two values: l = 1.3 (high density state) and l = 3 (low density state). Figure 4.4 presentssome plots of the free energy di�erene pro�les omputed using nonequilibrium dynamis, as wellas thermodynami integration referene pro�les. The results show that nonequilibrium estimatesare onsistent with thermodynami integration. Our experiene on this partiular example alsoshows that it is omputationally as e�ient to simulate several short nonequilibrium trajetories(provided the swithing time is not too small, say, T ∼ 1 in the units used here, so that thedi�usion proess an take plae), or one single long trajetory where the swithing is done slowly(as already observed in the previous example).The free energy pro�les highlight the relative stabilities of the two onformations of the dimer:at low densities (Figure 4.4, Left) the strethed onformation has a lower free energy and is thusexpeted to be more stable (this an indeed be veri�ed by running long moleular dynamistrajetories and monitoring the time spent in eah onformation). When the density inreases,the ompat onformation beomes more and more likely. At the density onsidered in Figure 4.4(Right), the ompat state already has a free energy slightly smaller than the strethed state.Notie also that the free energy barrier inreases as the density inreases, so that spontaneoustransitions are less and less frequent. But sine we know here a reation oordinate, we an enforethe transition. This prevents us from running and monitoring long trajetories to get su�ientstatistis to ompare relative ourrenes of both states.4.2 Equilibration of the nonequilibrium omputation of free energydi�erenesWe present in this setion a omplementary approah to the above nonequilibrium strategies inthe Jarzynski way, to prevent the degeneray of weights. It is similar to the method of [174℄, knownas "population Monte-Carlo", in whih multiple replias are used to represent the distributionunder study. A weight is assoiated to eah replia, and resamplings are performed at disrete�xed times to avoid degeneray of the weights. This methodology is widely used in the �elds ofQuantum Monte Carlo [13,289℄ or Bayesian Statistis, where it is referred to as Sequential MonteCarlo [84,85℄. Note that in the probability and statistis �elds, eah simulation is alled a 'walker'or 'partile'; we use here the name 'replia', whih is more apppropriate to the Moleular Dynamisontext.The method used here extends the population Monte-Carlo method to the time-ontinuousase. It onsists in running M replias of the system in parallel, resorting typially to a stohastidynami, and onsidering exhanges between them, aording to a ertain probabiliti rule depen-ding on the work done on eah system. This proedure an be seen as automati time ontinuous
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Fig. 4.4. Comparison of free energy di�erene pro�les using the reation oordinate (4.51), at low densities(l = 3) on the left, and high densities (l = 1.3) on the right. The double well potential VS is representedin dashed line. The referene free energy di�erene pro�le omputed with a very preise thermodynamiintegration is represented in dotted line. We used NTI = 101 thermodynami integration points (uniformlydistributed over (0, 1)) and averaged the mean fore over MTI = 107 on�gurations for eah �xed value of
z. The upper and lower bounds of the 95 % on�dene interval (obtained over 50 independent realizations)for out-of-equilibrium omputations are represented with solid lines. We used M = 1000 nonequilibriumtrajetories, a swithing time T = 1, and a timestep ∆t = 0.0005 (left) or ∆t = 0.00025 (right).resampling, and all replias have the same weight at any time of the simulation. This methoddrastially inreases the number of signi�ative transitions paths in nonequilibrium simulations.The set of all replias (or walkers) is alled an 'Interating Partile System' (IPS) [248℄, and anbe seen as a geneti algorithm where the mutation step is the stohasti dynamis onsidered.This method also allows to end up the simulation with a well distributed sample of on�gura-tions. It is therefore a way to perform simulated annealing [193℄ rigorously: the idea is to swithslowly from an initial simple sampling problem, to the target sampling problem, through a wellhosen interpolation. This allows to attain deeper loal minima, but, due to its nonequilibriumnature, is not e�ient as suh to sample aurately the target measure. We mention that varia-tions have been proposed, espeially tempering methods (see [180℄ for a review), the most famousbeing parallel tempering [225℄. These methods onsider an additional parameter desribing theon�guration system (e.g. the temperature), and sample those extended on�gurations aordingto some stohasti rules. However, these methods asks for a prior distribution of the additionalparameters (for example a temperature ladder in parallel tempering method), whih are usuallyestimated through some preliminary runs [180℄.We �rst present the IPS approximation (in the alhemial ase for simpliity, though theresults an easily be extended to the reation oordinate ase), as well as onvergene results ofthe disretized measure to the target measure. A justi�ation through a mean-�eld interpretationis then proposed in Setion 4.2.2. The numerial implementation of the IPS method is eventuallydisussed.4.2.1 The IPS and its statistial propertiesWe use here the notations and de�nitions of Setion 4.1.1. Reall that the potential of meanfore de�ned in the alhemial ase by

Fλ(t) =

∫
∂Hλ

∂λ
(x) dµλ(t)(x)is the average fore applied to the system during an in�nitely slow transformation. The �rst step isto rewrite the Feynman-Ka formula (4.7) by introduing a dihotomy when a replia is reeiving



136 4 Computation of free energy di�ereneseither exess or de�it work ompared to the potential of mean fore. To this end, we de�nerespetively the exess and de�it fore, and the exess and de�it work as
f ex
t (x) =

(
∂Hλ(t)

∂λ
−Fλ(t)

)+

(x), fde
t (x) =

(
∂Hλ(t)

∂λ
−Fλ(t)

)−
(x)

Wex
t =

∫ t

0

f ex
s (Xs)λ

′(s) ds, Wde
t =

∫ t

0

fde
s (Xs)λ

′(s) ds, (4.52)where x+ = max{x, 0} and x− = max{−x, 0} (so that x = x+ − x−). We then rewrite
µλ(t)(ϕ) =

E

(
ϕ(Xt)e

−β(Wex
t −Wde

t )
)

E
(
e−β(Wex

t −Wde
t )
) . (4.53)We now present the partile interpretation of (4.53) enabling a numerial omputation throughthe use of empirial distributions. Consider M Markovian systems desribed by variables Xk

t(1 ≤ k ≤M). We approximate the virtual fore and the Boltzmann distribution by their empirialounterparts, whih read respetively
FM
λ(t) =

1

M

M∑

k=1

∂Hλ(t)

∂λ
(Xk

t ), dµMλ(t)(x) =
1

M

M∑

k=1

δXk
t
(dx).This naturally gives from de�nitions (4.52) empirial approximations of exess/de�it fores

f
M,ex/de
t and works Wk,ex/de

t . The replias evolve aording to a branhing proess with the follo-wing stohasti rules (see [289,290℄ for further details):Interating partile system proessProess 4.1. Consider an initial distribution (X1
0 , . . . , X

M
0 ) generated from dµ0(x). Generateindependent times τk,b1 , τk,d1 from an exponential law of mean β−1 (the uppersripts b and drefer to 'birth' and 'death' respetively), and initialize the jump times T b/d as T k,d0 = 0, T k,b0 =

0.For 0 ≤ t ≤ T ,(1) Between eah jump time, evolve independently the replias Xk
t aording to the dyna-mis (4.2);(2) At random times T k,dn+1 de�ned by

Wk,ex

Tk,d
n+1

−Wk,ex

Tk,d
n

= τk,dn+1,an index l ∈ {1, . . . ,M} is piked at random, and the on�guration of the k-th repliais replaed by the on�guration of the l-th replia. A time τk,dn+2 is generated from anexponential law of mean β−1;(3) At random times T k,bn+1 de�ned by
Wk,de

Tk,d
n+1

−Wk,de

Tk,d
n

= τk,bn+1,an index l ∈ {1, . . . ,M} is piked at random, and the on�guration of the l-th repliais replaed by the on�guration of the k-th replia. A time τk,bn+2 is generated from anexponential law of mean β−1.



4.2 Equilibration of the nonequilibrium omputation of free energy di�erenes 137The seletion mehanism therefore favors replias whih are sampling values of the virtual work
Wt lower than the empirial average. The system of replias is 'self-organizing' to keep loser to aquasi-stati transformation.In [248, 289℄, several onvergene results and statistial properties of the replias distributionare proven. They are summarized in the followingProposition 4.5. Assume that (t, x) 7→ ∂Hλ(t)

∂λ (x) is a ontinuous bounded funtion on [0, T ] ×
T ∗M (or [0, T ]×M in the ase of overdamped Langevin dynamis), and that the dynamis (4.2)is ergodi. Then for any t ∈ [0, T ],(i) The estimator

exp

(
−β
∫ t

0

FM
λ(s)λ

′(s) ds

) (4.54)is an unbiased estimator of e−β(F (λ(t))−F (0));(ii) For all test funtion ϕ, the estimator ∫ ϕ dµMλ(t) is an asymptotially normal estimator of∫
ϕ dµλ(t), with bias and variane of order M−1.The proof follows from Lemma 3.20, Proposition 3.25 and Theorem 3.28 of [248℄ (see also [289,290℄ for further details). The unbiased estimation of un-normalized quantities is a very usual pro-perty in partile system methods. It omes from the fundamental property that at eah �time step�,eah replia may branh with a number of o�springs equal in average to its relative importaneweight.Let us emphasize that the sample (Xk

t )1≤k≤M is in partiular an empirial approximation ofthe anonial measure dµλ(t) for all t, and that no exponential reweighting of the works needs to bedone at the end of the simulation to obtain the free energy di�erenes. In the ase of interatingreplias, the exponential reweighting of the Jarzynski equality (4.5) is replaed by the simpleaverage
∆F̂IPS =

∫ T

0

FM
λ(t)λ

′(t) dt =
1

M

M∑

k=1

∫ T

0

∂Hλ(t)

∂λ
(Xk

t )λ′(t) dt,whih, by Proposition 4.5, is asymptotially normal with bias and variane of orderM−1, and theestimator e−β∆F̂IPS is unbiased estimator of e−β∆F . De�ning the work along one trajetory as
Wt =

∫ T

0

∂Hλ(t)

∂λ
(Xt)λ

′(t) dt,it therefore holds in the limit M → +∞,
E(Wt) = F (λ(t)) − F (0), (4.55)whih should be ompared to (4.5). Notie however that the notion of a single trajetory is onlyformal and has no meaning sine all trajetories interat ontinuously. The above equality hasonly a pedagogial purpose.4.2.2 Consisteny through a mean-�eld limitIn order to prove the onsisteny of the IPS approximation, we onsider the ideal setting wherethe number of replias goes to in�nity (M → +∞). This point of view is equivalent to a mean-�eldor M Kean interpretation of the IPS (denoted by the supersript 'mf'). In this limit, the behaviorof any single replia, denoted by Xmf
t , is then independent from any �nite number of other ones.We shall onsider the mean �eld distribution



138 4 Computation of free energy di�erenesLaw(Xmf
t ) = dµmft = µmf

t (x)dx,and the mean-�eld fore
Fmf
t =

∫
∂Hλ(t)

∂λ
dµmf

t .The assoiated mean �eld exess/de�it fore f
mf,ex/de
t and works Wmf,ex/de

t are de�ned asin (4.52). In view of Proess 4.1, the stohasti proess Xmf
t is a jump-di�usion proess whihevolves aording to the following stohasti rules:Mean-field jump-diffusion proessProess 4.2. Generate Xmf

0 from dµ0(x). Generate idependent loks (τbn, τ
d
n)n≥1 from anexponential law of mean β−1, and initialize the jump times T b/d as T d0 = 0, T b0 = 0.For 0 ≤ t ≤ T ,(1) Between eah jump time, t 7→ Xmf

t evolves aording to the dynamis (4.2);(2) At random times T dn+1 de�ned by
Wmf,ex

Td
n+1

−Wmf,ex
Td

n
= τdn+1,the proess jumps to a on�guration x, hosen aording to the probability measure

dµmf
Td

n+1
(x);(3) At random times T bn+1 de�ned by

E(Wmf,de
t )|t=T b

n+1
− E(Wmf,de

t )|t=T b
n

= τbn+1,the proess jumps to a on�guration x, hosen aording to the probability measureproportional to fmf,de

T b
n+1

(x)dµλ(T b
n+1)(x).Remark 4.4. Note that, in the treatment of the de�it work, we take in Proess 4.2 the point ofview of the jumping replia; whereas in Proess 4.1, we take the point of view of the attratingreplia whih indues a branhing.From the above probabilisti desription, we an derive the Markov generator of the mean-�eldproess, given by the sum of a di�usion and a jump generator:
Lmf
t = Lλ(t) + Jt,µmf

t
,where the jump generator Jt,µmf

t
is de�ned as

Jt,µmf
t

(ϕ)(x) = βλ′(t)

∫
(ϕ(y) − ϕ(x))(fmf,ex

t (x) + fmf,de
t (y))dµmf

t (y).A straightforward integration gives the fundamental balane identity of the jump generator:
J∗
t,µmf

t
(µmft ) = β

(
Fmf
t − ∂Hλ(t)

∂λ

)
λ′(t)µmftwhih implies, by forward Kolmogorov,

∂tµ
mf
t = L∗

λ(t)(µ
mf
t ) + β

(
Fmf
t − ∂Hλ(t)

∂λ

)
λ′(t)µmf

t
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∂t

(
µmf
t e−β

R
t
0
Fmf

s ds
)

= L∗
λ(t)

(
µmf
t e−β

R
t
0
Fmf

s ds
)
− β

∂Hλ(t)

∂λ
λ′(t)µmf

t e−β
R

t
0
Fmf

s ds.The latter is exatly the forward evolution equation of the Feynamn-Ka kernel pw0,t de�ned in (4.6),and thus ∫ pw0,t(x, .)dµ0(x) = µmft e−β
R

t
0
Fmf

s ds. Using (4.7), this gives the identities:
µmf
t = µλ(t), Fmf

t = Fλ(t), f
mf,ex/de
t = f

ex/de
λ(t) .and proves the onsisteny of the IPS approximation sheme.4.2.3 Numerial implementationIn the previous setion, we disretized the measure by onsidering an empirial approxima-tion. For a numerial implementation to be tratable, it remains to disretize the time evolution.Notie already that the IPS method indues no extra omputation of the fores, and is thereforeunexpensive to implement. However, although the IPS an be parallelized, the proessors have toexhange informations at the end of eah time step, whih an slow down the simulation.For the disretization of the dynamis, we refer to the orresponding setions in Chapter 3. Itonly remains to preise the disretization of the seletion operation. We onsider for example thefollowing disretization of the fore exerted on the k-th replia on the time interval [i∆t, (i+1)∆t]:

∂Hk,∆t
λi+1/2

∂λ
=

1

2

(
∂Hλ(i∆t)

∂λ
(xi,k) +

∂Hλ((i+1)∆t)

∂λ
(xi+1,k)

)
.The mean fore is then approximated by

FM,∆t
λi+1/2

=
1

M

M∑

k=1

∂Hk,∆t
λi+1/2

∂λ
.To get a time diretization of the IPS, Proess 4.1 is mimiked using the following rules:� the time integrals are hanged into sums;� the seletion times are de�ned as the �rst disrete times exeeding the exponential loks

τb/d.Further details about the numerial implementation an be found in [291℄. Note that one an �ndmore elaborate methods of disretization of the IPS (see [290℄), but this one seems to be su�ientin view of the intrinsi errors introdued by the disretization of the dynamis.4.2.4 Appliations of the IPS methodComputation of anonial averagesThe most obvious appliation of the IPS method is the omputation of phase-spae integrals,sine an unweighted sample of all Boltzmann distributions (µλ(t))t∈[0,T ] is generated. The sampleobtained an of ourse be improved by some additional sampling proess (aording to a dynamisleaving the target anonial measure invariant). This will deorrelate the replias and may inreasethe quality of the sample.We onsider for example a pentane moleule, and a ooling proess from β = 1 to β = 2, inthe ase when the Lennard-Jones interations involve only extremal atoms in the hain, so that
ǫCH3-CH3 = 0.29 and ǫCH3-CH2 = 0 (see Setion 3.4.1 for more preisions on the model). Thesimulations are done as follows. We �rst generate an initial distribution of on�gurations from



140 4 Computation of free energy di�erenesthe anonial measure at inverse temperature β = 1 using a lassial rejetion method so thatno initial bias is introdued. We then �rst perform a bare simulated annealing from β = 1 to
β = 2, using a Langevin dynamis. We then ompare the resulting empirial distribution for thedihedral angles with the one arising from an IPS simulation. Figure 4.5 presents the results for
M = 10, 000, ∆t = 0.01 and T = 1, with a linear sheme λ(t) = t/T .

Fig. 4.5. Empirial probability distribution of the dihedral angles (φ1, φ2) at β = 2 of the pentanemoleule generated from a sample at β = 1, using simulated annealing (Left), and IPS (Right), withsample size M = 10, 000. The referene distribution is drawn in Figure 3.1 (Right).As an be seen in Figure 4.5, the distribution generated with IPS is muh loser to the referenedistribution than the distribution generated with simulated annealing. Of ourse, as the time T isinreased, the di�erene between both methods is redued. However, this simple appliation showsthe interest of IPS for omputing distributions at low temperature starting from distributions ata higher temperature, even if the driving sheme is quite fast. This is indeed almost always thease in pratie when there are several important metastable states.Initial guesses for path samplingThe problem of free energy estimation is deeply linked with the problem of sampling meaningfultransition paths (see also Setion 4.3). In the IPS method, one an assoiate to eah replia Xk
t agenealogial ontinuous path (Xk,gen

s )s∈[0,t]. The latter is onstruted reursively as follows for areplia k (for 0 ≤ t ≤ T ):� at eah time t, set Xk,gen
t = Xk

t ;� at eah random time Tn when the replia jumps and adopts a new on�guration (say ofreplia l), set (Xk,gen
s )[0,Tn] = (X l,gen

s )[0,Tn].This path represents the anestor line of the replia, and is omposed of the past paths seleted fortheir low work values. For the study of the set of genealogial paths, see [247℄ for a disussion in thedisrete time ase. However, let us mention that for a given t ∈ [0, T ], the set of genealogial pathsis sampled, in the limit M → ∞, aording to the law of the non-equilibrium paths (Xs)s∈[0,t]weighted by the fator e−βWt (with statistial properties analogous to those of proposition 4.5).These paths are thus typial among non-equilibrium dynamis of those with non-degenerate work.Therefore, they might be fruitfully used as non-trivial initial onditions for more speialized pathsampling tehniques (as e.g. [374℄).



4.2 Equilibration of the nonequilibrium omputation of free energy di�erenes 141A toy example of exploration abilitiesConsider the following family of Hamiltonians (Hλ)λ∈[0,1]:
Hλ(x) =

x2

2
+ λQ1(x) +

λ2

2
Q2(x) +

λ3

6
Q3(x) +

λ4

24
Q4(x) (4.56)with

Q1(x) =
−1

8x2 + 1
, Q2(x) =

−4

8(x− 1)2 + 1
,

Q3(x) =
−18

32(x− 3/2)2 + 1
, Q4(x) =

−84

64(x− 7/4)2 + 1
.Some of those funtions are plotted in Figure 4.6. This toy one-dimensional model is reminisentof the typial di�ulties enountered when µ0 is very di�erent from µ1. Notie indeed that severaltransitional metastable states (denoted by A and B in Figure 4.6) our in the anonial distri-bution when going from λ = 0 to λ = 1. The probability of presene in the basins of attration ofthe main stable states of H1 (C and D in Figure 4.6) is only e�etive when λ is lose to 1.
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Fig. 4.6. Plot of some Hamiltonian funtions, as de�ned by (4.56).Simulations were performed at β = 13 with the overdamped Langevin dynamis, and the aboveHamiltonian family (4.56). The number of replias was M = 1000, the time step ∆t = 0.003, and
λ is linear: λ(t) = t/T . Figure 4.7 presents the distribution of replias during a slow out ofequilibrium plain dynami: T = 30. Figure 4.8 presents the distribution of replias during a fasterdynamis with interation: T = 15.When performing a plain out of equilibrium dynamis (even 'slow') from λ = 0 to λ = 1,almost all replias are trapped by the energy barrier of these transitional metastable states (seeFigure 4.7). In the end, a very small (almost null) proportion of replias have performed interesting
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Fig. 4.7. Empirial densities (in dots) obtained using independant replias.
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Fig. 4.8. Empirial densities (in dots) obtained using interating replias.paths assoiated with low values of virtual workW . When using (4.7) to ompute thermodynamialquantities, these replias bear almost all the weight of the degenerate sample, in view of theexponential weighting. The quality of the result therefore depends ruially on these rare values.On the ontrary, in the interating version, the replias an perform jumps in the on�gurationspae thanks to the seletion mehanism, and go from one metastable basin to another. In ourexample, as new transition states appear, only few lever replias are neessary to attrat theothers in good areas (see Figure 4.8). In the end, all replias have the same weight, and the sampleis not degenerate. Notie also that the �nal empirial distribution is fairly lose to the theoretialone.We have also made a numerial estimation of the error of the free energy estimation, with 40realizations of the above simulation. The results are presented in Table 4.2, and show an importantredution of standard deviation and bias up to a fator 2 when using the IPS method.Table 4.2. Error in free energy estimation.Method Bias VarianePlain +0.25 0.19Interating +0.15 0.10Appliation to the omputation of free energy di�erenesOur numerial omparisons using (4.55) often turned out to give similar free energy estimationsfor the IPS method and the standard Jarzynski method. However, we have mostly onsidered the



4.2 Equilibration of the nonequilibrium omputation of free energy di�erenes 143issue of pure energeti barriers, where the di�ulty of sampling omes from overoming a singlehigh barrier. The observed numerial equivalene may be explained by the fat that the seletionmehanism in the IPS method does not really help to explore those regions of high potential energy.When the sampling di�ulties also ome from barriers of more entropi nature (e.g. a su-ession of very many transition states separated by low energy barriers), the IPS may improvethe estimation. Indeed, the seletion mehanism helps keeping a statistial amount of replia inthe areas of high probability with respet to the loal Boltzmann distribution µλ throughout theswithing proess (see the numerial example in testing the explotation ability). This relaxationproperty may be ruial to ensure at eah time a meaningful exploration ability.Gradual Widom insertionWe present here an appliation to the omputation of the hemial potential of a soft sphere�uid. This example was onsidered in [156,261℄ for example. We onsider a two-dimensional (2D)�uid of volume |Ω|, simulated with periodi boundary onditions, and formed of N partilesinterating via a pairwise potential V . The hemial potential is de�ned, in the NVT ensemble, as
µ =

∂F

∂N
,where F is the free-energy of the system. Atually, the kineti part of the partition funtion Zan be straightforwardly omputed, and aounts for the ideal gas ontribution µid. In the large

N limit, the hemial potential an be rewritten as [113℄
µ = µid + µex,with

µid = −β−1 ln

( |Ω|
(N + 1)Λ3

)
,where Λ is the �thermal de Broglie wavelength� Λ = h(2πmβ−1)−1/2 (with h Plank's onstant).The exess part µex is

µex = −β−1 ln

(∫
ΩN+1 exp(−βV (qN+1)) dqN+1

|Ω|
∫
Ω

exp(−βV (qN )) dqN

)
,where V (qN ) is the potential energy of a �uid omposed of N partiles. We restrit ourselves topairwise interations, with an interation potential Φ. Then, V (qN ) =
∑

1≤i<j≤N Φ(|qi − qj |).Setting π(qN ) = Z−1 exp(−βV (qN )) (with Z =
∫
ΩN exp[−βV (qN )] dqN ) and ∆V (qN , q) =

V (qN+1) − V (qN ) with qN+1 = (qN , q), it follows
µex = −β−1 ln

(
1

|Ω|

∫

Ω

e−β∆V (q,qN )dπ(qN ) dq

)
. (4.57)The formula (4.57) an be used to ompute the value of hemial potential using stohasti methodssuh as the free energy perturbation (FEP) method [380℄. In this ase, we �rst generate a sampleof on�gurations of the system aording to π, and then evaluate the integration in the remaining

q variable by drawing positions q of the remaining variable uniformly in Ω.Another possibility is to use fast growth methods, resorting to the following parametrization
Hλ(q

N+1, pN+1) =

N+1∑

i=1

p2
i

2m
+ Vλ(q

N+1) =

N+1∑

i=1

p2
i

2m
+ V (qN ) + λ∆V (qN , q).



144 4 Computation of free energy di�erenesIn this ase, the interations of the remaining partile with the N �rst ones are progressivelyturned on.As in [156,261℄, we use a smoothed Lennard-Jones potential in order to avoid the singularity atthe origin (Let us however note that, one the partile is inserted, it is still possible to hange allthe potentials to Lennard-Jones potentials, and ompute the orreponding free-energy di�erene).The Lennard Jones potential reads here
ΦLJ(r) = 2ǫ

(
1

2

(σ
r

)12

−
(σ
r

)6
)
,and the modi�ed potential is

Φ(r) =




a− br2, 0 ≤ r ≤ 0.8 σ,

ΦLJ(r) + c(r − rc) − d, 0.8 σ ≤ r ≤ rc,

0, r ≥ rc.The values a, b, c are hosen so that the potential is C1. The distane rc is a presribed ut-o�radius. We onsider the insertion of a partile in a 2D �uid of 25 partiles, at a density ρσ3 = 0.8,with rc = 2.5 σ, βǫ = 1, ∆t = 0.0005, and a shedule λ(t) = t/T where T is the transition time.The results are presented in Table 4.3, for di�erent transitions times, but at a �xed omputationalost, sine MT is onstant. Some work distributions are also depited in Figure 4.9. A referenevalue was omputed using FEP, with 108 insertions, done by running M = 103 independentLangevins dynamis for the system omposed of N partiles, for a time tFEP = 50 (after an initialthermalization time to deorrelate the systems), and inserting one partile at random after eahtime-step. The referene value obtained is µex = 1.32 kBT (±0.01 kBT ).Table 4.3. Free energy estimation for one realization of eah method, depending on the swithing time Tand the number of replias M used, keeping MT onstant. The results are averaged over 10 realizations,and are presented under the form < µ > (
p

Var(µ)). The referene value obtained through FEP is
µex = 1.32 kBT (±0.01 kBT ). Notie that the results are quite omparable.Method M = 105 M = 5 × 104 M = 2 × 104 M = 104

T = 1 T = 2 T = 5 T = 10Jarzynski 1.31 (0.015) 1.33 (0.017) 1.32 (0.023) 1.32 (0.038)IPS 1.37 (0.025) 1.35 (0.040) 1.33 (0.033) 1.32 (0.037)As an be seen from the results in Table 4.3, the IPS algorithm has a omparable auray toJarzynski's estimates provided the swithing time is long enough. However, the work distributionis very di�erent, and has a stable gaussian shape for all swithing rates onsidered, whereas thework distribution obtained through the fast growth method are muh wider (see in partiularFigure 4.9, Left), so that the relevant part of the work distribution (the lower tail) is only of smallrelative importane.4.3 Path sampling tehniquesThe Transition Path Sampling (TPS) formalism, �rst proposed in [272℄ and further developpedin [80℄ (see also [34,81℄ for extensive reviews), is a strategy to sample only those paths that lead toa transition between metastable states. It also gives some information on the transition kinetis,suh as the rate onstant as a funtion of time or the ativation energies [78℄. Reent pratialand theoretial developments (suh as Transition Interfae Sampling [355,356℄) are still aiming at
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Fig. 4.9. Left: Comparison of the work distribution for T = 1. Right: Comparison of the work distributionsfor T = 10. The IPS results appear in darker olors. The target value is 1.32 kBT . Notie that the IPSwork distribution is Gaussian with low variane even for the fast swithing simulation.inreasing the power of the method. State of the art appliations of path sampling, suh as [189℄,now involve as muh as 3, 000 atoms with paths about 3 ns long.Reently, relying on the Jarzynski formula [186, 187℄ (see also Setion 4.1), path samplingtehniques have also been used to ompute free energy di�erenes more e�iently [261, 331, 374℄by preisely enhaning the paths that have the larger weights (whih orrespond to the unlikelylower work values). More preisely,
e−β∆F =

∫
e−βW(x) dπL(x)
∫

dπL(x)

,where dπL is a measure on a disrete path of length L, and W(x) is the work along a given path x.In the ase of the overdamped Langevin dynamis (3.38) with λ(t) = t/(L∆t), the probability toobserve the path x = (q0, q∆t, . . . , qL∆t) is
dπL(x) = Z−1

L e−βV0(q0)
L∏

i=1

exp

(
− β

4∆t

∣∣q(i+1)∆t − qi∆t −∆t∇Vi/L(qi∆t)
∣∣2
)
dx,and the work is approximated by

W∆t(x) =
1

L

L∑

i=1

∂Vλ
∂λ

∣∣∣∣
λ=i/L

(qi∆t).Importane sampling tehniques an then be used, suh as rewriting
e−β∆F =

∫
e−βW(x)/2 dΠL(x)

∫
eβW(x)/2 dΠL(x)

,where the paths are sampled aording to the modi�ed measure dΠL(x) = e−βW(x)/2dπL(x), whihenhanes the paths with lower work values. Methods to sample paths an be found in [34,81,325℄.Many path sampling studies (espeially TPS studies) have used deterministi dynamis (Pathsampling in the NVE ensemble has already been thoroughly studied, see [81℄ for a review). However,path sampling with stohasti dynamis is of great interest for nonequilibrium simulations [74℄.



146 4 Computation of free energy di�erenesBesides, some models are stohasti by nature (see e.g [5℄ where the authors onsider a modelsystem of protein pulling in impliit solvent, and a hemial reation simulated with kineti MonteCarlo). Finally, we believe that there is room for improvement in the path sampling tehniquesfor stohasti dynamis. We therefore restrit ourselves to the stohasti setting in this setion.To this date, the usual equilibrium sampling of paths with stohasti dynamis is done eitherwith the usual shooting dynamis inspired from the orresponding algorithm for deterministipaths [81℄; or with the so-alled "noise history" algorithm introdued in [74℄, whih relies on thedesription of paths as a starting point and the sequene of random numbers used to generate thetrajetory. It is one of our aims here to relate both strategies and generalize them by introduinga new way to propose paths: namely by generating random numbers orrelated with the onesused to generate the previous path. When the orrelation is zero, the usual shooting dynamis isreovered. When the orrelation is one everywhere exept for some index along the path where it iszero, the noise-history algorithm is reovered. This generalization may be useful for example whenthe dynamis are too di�usive (Langevin dynamis in the high frition limit) sine the shootingdynamis are ine�ient in this limit; or to enhane the deorrelation of the paths generated usingthe noise history algorithm.We also onsider nonequilibrium sampling of paths, using some swithing dynamis onpaths [122℄, inspired from the Jarzynski out-of-equilibrium swithing in phase-spae [186, 187℄.This swithing an be performed whatever the underlying dynamis on paths. It an be used totransform a sample of unonstrained paths to reative paths (ending up in some given region).This approah was already followed in [122℄, and allows to ompute rate onstants. However, the�nal sample of paths is very degenerate, and annot be used as a reliable equilibrium sample ofreative paths. In the same vein, one ould imagine doing simulated annealing on paths (simulatedtempering on paths has already been investigated in [363℄), in order to obtain typial transitionpaths at temperatures where diret sampling is not feasible. However, unless the annealing proessis very slow, the �nal sample is usually not orretly distributed. We therefore also present theappliation to path sampling of the IPS birth/death proess of Setion 4.2. The orrespondingreequilibration is of paramount importane for the end sample to be distributed aording to theanonial measure on paths. Besides, sine the sample of paths follows the anonial distributionat all times, the properties of interest an be omputed in a single simulation for a whole range ofvalues. For example, the rate onstant ould be obtained for a whole range of temperatures, whihallows to ompute the ativation energy following the method presented in [78℄.This setion is organized as follows. We �rst present the path ensemble in Setion 4.3.1, and turnto equilibrium sampling of paths in Setion 4.3.2. We introdue in partiular in Setion 4.3.2 the"brownian tube" proposal funtion whih generalizes the previous algorithms for path samplingwith stohasti dynamis, and ompare this new proposal funtions to the previous ones usingsome two-level sampling indiators. Finally, we present in Setion 4.3.3 the swithing dynamison paths, with the IPS extension enabling a reequilibration of the paths distribution at all times,even when the swithing is done at a �nite rate.4.3.1 The path ensemble with stohasti dynamisThe anonial measure on disretized pathsWe onsider a system of N partiles, with mass matrixM = Diag(m1, . . . ,mN ), desribed by aon�guration variable q = (q1, . . . , qN ), and a momentum variable p = (p1, . . . , pN ). The dimensionof the spae is denoted by d, so that qi, pi ∈ Rd for all 1 ≤ i ≤ N . We onsider stohasti dynamisof the form
dXt = b(Xt) dt+ΣdWt, (4.58)



4.3 Path sampling tehniques 147where the variable Xt represents either the on�gurational part qt, or the full phase spae variables
(qt, pt). The funtion b is the fore �eld, the matrix Σ is the magnitude of the random foring,and Wt is a standard Brownian motion (the dimension of Wt depending on the dynamis used).We restrit ourselves in this study to the most famous stohasti dynamis used in pratie,namely the Langevin dynamis

{
dqt = M−1 pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,
(4.59)where Wt denotes a standard dN -dimensional Brownian motion, and with the �utuation-dissipation relation σ2 = 2γ/β. In this ase, the variable x = (q, p) desribes the system andthe energy is given by the Hamiltonian E(x) = H(q, p) = V (q) + 1

2p
TM−1p. Some studies (seee.g. [374℄) however resort to the overdamped Langevin dynamis

dqt = −∇V (qt) dt+

√
2

β
dWt,in whih ase x = q and E(x) = V (q). The ideas presented in the sequel an of ourse bestraightforwardly extended to this ase.In pratie, the dynamis have to be disretized. Considering a time step ∆t and a trajetorylength T = L∆t, a disrete trajetory is then de�ned through the sequene

x = (x0, . . . , xL).Its weight is
π(x) = Z−1

L ρ(x0)

L−1∏

i=0

p(xi, xi+1), (4.60)where ρ(x0) = Z−1
0 e−βE(x0) is the Boltzmann weight of the initial on�guration, p(xi, xi+1) is theprobability that the system is in the state xi+1 onditionally that it starts from xi, and ZL is anormalization onstant. This onditional probability depends on the disretization of the dynamisused.Denoting by 1A(x),1B(x) the indiator funtions of some sets A,B de�ning respetively theinitial and the �nal states, the probability of a given reative path between the sets A and B isthen

πAB(x) = Z−1
AB1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1)1B(xL). (4.61)Transition Path Sampling [80,81℄ aims at sampling the measure2 πAB, using in partiular Monte-Carlo moves of Metropolis-Hastings type.Disretization of the dynamisWe present here a possible disretization of the Langevin dynamis, and the orrespondingtransition probability p(xi, xi+1). This disretization, alled �Langevin Impulse� [310℄, relies on anoperator splitting tehnique, and is more appealing from a theoretial viewpoint than previousdisretizations (suh as the BBK algorithm [45℄, or shemes proposed in [4℄). For partiles of equalmasses (up to a resaling of time, M = Id; the extension to the general ase is straightforward),the numerial sheme we use here reads [310℄:
2 Notie that the measure πAB ≡ πL,∆t

AB depends in fat expliitely on the length of the paths, and ofthe time steps used in pratie. See [147℄ for a ontinuous formulation using SPDEs. In this ase, themeasure on paths is formulated at a ontinuous level.



148 4 Computation of free energy di�erenes




pi+1/2 = pi −
∆t

2
∇V (qi),

qi+1 = qi + c1 pi+1/2 + U1,i,

pi+1 = c0 pi+1/2 −
∆t

2
∇V (qi+1) + U2,i,

(4.62)with
c0 = exp(−γ∆t), c1 =

1 − exp(−γ∆t)
γ

.The entered gaussian random variables (U1,i, U2,i) with Uk,i = (u1
k,i, . . . , u

dN
k,i ) are suh that

E
[
(ul1,i)

2
]

= σ2
1 , E

[
(ul2,i)

2
]

= σ2
2 , E

[
ul1,i · ul2,i

]
= c12σ1σ2,with

σ2
1 =

∆t

βγ

(
2 − 3 − 4e−γ∆t + e−2γ∆t

γ∆t

)
, σ2

2 =
1

β

(
1 − e−2γ∆t

)
, c12σ1σ2 =

1

βγ

(
1 − e−γ∆t

)2
.In pratie, the random vetors (U1,i, U2,i) are omputed from standard gaussian random vetors

(G1,i, G2,i) with Gk,i = (g1
k,i, . . . , g

dN
k,i ):

ul1,i = σ1 g
l
1,i, ul2,i = σ2

(
c12 g

l
1,i +

√
1 − c212 g

l
2,i

)
. (4.63)We will always denote by G standard gaussian random vetors in the sequel, whereas the notation

U refers to non-standard gaussian random vetors.Denoting by
d1 ≡ d1((qi+1, pi+1), (qi, pi)) =

∣∣∣∣qi+1 − qi − c1 pi + c1
∆t

2
∇V (qi)

∣∣∣∣ ,

d2 ≡ d2((qi+1, pi+1), (qi, pi)) =

∣∣∣∣pi+1 − c0 pi +
∆t

2
(c0∇V (qi) + V (qi+1))

∣∣∣∣ ,the onditional probability p((qi+1, pi+1), (qi, pi)) to be in the state xi+1 = (qi+1, pi+1) startingfrom xi = (qi, pi) reads
p(xi+1, xi) = Z−1 exp

[
− 1

2(1 − c212)

((
d1

σ1

)2

+

(
d2

σ2

)2

− 2c12

(
d1

σ1

)(
d2

σ2

))] (4.64)where the normalization onstant is Z =
(
2πσ1σ2

√
1 − c212

)−dN .4.3.2 Equilibrium sampling of the path ensembleThe most popular way to sample paths is to resort to a Metropolis-Hastings sheme [153,238℄.Other approahes may be onsidered in some ases , see [81℄ for a review of alternative approahes.Those approahes however require some fore evaluation (see e.g. [80℄ for a Langevin dynamisin phase spae in the ase of a toy two-dimensional problem). But the fore exerted on a path isproportional to ∇(lnπ), and is di�ult to ompute in general sine it requires the evaluation ofseond derivatives of the potential in onventional phase spae.We �rst preise some spei�ties of the Metropolis-Hastings algorithm, espeially when samplingreative paths. We then reall a usual tehnique to propose paths in Setion 4.3.2, and generalizeit in Setion 4.3.2. We �nally propose some benhmarks to ompare the e�ienies of all theseproposal funtions.



4.3 Path sampling tehniques 149Metropolis-Hastings sampling tehniques for path samplingFor a general introdution to the Metropolis-Hastings sheme, we refer to Setion 3.1.3. In thease of reative paths, a study of the aeptane rate asks to deompose the aeptane/rejetionproedure in two suessive steps: (i) the proposition of a path starting from A and going to B;(ii) the aeptane or rejetion of suh a path aording to the Metropolis-Hastings sheme. Thedi�ult step is the �rst one, sine paths bridging A and B are only a (small) subset of the wholepath spae. In partiular, di�usive dynamis suh as the overdamped Langevin dynamis areoften not onvenient to propose bridging paths; the situtation is however better for dynamis withsome inertia, suh as the Langevin dynamis. When the paths are onstruted using deterministidynamis (NVE ase), some studies have shown that the optimal aeptane rate is about 40 %for the ases under onsideration [81℄.For path sampling with stohasti dynamis, the "shooting" proposal funtion is lassiallyused [81℄. However, even for moderate values of the frition oe�ient γ in the Langevin dynamis,this proposal funtion may have low aeptane rates, espeially if the dimension of the system ishigh or/and the barriers to ross are large. An alternative way of proposing paths, relying on theso-alled �noise history� of the paths [74℄ (i.e. the sequene of random numbers used to generatethe trajetory from a given starting point) is to hange only one of the random numbers used andto keep the others. In this ase, a high aeptane rate is expeted, but the paths generated maybe very orrelated.A natural generalization of both approahes is to rely on the ontinuity of the dynamis withrespet to the random noise foring, and to propose a new trajetory by generating new randomnumbers orrelated with the previous one. We all this approah the �brownian tube� proposal.In this ase, an arbitrary aeptane rate an be reahed, and there is room for optimizing theparameters in order to really tune the e�ieny of the sampling.The shooting proposal funtionThe aeptane rate of the Metropolis-Hastings algorithm is
r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
.The shooting tehnique desribed in [81, Setion 3.1.5℄ onsists in the three following steps, startingfrom a path xn: Shooting algorithm for path samplingAlgorithm 4.1. Starting from some initial path x0, and for n ≥ 0,(1) selet an index 0 ≤ k ≤ L aording to disrete probabilities (wi)0≤i≤L (for examplea uniform probability distribution an be onsidered, unless one wants to inrease trialmoves starting from ertain regions, for example the assumed transition region);(2) generate a new path (yk+1, . . . , yL) forward in time, using the stohasti dynamis (4.59),with a new set of independently and identially distributed (i.i.d.) gaussian randomvetors (Un+1

i )k+1≤j≤L−1;(3) generate a new path (yk−1, . . . , y0) bakward in time, using a disretized "bakward"stohasti dynamis orreponding to (4.59), with a new set of i.i.d. gaussian randomvetors (U
n+1

i )0≤j≤k−1;(4) set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn.



150 4 Computation of free energy di�erenesIt remains however to preise how the �bakward� part of the trajetory is omputed in Step (3),whih determines the onditional probability p̄(yj+1, yj) to go to yj from yj+1 in a bakward man-ner. The proposition density P(x, ·) is then also determined. Indeed, The probability of generatinga path y = (y0, . . . , yL) from x, shooting forward and bakward from the k-th index, is
P(x, y) = wk

k−1∏

j=0

p̄(yj+1, yj)

L∏

j=k+1

p(yj−1, yj). (4.65)Notie that the previous path x is present only through the term yk = xk. It then follows
r(x, y) = min (1,1A(y0)1B(yL)cexact(x, y)) ,with

cexact(x, y) =
ρ(y0)

ρ(x0)

k−1∏

j=0

p(yj , yj+1)

p̄(yj+1, yj)

p̄(xj+1, xj)

p(xj , xj+1)
. (4.66)It is lear that, for reasonable disretizations, P 2(x, y) > 0 for all paths x, y of positive probability(under mild assumptions on the potential) so that the orreponding Markov hain is irreduible.Sine the measure (4.61) is left invariant by the dynamis (this is a lassial property of Metropolis-Hastings sheme), the orresponding Markov hain is ergodi [240℄. Notie also that it is enough toonsider only the forward or the bakward integration steps for the ergodiity to hold, as long asboth have a positive probability to our (and that the possible asymmetry in the orrespondingprobabilities is aounted for).Bakward integration of the trajetoryThere are two ways to generate proposal paths bakward in time (whih are preised in spei�ases in the remainder of this setion), using either(i) a time reversal (linked to some detailed balane property): The forward dynamis are usedto generate the points yi from yi+1 in a time-reversed manner. This means that variablesodd with respet to time reversal (suh as momenta) are inverted, and variables even withrespet to time reversal (suh as positions) are kept onstant. Denoting by S the reversaloperator, Syi = yi = qi for overdamped Langevin dynamis, and Syi = (qi,−pi) when

yi = (qi, pi) for Langevin dynamis. The usual one-step integrator Φ∆t is then onsideredto integrate the orresponding trajetory, using S2 = Id:
yi = (S ◦ Φ∆t ◦ S)yi+1The time-reversed onditional probability p̄TR(yi+1, yi) to go from yi to yi+1 is then

p̄TR(yi+1, yi) = p(Syi+1,Syi).The detailed balane assumption reads
ρ(yi) p(yi, yi+1) = ρ(yi+1) p(Syi+1,Syi).When this ondition is met with a good preision, some anellations our in the expres-sion (4.66) of the aeptane rate [81℄. In this ase, the aeptane rate

cexact(x, y) ≃ cTR(x, y) =
ρ(yi)

ρ(xi)
. (4.67)In the ase when yi = xi (whih is often the ase in pratie for path sampling on sto-hasti paths), cTR(x, y) = 1. However, as will be preised later in this setion, numerial



4.3 Path sampling tehniques 151tests suggest that the detailed balane is not always met with a good preision when thedynamis are disretized with large time steps (whih is useful in order to avoid too longpaths), even if it is usually the ase in some mean sense for usual regimes. However, evenin those ases, it may be the ase that detailed balane is not ful�lled along a whole path(espeially sine unlikely regions of high gradients are somewhat enhaned), so that theanellations mentionned above are not always stritly valid.(ii) a bakward integration: in this ase, the hange of variables t 7→ −t is done diretly in thenumerial sheme, so that
yi = Φ−∆t(yi+1).The orresponding bakward probability will be denoted by p̄bck(yi+1, yi). The bakwardshemes are suh that a reversibility ondition is approximately met (sine Φ∆t◦Φ−∆t ≃ Id)

p(yi, yi+1) ≃ p̄bck(yi+1, yi),at least in some onditions that an be preised on a spei� example.Let us emphasize that the above approximations are used in some omputations to obtain simplerexpression for the aeptane rate, but their validity should be arefully heked in any ases, aswe now do.Bakward overdamped Langevin dynamis.The time reversed version of the overdamped Langevin dynamis is still the usual overdampedLangevin dynamis for the Euler-Maruyama disretization
qi+1 = qi −∆t∇V (qi) +

√
2∆t

β
Ri, (4.68)

Ri being i.i.d. dN -dimensional random vetors. It holds
p(qi, qi+1) =

(
β

4π∆t

)dN/2
exp

(
− β

4∆t
|qi+1 − qi +∆t∇V (qi)|2

)
, (4.69)and

p̄TR(q2, q1) = p(q2, q1). (4.70)Therefore, time reversed paths are generated using the disretization (4.68), and a orretion hasto be aounted aording to (4.66). The validity of the redued aeptane rate (4.67) an beheked by monitoring
RTR = max

{
cTR

cexact
,
cexact

cTR

}for the reative paths generated. Notie that the ratio cTR/cexact is exatly 1 when the detailedbalane assumption is stritly ful�lled, so that RTR = 1 in this ase. Therefore, the validity ofthis assumption along the whole path is related to the magnitude of the values of RTR > 1 (sine
RTR ≥ 1 in all ases).The disretized bakward stohasti dynamis are, for the overdamped Langevin dynamis

qi−1 = qi +∆t∇V (qi) + σRi, (4.71)with σ2 = 2∆t/β, and where the random variables (Ri) are i.i.d. dN -dimensional standard Gaus-sian random vetors. Note already that the sheme (4.71) is unstable in general (exept nearsaddle points of the energy landsape) sine the sign of the fore has to be hanged in a bakwardintegration, so that only small time steps must be onsidered. The resulting bakward onditional



152 4 Computation of free energy di�erenesprobability to be in qi−1 starting from qi is therefore
p̄bck(qi, qi−1) =

(
β

4π∆t

)dN/2
exp

(
− β

4∆t
|qi − qi−1 +∆t∇V (qi)|2

)
. (4.72)The reversibility assumption, made for example in [374℄, an also be heked here by omputing

Rbck = max

{
cbck

cexact
,
cexact

cbck

}for the reative paths generated. The behavior of Rbck should be lose to the behavior of RTR.To test the above assumptions, we onsider the following one-dimensional double well potential:
V (x) = 0.5h(x− 1)2(x+ 1)2,where h is a fator allowing to modify the barrier height at the transition state x = 0.We �rst test the detailed balane and reversibility assumptions, for a ertain range of timesteps and barrier height (the inverse temperature is set to β = 1). To this end, we sample ninitial on�gurations (qi)1≤i≤n of the system aording to the anonial measure (using a rejetionalgorithm, so that no additional bias is added to the intrinsi statistial bias arising from the�nite size of the sample) and perform a realization of the one step moves using the integrationsheme (4.68). We denote by q̃j the outome for a given initial on�guration qj . We then omputethe quantities

〈rDB〉 =
1

n

n∑

j=1

rDB(qj , q̃j), 〈rrev〉 =
1

n

n∑

j=1

rrev(q
j , q̃j),with

rDB(q1, q2) =
ρ(q1) p(q1, q2)

ρ(q2) p̄TR(q2, q1)
, rrev(q1, q2) =

p(q1, q2)

p̄bck(q2, q1)
,where p, p̄TR and p̄bck are given by (4.69), (4.70) and (4.72) respetively. We also ompute theassoiated varianes. We then turn to the path sampling algorithm, using the above mentio-ned shooting algorithm with a forward and a bakward shooting (the dynamis being either thetime reversed or the bakward dynamis). The aeptane/rejetion step is done using the exatrate (4.66), and the values RTR and Rbck are omputed over reative paths of size L = 200∆t,with the sets A = [−1−δ,−1+δ], B = [1−δ, 1+δ]with δ = 0.2, and performing n = 105 iterationsof the path sampling algorithm. The anonial averages rDB and rrev are omputed using n = 106points. The results are presented in Table 4.4.The reversibility assumption is veri�ed for time steps and barrier heights small enough (whihis usually not the interesting range of study for path sampling). Moreover, we studied here thisproperty from an average point of view, and it is expeted that the situation will get worse whenunlikely regions will be enhaned through the path sampling algorithm. Besides, even if the detailedbalane is almost veri�ed for one integration step, it is likely that the preision will deterioratewhen onsidering suessive integrations.As an be seen from the results, the reversibility assumption along the whole path is hardlyvalid, exept for low barriers and small time steps. Besides, it may be the ase that the reversibilityassumption an be onsidered to hold as a anonial average (i.e. rrev is indeed lose to 1 with asmall variane), but not along a path3. The errors are somewhat magni�ed by the length of thepath, and the enhanement of the high gradient regions. However, the detailed balane assumptionis more easily veri�ed in pratie than the reversibility assumption. The aeptane results showsthat few paths bridging initial and �nal states are proposed. The overdamped Langevin dynamisis too errati to provide e�ient proposals (the overall aeptane rates are 1-2% at most).

3 See for example the ase ∆t = 2.5 × 10−3 with h = 20.



4.3 Path sampling tehniques 153Table 4.4. Results for the reversibility and detailed balane study for the disretization (4.68) of theoverdamped Langevin dynamis. All the results are presented under the form "〈A〉 (
p

Var(A))".Parameters rDB rrev RTR Rbck

∆t = 0.001 h = 0.5 1.000 (0.0003) 1.002 (0.0060) 1.001 (0.0007) 1.040 (0.0559)
∆t = 0.001 h = 1 1.000 (0.0005) 1.003 (0.0096) 1.002 (0.0015) 1.096 (0.1177)
∆t = 0.001 h = 2 1.000 (0.0011) 1.006 (0.0163) 1.003 (0.0027) 1.157 (0.1863)
∆t = 0.001 h = 10 1.000 (0.0075) 1.040 (0.0770) 1.017 (0.0149) 5.864 (6.777)
∆t = 0.001 h = 20 1.000 (0.0186) 1.094 (0.1838) 1.044 (0.0362) -
∆t = 0.0025 h = 1 1.000 (0.0021) 1.009 (0.0255) 1.006 (0.0056) 1.635 (1.640)
∆t = 0.0025 h = 10 1.001 (0.0307) 1.121 (0.3174) 1.084 (0.0786) 1.584× 105 (6.047 × 105)
∆t = 0.0025 h = 20 1.006 (0.0800) 1.471 (22.09) 1.244 (0.2809) -
∆t = 0.005 h = 1 1.000 (0.0059) 1.019 (0.0577) 1.021 (0.0230) 13.46 (153.0)
∆t = 0.005 h = 10 1.007 (0.0961) 1.573 (34.04) 1.363 (0.4454) -
∆t = 0.005 h = 20 1.053 (0.7521) 9431 (2.930 × 106) 2.107 (1.709) -Langevin dynamis.We present �rst a numerial study similar to the one done for the overdamped Langevin ase.We do not onsider bakward integration using negative time steps (whih is even more unstablethan in the overdamped ase), and limit ourselves to proposal funtions for Langevin paths usingthe time reversed dynamis. More preisely, we use the disretization (4.73), whih is a lassialintegration sheme [4℄, traditionally used in transition path sampling:

{
qn+1 = qn + c1∆t p

n − c2∆t
2∇V (qn) +Wn

1 ,

pn+1 = e−γ∆tpn − (c1 − c2)∆t∇V (qn) − c2∆t∇V (qn+1) +Wn
2 ,

(4.73)where the random numbers are the same as in (4.62) (only the deterministi part of the dynamis ismodi�ed). The time-reversing operation amounts to reverting the momenta, integrating forward intime, and reverting the momenta again. We also test the validity of a detailed balane assumption,both as a stati property, and along paths. The omputed variables rDB and RTR are de�ned asfor the overdamped ase.We onsider as a toy example the two-dimensional (2D) potential
V (x, y) =

1

6

[
4(1 − x2 − y2)2 + 2(x2 − 2)2 +

(
(x+ y)2 − 1

)2
+
(
(x− y)2 − 1

)2]
, (4.74)whih was introdued in [80℄. The numerial study is onduted in the same manner as for theoverdamped ase, and the results are presented in Table 4.5. The detailed balane assumption isindeed satis�ed with a very good auray for a broad range of parameters regimes. The detailedbalane along paths is also satis�ed with a good auray, though disrepanies of the stati detai-led balane study are still somewhat magni�ed, and it ould be the ase in some more ompliatedsituations (suh as higher dimensional dynamis with onstraints) that those disrepanies beomenon negligible. Further numerial studies suggest that the most in�uential parameter is the timestep ∆t.We also tested those assumptions on the model system for onformational hanges of Se-tion 4.1.4. The anonial averages rDB are omputed using n = 105 iterations. The values RTR areomputed over reative paths of size L = 500∆t, at β = 1, using l0 = 1.3, σ = 1, ǫ = 1, w = 0.5,

∆t = 0.0025, with the sets A = {r(q) ≤ r0 + 0.6σ}, B = {r(q) ≥ r0 + 1.4σ}, and performing
n = 104 iterations of the path sampling algorithm.



154 4 Computation of free energy di�erenesTable 4.5. Results for the detailed balane study for the disretization (4.73) of the Langevin dynamis.The anonial averages rDB are omputed using n = 106 points. The values RTR are omputed overreative paths of size L = 200∆t, with the sets A = {|x + 1|2 + y2 ≤ δ}, B = {|x − 1|2 + y2 ≤ δ} with
δ = 0.6, and performing n = 105 iterations of the path sampling algorithm. All the results are presentedunder the form "〈A〉 (

p
Var(A))".Parameters rDB RTR

∆t = 0.02, ξ = 1, β = 1 1.000 (0.0002) 1.002 (0.0024)
∆t = 0.01, ξ = 1, β = 10 1.000 (0.0000) 1.001 (0.0014)
∆t = 0.025, ξ = 5, β = 5 1.000 (0.0004) 1.004 (0.0033)
∆t = 0.05, ξ = 2, β = 20 1.000 (0.0023) 1.022 (0.0180)Table 4.6. Results for the detailed balane study for the disretization (4.62) of the Langevin dynamisin the WCA ase. All the results are still presented under the form "〈A〉 (

p
Var(A))".Parameters rDB RTR

h = 1 1.0000 (0.0031) 1.002 (0.0653)
h = 2 1.0000 (0.0031) 1.002 (0.0721)
h = 5 1.0000 (0.0032) 1.003 (0.0772)One again, as an be seen from the results of Table 4.6, the detailed balane assumption holdsin average with a very good auray, but there are notieable deviations from the detailed balaneassumption along the paths.Time-reversal as a bakward integration shemeIn onlusion, the previous results show that it is more appropriate to resort to time reversal.We will always denote in the sequel the random vetors used in this proess by Ū . As also shownin the previous omputations, the mirosopi reversibility ratio
Rrev(yi, yi+1) =

ρ(yi) p(yi, yi+1)

ρ(yi+1) p̄(yi+1, yi)is sometimes lose to 1, so that cexact(x, y) ≃ 1 and the aeptane/rejetion step is greatlysimpli�ed. However, this assumption should always be heked arefully using some preliminaryruns sine it is sometimes the ase that, even if the reversibility ratio rDB is lose to 1 pointwise(with a good approximation), it may be false that cexact(x, y) ≃ 1 along the path, espeially if thepaths are long.The brownian tube proposal funtionA path an also be haraterized uniquely by the initial point x0 and the realization of thebrownian proess Wt in (4.58). When disretized, the paths are then uniquely determined bythe sequene of gaussian random vetors U = (U0, . . . , UL−1) used to generate the trajetoriesusing (4.62) (or any disretization of another SDE). This was already noted in [74℄, where a newtrajetory was proposed seleting an index at random and hanging only the gaussian randomnumber assoiated with this index.Sine the trajetory is ontinuous with respet to the realizations of the brownian motion, anyonvenient small perturbation of the sequene of random vetors is expeted to generate a pathlose to the initial path. Still denoting by p(xi, xi+1) the probability to generate a point xi+1 inphase-spae starting from xi, using the gaussian random vetors Ui and Ūi obtained from standardgaussian random vetors Gi and Ḡi, the transition probabilities for all lassial disretizations weonsider an be writtten as
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p(xi, xi+1) = Z−1 exp

(
−1

2
GTi ΓGi

)
,and

p̄TR(xi+1, xi) = Z−1 exp

(
−1

2
ḠTi ΓḠi

)where Z is a normalization onstant. In the ase of the disretization (4.62) of the Langevinequation for example, Γ = V TV where the matrix V allows to reast the orrelated gaussianrandom vetors Ui = (U1,i, U2,i) (or Ūi) as standard and independent gaussian random vetors Gi(or Ḡi) through the transformation Ui = V Gi (or Ūi = V Ḡi) with (see Eq. (4.64))
V =




σ−1
1 IddN 0
c12

σ1

√
1 − c212

IddN
1

σ2

√
1 − c212

IddN


 .The idea is then to modify the standard gaussian vetors Gi by an amount 0 ≤ αi ≤ 1 as

G̃i = αiGi +
√

1 − α2
iRi, (4.75)where Ri is a 2dN -dimensional standard gaussian random vetor. A fration αi is assoiated witheah on�guration xi along the path. The usual shooting dynamis is reovered with αi = 0 forall i (all the Brownian inrements are unorrelated with respet to the Brownian inrements ofthe modi�ed path), whereas the so-alled 'noise history' algorithm proposed in [74℄ orrespondsto αi = 0 for all i but one i0 for whih αi0 = 1 (in this ase, all the Brownian inrements but oneare re-used).The dynamis we propose looks like the shooting dynamis:Brownian tube proposalAlgorithm 4.2. Starting from some initial path x0, and for n ≥ 0,(1) selet an index 0 ≤ k ≤ L aording to disrete probabilities (wi)0≤i≤L (for examplea uniform probability distribution an be onsidered, unless one wants to inrease trialmoves starting from ertain regions, for example the assumed transition region);(2) ompute a new random gaussian vetor starting from the previous one, using (4.75);(3) generate a new path (yk+1, . . . , yL) forward in time, using the stohasti dynamis (4.59),with a new set of independently and identially distributed (i.i.d.) gaussian randomvetors (Un+1

i )k+1≤j≤L−1;(4) generate a new path (yk−1, . . . , y0) bakward in time, using a disretized "bakward"stohasti dynamis orreponding to (4.59), with a new set of i.i.d. gaussian randomvetors (U
n+1

i )0≤j≤k−1;(5) set xn+1 = y with probability r(xn, y), otherwise set xn+1 = xn.It remains to preise the proposition funtion P(x, y). Denoting by (Ḡxi )0≤i≤k−1, (Gxi )k≤i≤L−1the standard random gaussian vetors assoiated with the path x (the �rst ones arise from thetime reversed integration, the last ones from a usual foward integration), it follows
P(x, y) = wk

∏

0≤i≤k−1

pαi(Ḡ
x
i , Ḡ

y
i )

∏

k≤i≤L−1

pαi(G
x
i , G

y
i ),where wk still denotes the probability to hoose k as a shooting index, and
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pα(G, G̃) =

(
1√

2π(1 − α2)

)dN
exp

(
− (G̃− αG)T (G̃− αG)

2(1 − α2)

)
.A tuning of the oe�ients αi an then be performed in order to get the best trade-o� betweenaeptane (whih tends to 1 in the limit αi = 1 for all i) and deorrelation (whih arises inthe limit αi → 0). An interesting idea ould be that α has to be lose to 1 in regions where thegenerating moves have a haoti behavior (in the sense that even small perturbations to a path leadto large hanges to this path), and ould be smaller in regions where the generating moves haveless impat on the paths (so as to inrease the deorrelation). From a more pratial point of view,a possible approahe to obtain suh a trade-o� to propose a funtional form for the oe�ients

αi and to perform short omputations to optimize the parameters with respet to some objetivefuntion. Some simple hoies for the form of the oe�ients αi, involving only one parameter (sothat the optimization proedure is easier), are:(i) onstant oe�ients αi = α;(ii) set αi = 1 far from the shooting index, and αi lose to 0 near the shooting index. This anbe done by onsidering αi = min(1,K|i− k|) for some K ≥ 0.From our experiene, the e�ieny is robust enough with respet to the hoie of the oe�ients
αi. Notie also that the seond funtional form allows to reover both the usual shooting and thenoise-history algorithm, respetively in the regimes K → 0 and K ≥ 1. It is therefore expetedthat, optimizing the e�ieny with respet to K ∈ [0, 1], both the shooting algorithm and thenoise-history algorithm should be outperformed.Intrinsi measure of e�ienyOur aim here is to propose some abstrat measure of deorrelation between the paths, so as tomeasure some di�usion in path spae. This approah omplements the onvergene tests based onsome observable of interest for the system. We refer to [81℄ for some examples of relevant quantitiesto monitor (and appliations to path sampling with deterministi dynamis).The intrinsi deorrelation is related to the existene of some distane or norm on path spae.Given a distane funtion d(x, y), the quantity

Dp(n) =

(∫ ∫
[d(y, x)]p Pn(x, dy) dπ(x)

)1/p(with p ≥ 1) preises the average amount of deorrelation with respet to the distane d for themeasure π on the path ensemble. Notie that two averages are taken: one over the initial paths x,and another over all the realizations of the Monte Carlo iterations starting from x (i.e. over allthe possible end paths y, weighted by the probability to end up in y starting from x). In pratie,assuming ergodiity, Dp(n) is omputed as
Dp(n) = lim

N→+∞

(
1

N

N∑

k=1

dp(xk+n, xk)

)1/p

.Usual hoies for p are p = 1 or p = 2. This last ase is onsidered in [59℄ sine a di�usive behaviorover the spae is expeted with stohasti dynamis, the most e�ient algorithms having thelargest di�usion onstants limn→+∞
√
D2(n)/n.It then only remains to preise the distane d, whih depends on the system of interest. Somesimple hoies are to(i) onsider a (weighted) norm || · || on the whole underlying phase-spae (for position orposition/momenta variables) and set
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d(x, y) =

(
1

L

L∑

i=0

ωi||xi − yi||p
′

)1/p′with p′ ≥ 1;(ii) onsider only a projetion of the on�gurations onto some submanifold, suh as the levelsets of a given (not neessarily ompletely relevant) reation oordinate or order parame-ter ξ:
d(x, y) =

(
1

L

L∑

i=0

ωi|ξ(xi) − ξ(yi)|p
′

)1/p′

,with p′ ≥ 1.(iii) align the paths projeted onto some submanifold around a given value of the reationoordinate ξ:
d(x, y) =

(
1

2K + 1

K∑

i=−K
ωi|ξ(xI+i) − ξ(yJ+i)|p

′

)1/p′

, (4.76)with p′ ≥ 1, and I, J suh that ξ(xI) = ξ(yJ) = ξ∗ where ξ∗ is �xed in advane (forexample, if A is haraterized by ξ = 0 and B by ξ = 1, then ξ∗ ould be 1/2). The integer
K represents some maximal window frame so that the distane is really restrited to aregion around the expeted or assumed transition point. In the ase when J−K, I−K < 0or J +K, I +K > L, the sum is aordingly restrited to less than 2K + 1 points.The weights ωi should be non-negative in all ases.A reasonable hoie for non-trivial systems is for example to use (4.76) with p′ = 1 and ωi = 1.This approah ensures that the deorrelations arising in the initial and �nal basins A and B aredisarded, and that only the deorrelation arising near the transition region are important. Inthis sense, we term this deorrelation as 'loal deorrelation' sine we measure how di�erent thetransition mehanisms are. As a measure of 'global deorrelation', we will onsider the transitiontimes. A numerial study based on those lines is presented below.Numerial resultsWe test the di�erent proposal funtions on the model system of onformational hanges ofSetion 4.1.4. We onsider the distane (4.76) for reative paths (π ≡ πAB in this ase), using

p = p′ = 1 and ωi = 1, ξ(q) = |q1 − q2|, ξ∗ = r0 + w. We use the parameters L = 500∆t,
β = 1, N = 16 partiles of masses 1, l0 = 1.3, σ = 1, ǫ = 1, w = 0.5, ∆t = 0.0025, with the sets
A = {ξ(q) ≤ r0 + 0.6w}, B = {ξ(q) ≥ rB = r0 + 1.4w} and averaging over a total of n = 5 × 104Monte Carlo moves. We set K = 30 sine the typial length of the transitions is about 60 timesteps with the parameters used here.We also onsider the orrelation in the transition times. We denote by τ(x) the transition indexof some path x. Here, those indexes τ are suh that ξ(qτ∆t) = ξ∗. The orrelation funtion for thisobservable is therefore, in the ase of reative paths,

C(n) =

∫ ∫
(τ(y) − 〈τ〉πAB )(τ(x) − 〈τ〉πAB )Pn(x, dy) dπAB(x)

∫
(τ(x) − 〈τ〉πAB )2 dπAB(x)

,with 〈τ〉πAB =
∫
τ(x)dπAB(x) This observable is in some sense omplementary to the measure ofdeorrelation in the transition zone de�ned above sine it measures some global spatial deorrela-tion of the paths. In pratie, assuming ergodiity, C is approximated as
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C(n) = lim

N→+∞

1

N

N∑

k=1

τ(xn+k)τ(xk) −
(

1

N

N∑

k=1

τ(xn+k)

)(
1

N

N∑

k=1

τ(xk)

)

1

N

N∑

k=1

τ(xk)2 −
(

1

N

N∑

k=1

τ(xk)

)2 .Figures 4.10 to 4.12 present some plots of D(n) and C(n) for h = 5, 10, 15, for the usualshooting dynamis, the noise-history algorithm, and the brownian tube proposal (with αi = 0.8for all i). The average aeptane rates are also presented in Table 4.7. Notie that no shiftingmoves [81℄ are used in order to ompare the intrinsi e�ienies of the proposal funtions. It islikely that these moves would help improving the deorrelation rate of the sampling.
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Fig. 4.10. Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h = 5. Left:Plot of the orrelation of the transition times C(n) (related to some global sampling e�ieny). Right:Plot of D(n) (loal sampling e�ieny) for the brownian tube proposal with α ≡ 0.8 (solid line), usualshooting dynamis (dashed line), and noise history (dotted line)..

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration index n

T
ra

ns
iti

on
 ti

m
es

 a
ut

oc
or

re
la

tio
n 

C
(n

)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Iteration index n

Lo
ca

l d
is

ta
nc

e 
D

(n
)

Fig. 4.11. Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h = 10..For the shooting algorithm, many paths are rejeted so that the loal deorrelation (measuredby D(n)) is rather poor, espeially at short algorithmi times and for high barriers (in any ases,lower than for the brownian tube proposal). But when a path is aepted, it is already verydeorrelated from the previous one, so that the global deorrelation (measured by C(n)) is indeeddereasing rapidly enough. For the noise-history algorithm, the piture is somewhat inverted:sine the aeptane rate is very high, even for high barriers, the loal deorrelation is quite
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Fig. 4.12. Comparison of e�ienies for di�erent Metropolis-Hastings proposal moves for h = 15..Table 4.7. Aeptane rate (%) as a funtion of h for the three proposal funtions onsidered.
h 5 10 15Shooting 24.4 18.1 15.2Noise history 96.7 85.7 81.2Brownian tube (αi = 0.8) 47.2 48.1 33.0e�ient, but the global deorrelation is not sine small loal hanges make it di�ult to hangethe global features of the paths. The brownian tube approah tries to balane the loal and globaldeorrelations. This is also re�eted by a more balaned aeptane/rejetion rate.In onlusion, the brownian tube proposal with the above orrelation funtion is the moste�ient sampling sheme in the ase onsidered here. The e�ieny ould be further inreasedby a more systemati tuning of the parameters of the orrelation fators αi, possibly dependingon the shooting index k. In general, sine the usual proposal funtions are spei� ases of thebrownian tube proposal funtion, it is expeted that there is always a parameter range suh thatthis new algorithm outperforms the previous ones.4.3.3 (Non)equilibrium sampling of the path ensembleThe previous setion was dealing with equilibrium sampling of paths. However, when (free)energy barriers in path spae are large, diret sampling of paths an be ine�ient, sine theexistene of metastable path sets may onsiderably slow down the numerial onvergene. It istherefore appealing to perform some kind of simulated annealing on paths. A regular simulatedannealing strategy would be to �rst sample paths at a higher temperature, and then to ool thesample to the target temperature (see [363℄ for a simulated tempering version of suh an idea).Reative paths an also be otained by onstraining progressively the paths to end up in B. Thisapproah also has the nie feature that it does not ask for an initial guess to start sampling πAB.Finally, a byprodut of suh a swithing is the ratio of partition funtions in path spae
C(L∆t) =

ZAB(L∆t)

ZA(L∆t)
, (4.77)where ZA, ZAB are suh that

πA(x) = ZA(L∆t)−1
1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1),



160 4 Computation of free energy di�erenesand
πAB(x) = ZAB(L∆t)−1

1A(x0)ρ(x0)
L−1∏

i=0

p(xi, xi+1)1B(xL)are probability measures. The funtion C in (4.77) has to be omputed at least one to obtain rateonstants in pratie [81℄. The assoiated free-energy di�erene in path spae is ∆FA→AB(L∆t) =

− ln(C(L∆t)).We start this setion by realling the extension of the lassial swithing dynamis for nonequi-librium dynamis in phase spae to nonequilibrium swithing between path ensembles [122℄. Thismethod is onvenient to ompute free energy di�erenes, but the �nal sample of paths obtained isvery degenerate. We therefore present the appliation to path sampling of a birth/death proessintrodued in [289, 292℄ (see also Setion 4.2), whih allows to keep the sample at equilibriumat all times during the swithing. This equilibration may be important in some ases to om-pute the right free energy values [292℄, and allows in any ases to end up with a non-degeneratesample of paths and redue the empirial variane. We will fous in the sequel on swithing fromonstrained to unonstrained paths, but an extension to simulated annealing (ooling proess) isstraightforward.Swithing between ensembles of pathsWe present in this setion the approah of [122℄, where the swithing from unonstrained toonstrained path ensembles is done by enforing progressively the onstraint on the end pointof the path over a time interval [0, T ]. The onstraint is usually parametrized using some orderparameter. This order parameter is the same as the one used for usual omputations of reationrates in the TPS framework (and even for more advaned tehniques suh as Transition InterfaeSampling (TIS) [355,356℄). The point is that this approximate order parameter needs not to be a�good� reation oordinate (or a omplete one) sine the general path sampling approah shouldhelp to get rid of some problems arising from a wrong hoie of order parameter (see e.g [354℄ fora reent study on this topi).Assuming an order parameter is given, we an onsider a swithing shedule λ = (λ0, . . . , λn)suh that λ0 = 0 and λn = 1 and a family of funtions hλ suh that
h0 = 1, h1 = 1B.We also introdue the family of probability measures assoiated with the funtions hλ:

πλ(x) = Z−1
L,λ1A(x0)ρ(x0)

L−1∏

i=0

p(xi, xi+1)hλ(xL). (4.78)We omit in the sequel the expliit dependene of the partition funtions Z on L and ∆t. Anenergy Eλ(x) an then formally be assoiated to a path x as
πλ(x) = Z−1

L,λe
−Eλ(x).The aim is to sample from π1 ≡ πAB, whih is usually a di�ult task, and sometimes not diretlyfeasible. It may be easier to use a sample of π0 = πA (whih is muh easier to obtain), and totransform it through some swithing dynamis into a (weighted) sample of π1. Starting from apath xk,0, the weight fator for a resulting path xk,n is of the form e−W

k,n whereW k,n is the workexerted on an unonstrained path to onstrain it to end in B. We now preise the way the workis omputed.Consider an unonstrained initial path x0 = (x0
0, . . . , x

0
L) sampled aording to π0, and adisrete shedule (λ0, . . . , λn). The dynamis in path spae is as follows:



4.3 Path sampling tehniques 161Nonequilibrium swithing on pathsAlgorithm 4.3 (See Ref. [122℄). Consider an initial on�guration x0 generated from π0.Starting from W 0 and m = 0,(1) Replae λm by λm+1;(2) Update the work as Wm+1 = Wm + Eλm+1(xm) − Eλm(xm);(3) Do a Monte Carlo path sampling move using a Metropolis-Hastings sheme with themeasure πλm+1 (using for example the usual shooting moves with a Langevin dynamis,or the Monte Carlo move designed for path swithing presented below), so that theurrent path xm is transformed into the new path xm+1.This proedure is repeated for independent initial onditions xk,0, so that a sample of M endpaths (x1,n, . . . , xM,n) with weights (e−W
1,n

, . . . , e−W
M,n

) is obtained. Besides, an estimation ofthe rate onstant is given by the exponential average
CM (L∆t) = − ln

(
1

M

M∑

k=1

e−W
k,n

)
,and it an be shown that CM → C when M → +∞.Sine the realizations of the swithing proedure are independent provided the initial onditionsare independent, the random variables {e−Wk,n}k are i.i.d. A on�dene interval an be obtainedfor CM as

C−
M,σc

≤ CM ≤ C+
M,σc

,with
C±
M,σc

= − ln

(
1

M

M∑

k=1

e−W
k,n ± σc

√
VM
M

)
,where the empirial variane is

VM =
1

M − 1

M∑

k=1

(
e−W

k,n − 1

M

M∑

l=1

e−W
l,n

)2

.A on�dene interval on the free energy di�erene is then
− lnC−

M,σc
≤ ∆FA→AB ≤ − lnC+

M,σc
.For example, the 95 % on�dene interval orresponds to σc = 1.96.Of ourse, as usual for nonequilibrium swithings, it may the ase that the variane of the workdistribution is large, so that only very few paths are relevant (and the on�dene interval for therate onstant is large), so that an equilibration in the vein of Setion 4.2 may be interesting.Enhaning the number of relevant pathsWe present here an extension of the IPS equilibration to the ase of path sampling. Then,eah path has weight 1 in the end, and the �nal sample (x1,n, . . . , xM,n) is distributed aordingto π1 ≡ πAB (provided the swithing is slow enough and the number of replias is large enough;therefore, Mn∆t should be large enough). More preisely, we onsider the



162 4 Computation of free energy di�erenesIPS equilibration of the nonequilibrium path swithingAlgorithm 4.4. Consider an initial distribution (x1,0, . . . , xM,0) generated from π0. Generateindependent times τk,b, τk,d from an exponential law of mean 1. Consider two additionalvariables Σk,b, Σk,d per replia, initialized at 0.(1) Replae λm by λm+1;(2) Update the works as W k,m+1 = W k,m + ∆Ek,m = W k,m + Eλm+1(xk,m) − Eλm(xk,m),and ompute the mean work update ∆Em = M−1
∑

1≤k≤M ∆Ek,m;(3) (Di�usion step) Do a Monte Carlo path sampling move using a Metropolis-Hastingssheme with the measure πλm+1 , so that xk,m is transformed into xk,m+1.(4) (Birth/death proess) Update the variables Σk,b and Σk,d as
Σk,b = Σk,b + β(∆Em −∆Ek,m)−,and
Σk,d = Σk,d + β(∆Em −∆Ek,m)+.(Death) If Σk,d ≥ τk,d, selet an index m ∈ {1, . . . ,M} at random, and replae the k-thpath by the m-th path. Generate a new time τk,d from an exponential law of mean 1,and set Σk,d = 0;(Birth) If Σk,b ≥ τk,b, selet an index m ∈ {1, . . . ,M} at random, and replae the m-thpath by the k-th path. Generate a new time τk,b from an exponential law of mean 1,and set Σk,b = 0;In this ase, an estimation of the rate onstant is given by the simple average
CM (L∆t) =

1

M

M∑

k=1

W k,n,and it an be shown that CM → C when M → +∞. A on�dene interval for the free energydi�erene an be obtained as in Setion 4.3.3 as
CIPS,−
M,σc

≤ CIPS
M ≤ CIPS,+

M,σc
,with

CIPS,±
M,σc

=
1

M

M∑

k=1

W k,n ± σc

√
V IPS
M

M
,the empirial variane being

V IPS
M =

1

M − 1

M∑

k=1

(
W k,n − 1

M

M∑

l=1

W l,n

)2

.Spei� Monte-Carlo moves for swithing from unonstrained to onstrained pathensemblesWhen an interpolating funtion hλ appearing in (4.78) (or, equivalently, some order parameter
ξ) is known, it is possible to inrease the likeliness of the end point of the trajetory by performinga move on the last on�guration in the diretion opposite to ∇hλ(q) while keeping the randomvetors used for the transitions. These moves should of ourse be employed with other MC moves,



4.3 Path sampling tehniques 163espeially MC moves relying on some trajetory generation, in order to relax the shift towardhigher values of hλ or ξ.More preisely, using for example an overdamped Langevin dynamis to update the end on�gu-ration, the assoiated Metropolis-Hastings Monte-Carlo elementary step is, starting from a path xfor a parameter λ (in the Langevin dynamis setting):Speifi Monte-Carlo swithing moveAlgorithm 4.5. Starting from a path x = (x0, . . . , xL),(1) Compute the sequene of 2dN -dimensional random vetors (Ūi)0≤i≤L−1 assoiated withthe bakward (time-reversed) integration from xL to x0;(2) Compute a �nal on�guration as qyL = qxL + δλ∇ξ(qxL) + (2δλ/β)1/2G where G is a
d-dimensional random gaussian vetor;(3) Integrate the path bakward (time-reversed) starting from yL, using the noises
(Ūi)0≤i≤L−1 to obtain a path y = (y0, . . . , yL). The probabilty P(x, y) to obtain ystarting from x is therefore the probability to obtain yL from xL, so that

P(x, y) = pswitch(xL, yL) =

(
β

4πδ2λ

)d/2
exp

(
− β

4δλ
|qyL − qxL − δλ∇ξ(qxL)|2

)
.(4) Aept the new path y with probability

r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
= min

(
1,

1A(y0)ρ(y0)

1A(x0)ρ(x0)

pswitch(yL, xL)

pswitch(xL, yL)

)
.The magnitude δλ an be made to depend a priori on λ. It is then adjusted in pratie on the�y by �rst omputing the values of the gradient for the endpoint of eah replia, in order to ensurethat the displaement is small enough.Numerial resultsWe ompute here free energy di�erenes assoiated with onstraining paths for the WCA modelsystem introdued in Setion 4.1.4. This is done either with plain nonequilibrium swithing, orwith the IPS equilibration. Let us notie that the energy is �xed in [122℄ while we rather have to�x the temperature in the stohasti setting, so that a straightforward omparison of the resultsis not possible. We set β = 1 in the sequel. The other parameters are the same as in [122℄:

N = 9 partiles, h = 6, σ = 1, ǫ = 1, the partile density ρ = 0.6σ−2, w = 0.25, and the sets
A = {ξ(q) ≤ ξA = 1.3σ}, B = {ξ(q) ≥ ξB = 1.45σ}. The trajetory length is L = 320∆t and
∆t = 0.0025, so that L∆t = 0.8(mσ2/ǫ)1/2.We perform a total of n MC moves (using the brownian tube proposal funtion (with αi =

α = 0.8 for all 0 ≤ i ≤ L− 1). The funtion hλ is the one given in [122℄:
hλ(q) = e−λK(1−1B(q))(ξB−ξ(q))with K = 100. The swithing shedule is λi = (i/n)2.A typial free energy di�erene pro�le is presented in Figure 4.13 forM = 2000 and n = 10000,as well as the assoiated weights for the plain nonequilibrium swithing. These weights are theJarzynski weights renormalized by the total weight (in order to de�ne a probability distribution):

wk =
e−W

k,n

∑M
l=1 e−W l,n

. (4.79)



164 4 Computation of free energy di�erenesTable 4.8. Free energy di�erenes ∆FA→AB omputed for di�erent swithing lengths n, using a sampleof M = 2000 paths. The results are presented under the form "CM (C−
M,σc

−C+
M,σc

)" with σc = 1.96 (thevalue orresponding to a 95 % on�dene interval).
M n Bakward Forward IPS (forward)2000 2000 4.83 (4.61-5.02) 5.43 (5.28-5.61) 4.82 (4.78-5.85)2000 5000 5.34 (5.04-5.58) 5.41 (5.32-5.50) 5.19 (5.16-5.23)2000 10000 5.45 (5.32-5.58) 5.40 (5.34-5.46) 5.40 (5.36-5.43)2000 15000 5.42 (5.35-5.49) 5.40 (5.35-5.45) 5.45 (5.42-5.48)Notie that the sample is very degenerate sine very many paths have negligible weights, and therelevant paths are exponentially rare. Reall also that the paths all have weight 1 with the IPSalgorithm.Some free energy di�erenes are presented in Table 4.8 for di�erent values of n (keeping M�xed). The swithings are slow enough when the on�dene intervals for free energy di�erenesomputed by onstraining paths ('forward' swithing) overlap with on�dene intervals for freeenergy di�erenes obtained by starting from a sample of onstrained paths and removing progres-sively the onstraint ('bakward' swithing). This is the ase here for n = 5000, 10000, 15000 (butnot when n = 2000). The results show that IPS agrees with the usual Jarzynski swithing, theon�dene interval on the results being however lower.
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Fig. 4.13. Left: Free energy pro�le for a forward swithing, omputed forM = 2000 and n = 104, using aplain nonequilibrium swithing. Right: Histogram of the weights wk of the �nal sample as given by (4.79).We also present in Figure 4.14 a �nal sample omputed using a quite fast swithing (n = 1000)with a small sample of paths (M = 100). Notie that all the 100 paths generated with the IPSswithing are reative, in ontrast with the paths generated by a straightforward swithing inthe Jarzynski way. Besides, as a onsequene of the degeneray of paths, only 8 paths in 100have a signi�ant weight (larger than 0.05 when normalized by the total weight, see (4.79)).This simple example shows why it is di�ult to ompute averages over the �nal sample of pathswhen performing plain nonequilibrium swithing, and why it may be interesting to resort to someseletion proess to prevent suh a degeneray.In agreement with a previous study [292℄, the results show that the IPS algorithm allows toredue the variane on the estimates and to end up the simulation with a well-distributed andnon-degenerate sample, provided the swithing is slow enough.
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Fig. 4.14. Comparison, for a nonequilibrium swithing of paths for M = 100 systems in n = 1000 stepswithout (Left) or with IPS (Right). Only the paths having a weight greater than 0.05 are plotted in solidlines when plain nonequilibrium swithing is used (the other paths are plotted in dotted lines).4.4 Adaptive omputation of free energy di�erenesMethods relying on nonequilibrium dynamis follow the pioneering work of Jarzynski [187℄,or use some adaptive dynamis suh as the Wang-Landau approah [368℄, the adaptive biasingfore (ABF) [75, 76, 157℄, or the nonequilibrium metadynamis [46℄. These approahes use thewhole history of the exploration proess to bias the urrent dynamis in order to fore the esapefrom metastable sets. This is done by simultaneously estimating the free energy from an evolvingensemble of on�gurations of the dynamis, and using this estimate to bias the dynamis, so thatthe e�etive free energy surfae explored is �attened. In the long time limit, the bias exatly givesthe atual free energy pro�le. Adaptive methods ould therefore be seen as umbrella samplingwith an evolving potential. This was already notied in a previous study presenting an adaptivedynamis as a 'self-healing umbrella sampling' [227℄.To present the adaptive methods mentioned above in a general and unifying framework, itis onvenient, as is done in [46℄, to onsider ensemble of realizations (see Eq. (4.83)). The sys-tem is then desribed by the distribution of the on�gurations of this ensemble in the limit ofan in�nite number of replias simulated in parallel. The key point is to reformulate the ompu-tation of the bias of adaptive dynamis, using onditional distributions (that is, distribution ofthe on�gurations for a given value of the reation oordinate) of the latter sample. This wasalready proposed in [101℄ in the equilibrium ase, and is somewhat impliit in [46℄. This oneptlari�es the presentation of adaptive methods, allows mathematial proofs of onvergene [207℄ orat least, existene of a stationary state of the dynamis (still in the ase of an in�nite numberof replias), and suggests natural numerial strategies: the disretization may be done througha parallel implementation of several replias of the system, whih all ontribute to onstrut thefree energy pro�le. Suh a parallel implementation was already proposed in [275℄ in the ase ofmetadynamis. We show here how an additional seletion proess on the replias an enhane thesampling of the reation oordinates in omparison with a straightforward parallel implementation.This setion is organized as follows. In Setion 4.4.1, we desribe the general formalism foradaptive dynamis, using onditional probabilities, and show how to update the biasing potentialin order to ompute the free energy pro�le in the longtime limit, using a �xed-point strategy. Someappliations of this formalism are then presented, whih allow to reover the usual adaptive dy-namis suh as the nonequilibrium metadynamis, the Wang-Landau sheme or the ABF method.We then disuss possible parallel implementation strategies. In partiular, it is shown how a se-letion proess an enhane the straightforward parallel implementation. This is �nally illustrated



166 4 Computation of free energy di�erenesby numerial results for a toy model of onformational hanges. In Setion 4.4.2, we then presenta rigorous proof of onvergene for a spei� adaptive dynamis in the ABF spirit, using entropyestimates. The proof uses on a deomposition of the entropy into a marosopi entropy (relatedto the distribution of the values of the reation oordinate) and a mirosopi entropy (dependingon the distribution of the onditioned measures, for a �xed value of the reation oordinate), andrelies on the assumption that the onditioned measure satisfy a logarithmi Sobolev inequality,with a onstant independent of the value of the reation oordinate.4.4.1 A general framework for adaptive methodsFor a system desribed by a potential V (q), the Boltzmann measure in the anonial ensembleis Z−1 exp (−βV (q)) dq (where Z is a normalization onstant, the so-alled partition funtion).We onsider in this setion a reation oordinate ξ, taking values in the one dimensional torus,or in the interval [0, 1]. In the latter ase, re�eting boundary onditions for the dynamis on thetwo extremal values ξ(q) = 0, ξ(q) = 1 are used. Reall that the free energy (or potential of meanfore (PMF)) to be omputed is de�ned up to an additive onstant by the normalization of aBoltzmann average of the on�gurations restrited to a given value of the reation oordinate (seeSetion 4.1.2 for more details):
F (z) = −β−1 ln

∫

M
exp(−βV (q)) δξ(q)−z . (4.80)and the assoiated mean fore is

F ′(z) =

∫

M
fV (q) exp(−βV (q)) δξ(q)−z
∫

M
exp(−βV (q)) δξ(q)−z

, (4.81)with the loal fore given by
fV =

∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

)
. (4.82)Here and in the sequel, we denote by F ′ the derivative of F with respet to z.Adaptive dynamis are de�ned through the dynamis used, whih ditates the distribution ofthe on�gurations at equilibrium, a biasing potential, and the way this potential is updated (seebelow for a heuristi derivation in the equilibrium ase motivating the general setting).Trajetories t 7→ Qt are omputed aording to some dynamis whih are ergodi with respetto the Boltzmann measure when the potential is time-independent. For instane, the Langevindynamis or the overdamped Langevin dynamis may be used. We will denote by ψt(q) the distri-bution (or density) of on�gurations at time t. This distribution will be used to update the biasingpotential Fbias.From a pratial point of view, when M replias (Qi,Mt )i=1,...,M of the system are simulatedin parallel, the density of states ψt(q) is approximated by the instantaneous distribution of thereplias

ψt(q) = lim
M→+∞

1

M

M∑

i=1

δQi,M
t −q. (4.83)In some ases, the density of states an also be approximated using the distribution of on�gura-tions along the trajetory, relying on some ergodi assumption.The de�nition of adaptive methods requires the de�nition of two important quantities obtainedfrom the distribution ψt(q). The �rst one is the distribution ψξt of the reation oordinate values,



4.4 Adaptive omputation of free energy di�erenes 167whih is, from a mathematial perspetive, the marginal law of ψt with respet to ξ:
ψξt (z) =

∫

M
ψt(q) δξ(q)−z . (4.84)This quantity will be useful to propose a biasing potential (see Eqs. (4.91)-(4.93)). Another im-portant quantity is the onditional average of some funtion h for some �xed value of the reationoordinate:

〈h〉t,z =

∫

M
h(q)ψt(q) δξ(q)−z

∫

M
ψt(q) δξ(q)−z

. (4.85)Suh averages are used to propose biasing fores (see Eqs. (4.92)-(4.94)).The biasing potentialIn adaptive dynamis, the interation potential is time-dependent:
Vt(q) = V (q) − Fbias(t, ξ(q)). (4.86)The biasing potential Fbias, whose preise form varies aording to the method under study,depends only on q through the reation oordinate value ξ(q) and is updated using the history ofthe on�gurations. It is expeted that this biasing potential onverges (up to an additive onstant)toward the free energy F given by (4.80) in the long-time limit, so that the equilibrium distributionof the reation oordinate is the uniform distribution.The key idea ommon to all adaptive methods is to resort to a �xed point strategy, in order forthe observed free energy to onverge to a onstant or the mean fore to vanish, and the dynamisto reah equilibrium (see the updates (4.88) or (4.90) in the equilibrium ase and (4.93) or (4.94)in the nonequilibrium ase).Updating the biasing potential - The equilibrium aseTo derive a possible form for the biasing potential, let us �rst assume that the system isinstantaneously at equilibrium with respet to the biased potential Vt, i.e. Qt has density ψeq

t (q) =

Z−1
t exp(−βVt(q)). In this ase, resorting to (4.80), the observed free energy (see (4.91) for a generalde�nition) is

−β−1 ln

∫

M
ψeq
t (q) δξ(q)−z = F (z) − Fbias(t, z) + β−1 lnZt. (4.87)Thus, for a harateristi time τ to be hosen, an update of Fbias of the form

∂tFbias(t, z) = −β
−1

τ
ln

∫

M
ψeq
t (q) δξ(q)−z (4.88)is suh that F ′

bias(t) → F ′ when t → +∞ exponentially fast with rate 1/τ . Notie that we statedthe onvergene in terms of the mean fore, beause, in view of the onstant term β−1 lnZt inEq. (4.87), the potential of mean fore only onverges up to a onstant to the true potential ofmean fore.Similar onsiderations hold for the mean fore: replaing the potential V with Vt given by (4.86),and resorting to (4.81)-(4.82), the observed mean fore (see (4.92) for a general de�nition) is
∫

M
fVt(q)ψeq

t (q) δξ(q)−z
∫

M
ψeq
t (q) δξ(q)−z

= F ′(z) − F ′
bias(t, z), (4.89)



168 4 Computation of free energy di�erenessine fVt(q) = fV (q) − F ′
bias(t, ξ(q)). An update of F ′

bias(t) of the form
∂tF

′
bias(t, z) =

1

τ

∫
M fVt(q)ψeq

t (q) δξ(q)−z(dq)∫
M ψeq

t (q) δξ(q)−z(dq)
(4.90)is therefore suh that F ′

bias(t) → F ′ when t→ +∞ exponentially fast with rate 1/τ .Updating the biasing potential - The nonequililibrium aseNow, in general, the system is not at equilibrium for the potential Vt: ψt 6= ψeq
t . We use theabove proedure as a guideline to update the biasing potential Fbias(t, z). To derive equations forthe biasing potential, let us �rst de�ne two quantities. The �rst one is the observed free energy orthe observed potential of mean fore, de�ned as

Fpot,obs(t, z) = −β−1 ln

∫

M
ψt(q) δξ(q)−z . (4.91)This quantity an be interpreted as the free energy assoiated with the ensemble of on�gurationswith density of states ψt(q) (see Eq. (4.80)). The observed free energy Fpot,obs(t, z) is high whenthe number of visited states with reation oordinate value z is small. In the long-time limit, thedistribution of the reation oordinate is expeted to be uniform, so that the observed free energyis onstant.In the same way, the observed mean fore is de�ned as the onditional average of the time-dependent biasing fore for a given value of the reation oordinate:

F ′
force,obs(t, z) =

∫

M
fVt(q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

=

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

− F ′bias(t, z). (4.92)This quantity an be interpreted as the mean fore assoiated with ψt(q) (see Eqs. (4.81)-(4.82)),minus the biasing fore at time t. It is expeted to vanish in the long-time limit, so that theorresponding observed free energy is also onstant.The �xed point strategy relies on two di�erent ways of updating the bias (the updating funtions
gt and Gt are inreasing funtions suh that Gt(0) = 0):(i) The �rst strategy, whih may be alled Adaptive Biasing Potential (ABP) method, is thegeneralization of (4.88) to the nonequilibrium ase. The bias is updated in its potentialform, preferably inreased (resp. dereased) for reation oordinate values suh that theobserved free energy is high (resp. low):(ABP) ∂tFbias(t, z) = gt(Fpot,obs(t, z)); (4.93)(ii) The seond strategy, the usual ABF method, generalizes (4.90). The bias is updatedthrough the mean fore: the biasing fore is inreased (resp. dereased) for reation oor-dinate values suh that the observed mean fore is positive (resp. negative):(ABF) ∂tF

′bias(t, z) = Gt(F
′
force,obs(t, z)). (4.94)Let us emphasize at this point that the ABF and the ABP methods yield very di�erent biasingdynamis, sine the derivative of (4.91) with respet to z is di�erent from (4.92) (This is not thease when the system is at equilibrium: the derivative of (4.88) with respet to z is equal to (4.90)).This di�erene beomes ritial for multi-dimensional reation oordinates, where the biasing foreno longer derives from a potential in general.



4.4 Adaptive omputation of free energy di�erenes 169Consisteny of the methodLet us show that within this formalism, any stationary state of the ABP or ABF methodsgives the true mean fore F ′ to be omputed (and therefore the true PMF up to an additiveonstant). For a stationary state where the biasing potential has onverged to Fbias(∞), the ergo-diity property of the dynamis ensures that samples of on�gurations of the system are distributedaording to ψ∞ = Z−1
∞ exp[−β(V − Fbias(∞, ξ))].The observed free energy or mean fore given by Eqs. (4.91) and (4.92) then both verify

F ′
pot,obs(∞, z) = F ′

force,obs(∞, z) = F ′(z) − F ′bias(∞, z). The updating equations Eqs. (4.93)and (4.94) yield respetively
g∞(F (z) − Fbias(∞, z)) = 0, (4.95)
G∞(F ′(z) − F ′bias(∞, z)) = 0, (4.96)so that (taking the derivative with respet to z in (4.95)) F ′bias(∞) = F ′ in both ases thanksto the strit monotoniity of the updating funtions. Let us also notie that, at onvergene, thevalues of the reation oordinate are distributed uniformly: ∫M ψ∞(q) δξ(q)−z = 1.However, let us emphasize that we did not give any onvergene result at this point. Wemerely showed that, if the dynamis onverges, then the limiting state is the orret one. To proveonvergene starting from an arbitrary initial distribution is a di�ult task, and an only be donefor ertain dynamis (see the orresponding results in Setion 4.4.2).Appliation to usual adaptive dynamis and onvergene resultsWe present in this setion some appliations of the above formalism, and show that the usualadaptive methods an indeed be reovered. This is summarized in Table 4.9, whih gives a lassi-�ation of adaptive methods.Table 4.9. Classi�ation of adaptive methods.Adaptive Biasing Fore (∂tF ′

bias) Adaptive Biasing Potential (∂tFbias)Dimension n (V ) ABF [75,76, 157℄ ABP [368℄Dimension n+ 1 (V µ) m-ABF m-ABP [46,275℄MetadynamisAdaptive strategies an be used with metadynamis. The on�guration spae is extended byonsidering an additional variable z representing the reation oordinate, and the dynamis isdenoted t 7→ (Qt, Zt). The assoiated extended potential inorporates a oupling between this newvariable and the reation oordinate ξ:
V µ(q, z) = V (q) +

µ

2
(z − ξ(q))2,for some (large) µ > 0. In this ase, the new reation oordinate onsidered is ξmeta(q, z) = z andthe free energy is thus given by:

Fµ(z) = −β−1 ln

∫

M
exp(−βV µ(q, z)) dq.It is easy to hek that, up to an additive onstant, Fµ → F as µ→ +∞, with F given by (4.80).The adaptive strategies presented above applied to this extended dynamis allow to reover the free



170 4 Computation of free energy di�erenesenergy Fµ. The orresponding dynamis may be alled meta-Adaptive Biasing Potential (m-ABP)and meta-Adaptive Biasing Fore (m-ABF) methods.Strategies relying on biasing potentials are reminisent of �ooding strategies [140℄ suh as thenonequilibrium metadynamis [46℄. The latter is an example of an m-ABP method, where thebiasing potential is applied to the extended variable. The updating funtion does not depend ontime and is given by gt(x) = −γ exp(−βx) for some onstant γ > 0. The ensemble of on�gurationused in the adaptive update is obtained from M replias (Qi,Mt , Zi,Mt ) running in parallel, so that
ψt(q, z) ≃

1

M

M∑

i=1

δ(Qi,M
t ,Zi,M

t )−(q,z).The resulting biasing potential at time t penalizes the values of the reation oordinate alreadyvisited aording to (see (4.93)):
Fbias(t, z) ≃ FMbias(t, z) = − γ

M

M∑

i=1

∫ t

0

δZi,M
s −z ds. (4.97)In the ase of an overdamped Langevin dynamis withM = 1 for example, the resulting equationsof motion are therefore:





dQt = −∇V (Qt) dt+ µ(Zt − ξ(Qt))∇ξ(Qt) dt+
√

2β−1 dWQ
t ,

dZt = −µ(Zt − ξ(Qt)) dt+
√

2β−1 dWZ
t − γ∇z

(∫ t

0

δZs−z ds

)
dt,where the proesses WQ

t , WZ
t are independent standard Brownian motions. When in the lastequation and in (4.97) the Dira masses δZt−z are disretized using Gaussian funtions, the no-nequilibrium metadynamis desribed in [46, 275℄ are reovered. We also refer to [46℄ for an erroranalysis.The Wang-Landau algorithmAnother famous instane of an ABP dynamis, usually de�ned in disrete spaes, is the Wang-Landau algorithm [368℄. The biasing potential is onstruted in a similar fashion to (4.97), withoutextending the on�guration spae and with only one replia. The updating funtion is modi�edduring time as gt(x) = −γ(t) exp(−βx), so that
Fbias(t, z) = −

∫ t

0

γ(s) δξ(Qs)−z ds. (4.98)If γ(t) → 0 slowly enough, it is possible to prove the onvergene of the dynamis, the rate ofonvergene of γ(t) being ontrolled by the nonuniformity of the histogram of the time distributionof the reation oordinate (see [14℄ for more preisions on the onvergene results).The ABF methodThe usual ABF bias [157℄ is given by averaging the loal fore fV over the on�gurationsvisited by the system. It is reovered in the formalism we propose by onsidering one replia of thesystem, and an updating funtion of the form Gt(x) = γx in the limit γ → ∞. This gives indeed:
F ′bias(t, z) =

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

. (4.99)



4.4 Adaptive omputation of free energy di�erenes 171Sine there is only one replia, the density ψt(s) is approximated by a trajetorial distribution,for example
ψt(q) ≃

1

T

∫ t

t−T
δQs−q ds (4.100)for some averaging time T > 0 and t > T .For a rigorous onvergene result of the ABF algorithm with the update (4.99) in the ase ofan overdamped Langevin dynamis with an in�nite number of replias, see [207℄ and Setion 4.4.2.Pratial implementation strategiesRelying on the de�nition (4.83) of the distribution of on�gurations, adaptive dynamis anbe easily parallelized by using a large number M of replias that interat through the biasingpotential or the biasing fore. We �rst show in this setion how to disretize the dynamis andthe biasing potential, and then, how this implementation an be improved using some seletionproess.Disretization of the biasing potentialIn order to ompute in pratie the onditional or marginal distributions needed to updatethe biasing potential, there are basially two approahes, relying either on ergordi limits or onensemble averages. Both approahes may be ombined in pratie in order to obtain smoothpro�les. For example, when only a limited number of replias M is used, the density ψt(q) givenby (4.83) is not regular, and some loal averaging is neessary (see e.g. Eq. (4.101)).We detail the implementation in the ABF ase for example. The ABP ase an be treated in asimilar way (see also [275℄). The instantaneous onditional average of some funtion h is typiallyapproximated by

〈h〉t,z ≃ 〈h〉Mt,z =

M∑

i=1

h(Qi,Mt )δǫz(ξ(Q
i,M
t ))

M∑

i=1

δǫz(ξ(Q
i,M
t ))

,where Qi,Mt is the i-th replia at time t and δǫz is some approximation of the Dira distribution δz,suh as a gaussian funtion with standard deviation ǫ or the indiator funtion of an interval ofsize ǫ. In order to regularize these averages over the replias, some time averagings may be used(as in (4.100)) suh as
〈h〉t,z ≃

∫ t

0

Kτ (t− s)

[
M∑

i=1

h(Qi,Ms )δǫz(ξ(Q
i,M
s ))

]
ds

∫ t

0

Kτ (t− s)

[
M∑

i=1

δǫz(ξ(Q
i,M
s ))

]
ds

, (4.101)or
〈h〉t,z ≃

∫ t

0

Kτ (t− s)

[∑M
i=1 h(Q

i,M
s )δǫz(ξ(Q

i,M
s ))

∑M
i=1 δ

ǫ
z(ξ(Q

i,M
s ))

]
ds, (4.102)with a onvolution kernel Kτ (t). For instane, Kτ (t) = 1t≥0τ

−1e−t/τ . Many other regularizationsrelying on a (loal) ergodiity property ould of ourse be used.Enhaning the sampling through a seletion proessA general strategy to improve the straightforward parallel implementation (4.83) is to add aseletion step to dupliate "innovating" replias (replias loated in regions where the sampling of



172 4 Computation of free energy di�erenesthe reation oordinate is not su�ient), and kill "redundant" ones. One way to perform an e�ientseletion is to onsider an additional jump proess quanti�ed by a �eld S(t, z) over the reationoordinate values. Eah replia trajetory (Qi,Ms ) is then weighted by exp(
∫ t
0
S(s, ξ(Qi,Ms )) ds),whih naturally gives birth/death probabilities for the seletion mehanism, in the spirit of Se-quential Monte Carlo (SMC) methods [84℄ or Quantum Monte Carlo methods (QMC) [13℄ (seealso Setion 4.2, espeially for a possible numerial implementation using birth and death times).A possible hoie is

S = c
∂zzψ

ξ
t

ψξt
, (4.103)where c is a positive onstant. This method thus enhanes replias in the onvex areas of thedensity ψξt , where free energy barriers still need to be overome. When onvergene has oured,

ψξt is uniform and the seletion mehanism vanishes.Consider for example the modi�ed overdamped Langevin dynamis
dQt = −∇(V + 2β−1 ln |∇ξ| − Fbias(t, ξ))(Qt) |∇ξ|−2(Qt) dt

+
√

2β−1 |∇ξ|−1(Qt) dWt, (4.104)with the update (4.99): F ′
bias(t, z) = 〈fV 〉t,z. The proess Wt is the standard Brownian motion.This dynamis is the usual overdamped Langevin dynamis for the potential Vt when |∇ξ| = 1.Notie that in the ase of a metadynamis-like implementation ('m-ABF'), the modi�ed dynamisis atually the usual overdamped Langevin dynamis sine ξmeta(q, z) = z and thus |∇ξmeta| = 1.For the dynamis (4.104), the distribution ψξt of the reation oordinate satis�es (see Setion 4.4.2)

∂tψ
ξ
t = β−1∂zzψ

ξ
t .When the seletion step is used with the overdamped Langevin dynamis (4.104), it an be shownthat the distribution of the reation oordinate values ψξt still satis�es a simple di�usion equation,but with a higher di�usion onstant:

∂tψ
ξ
t = (β−1 + c)∂zzψ

ξ
t .This method thus enhanes the di�usion in the reation oordinate spae, but the onvergenerate is still limited by the relaxation in eah submanifold ξ(q) = z.Numerial resultsWe �nally present an appliation of the seletion strategy proposed above to the model sys-tem of onformational hange in solution of Setion 4.1.4. In pratie, the Dira distribution areapproximated by indiator funtions of intervals of size ∆z = 0.05. The parameters used for theseomputations are N = 16 partiles, at partile density ρ = N/l2 = 0.25σ−2, σ = 1, w = 0.7, ǫ = 1and h = 20, β = 5. We onsiderM = 2000 replias evolving aording to an overdamped Langevindynamis, with a time step ∆t = 10−4. The referene omputation is done with M = 5000 repli-as and averaging the mean fore pro�le on the time interval [5, 10]. The pro�les are regularizedin time by using (4.102) with τ/∆t = 100. The initial onditions are suh that the dimer bondlengths of all replias are lose to r0. We onsider in the sequel the interval [z0, z1] = [1.1, 2.55](sine r0 ≃ 1.122, r0 + 2w ≃ 2.522 and ∆z = 0.05), ontaining n = 30 bins.We present in Figure 4.15 free energy di�erene pro�les (averaged over K = 100 independentrealizations) obtained with the parallel ABF dynamis (4.99), with and without the birth/deathseletion term (4.103) (with c = 10), at a �xed time tfigure = 0.1. The standard deviation of thepro�les (F ′

1, . . . , F
′
K) for K independent realizations is



4.4 Adaptive omputation of free energy di�erenes 173
σF ′(z) =

√√√√ 1

K − 1

K∑

k=1

(F ′
k(z) −F ′(z))2,where F ′(z) = 1

K

∑K
k=1 F

′
k(z) is the mean fore averaged over all the realizations. The assoiated95% on�dene intervals (or errors bars) are

[F ′
−(z), F ′

+(z)] =

[
F ′(z) − 1.96√

K
σF ′(z), F ′(z) +

1.96√
K
σF ′(z)

]
. (4.105)The urves plotted in solid lines in Figure 4.15 are the averages F ′, and the urves plotted indashed lines are F ′

− and F ′
+. Notie that the mean fore pro�le obtained when the seletionproess is turned on is onverged (sine the urves F ′, F ′

−, F ′
+ and the referene urve are almostindistinguishable).
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Fig. 4.15. Free energy di�erene pro�les obtained with the parallel ABF algorithm (in redued units), fora time tfigure = 0.1 and averaged over K = 100 independent realizations: with birth/death proess (c = 10)and without birth/death proess. The urve orresponding to the referene omputation oinides withthe urve obtained when the seletion is turned on. Solid line: average mean fore; dashed lines: upperand lower bounds of the 95% on�dene intervals (see Eq. (4.105)).The omparison with the referene pro�le shows that the seletion proess improves the rateof onvergene of the algorithm and aelerates the exploration proess on the free energy surfae.Indeed, the pro�le obtained when the seletion proess is turned on is very quikly really loseto the referene pro�le. On the other hand, with a straightforward parallelization, only a smallfration of replias has esaped from the initial free energy metastable state at time tfigure toexplore the free energy metastable set orresponding to bond lengths around r0 + 2w.To preise these qualitative features, we further perform two quantitative studies for severalvalues of c:(i) Tables 4.10 and 4.11 make preise the onvergene of the pro�les to the referene pro�lein a quantitative way. The measure of error we onsider is
δF = max

z0≤z≤z1
|F(z) − Fref(z)|,



174 4 Computation of free energy di�ereneswhere Fref is the referene pro�le, and F(z) =
∫ z
z1
F ′ is the averaged potential of meanfore, obtained as the integral of the mean fore averaged over all the realizations. Inpratie, we onsider the following approximated deviation between PMF pro�les:

δFn = max
0≤i≤n

∣∣∣∣∣∣

i∑

j=1

F ′(sj) − F ′
ref(sj)

∣∣∣∣∣∣
∆z. (4.106)A 95% on�dene interval is obtained as [δ−Fn, δ+Fn], with

δ±Fn = max
0≤i≤n

∣∣∣∣∣∣

i∑

j=1

F ′(sj) ±
1.96√
K
σF ′ (sj) + F ′

ref(sj)

∣∣∣∣∣∣
∆z.(ii) Figure 4.16 presents the fration of replias whih have rossed the free-energy barrier(averaged aver the K = 100 realizations), i.e. the instantaneous fration of partiles suhthat r ≥ r0 +w. Notie that we expet this fration to onverge to 0.5 (up to some errorsdue to statistial �utuations and to the binning of [z0, z1]).Table 4.10. Deviation δFn from the referene PMF pro�le (given by Eq. (4.106)) as a funtion of theseletion parameter c (c = 0 when the seletion is turned o�) and the simulation time tsimu. The 95%on�dene interval [δ−Fn, δ

+Fn] is given in brakets. tsimu = 0.05 0.1 0.2 0.40 9.51 (7.73-11.3) 18.0 (14.8-21.2) 19.5 (18.3-20.7) 0.066 (0.056-0.075)2 20.4 (17.0-23.8) 5.69 (5.55-5.82) 0.020 (0.016-0.023) 0.034 (0.029-0.038)5 22.9 (20.9-24.9) 0.22 (0.19-0.25) 0.027 (0.022(0.032) 0.026 (0.022-0.031)10 10.4 (10.4-10.4) 0.035 (0.029-0.041) 0.028 (0.023-0.032) 0.032 (0.027-0.037)
Table 4.11. Deviation δFn from the referene PMF pro�le (and assoiated error bars) when c = 10 fordi�erent number of replias (K = 50 realizations).number of replias tsimu = 0.05 0.1 0.41000 23.3 (20.4-26.3) 0.45 (0.39-0.50) 0.064 (0.054-0.074)2000 11.2 (11.2-11.2) 0.034 (0.025-0.042) 0.032 (0.024-0.039)10,000 2.05 (1.54-2.56) 0.026 (0.019-0.033) 0.022 (0.016-0.028)As an be seen from the di�erent esaping pro�les of Figure 4.16, the seletion proess reallyaelerates the transition from one free energy metastable state to the other. This is due to thefat that the birth and death jump proess triggers non loal moves, as opposed to the traditionaldi�usive exploration of adaptive dynamis. The numerial results of Table 4.10 show that it isvery interesting to onsider a seletion proess, espeially at the early stages of the simulation.This seletion is even more e�ient when the number of replias inreases (see Table 4.11). Inonlusion, the seletion proess seems to be an e�ient tool to improve the exploration power ofthe adaptive dynamis.
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c=0Fig. 4.16. Average fration of the replias in the region r ≥ r0 + w as a funtion of time, for c = 0 (noseletion), c = 2, c = 5, c = 10.4.4.2 Rigorous onvergene results for the Adaptive Biasing Fore methodWe present in this setion a proof of onvergene for the following dynamis, whih is of ABFtype:
dQt = −∇(V − Fbias(t, ξ) + 2β−1 ln(|∇ξ|))(Qt) |∇ξ|−1(Qt) dt+

√
2β−1|∇ξ|−1(Qt)dWt, (4.107)using the update (4.99) for the biasing fore, that is

F ′bias(t, z) =

∫

M
fV (q)ψt(q) δξ(q)−z
∫

M
ψt(q) δξ(q)−z

. (4.108)We assume in this setion that the density ψt of the distribution of Xt is well-de�ned at all times.The proof presented here is atually restrited to the ase
q = (z, q̃) ∈ M = T × Rn−1, ξ(q) = z,

T denoting the one-dimensional torus R/Z. In this ase, Σz = {(z, q̃), q̃ ∈ Rn−1}, and |∇ξ(q)| = 1so that the dynamis onsidered oinides with the usual overdamped dynamis when the biasingterm is added. The ase of a general one-dimensional reation oordinate ξ : Rn → R is treatedin [A1℄, where a onvergene result for higher dimensional reation oordinates is also stated,provided the temperature is large enough.After a brief review on the most important results for onvergene results relying on entropyestimates, we present a mathematial onvergene result in the simpli�ed setting onsidered inthis setion, and �nally give the orresponding proof.Some bakground on logarithmi Sobolev inequalities and their appliations instatistial physisThe aim of this preliminary setion is to give some bakground on entropy tehniques with afous on logarithmi Sobolev inequalities, whih an be used to show the onvergene to the equi-



176 4 Computation of free energy di�ereneslibrium state. More material an be read in the review papers by Guionnet and Zegarlinski [143℄,Ledoux [202℄ and Arnold, Markowih, Tosani and Unterreiter [10℄ (this last paper having rathera PDE approah).For simpliity, we will onsider an invariant measure of Boltzmann-Gibbs type, having a densitywith respet to the Lebesgue measure:
ψ∞(q) dq = Z−1 e−βV (q) dq, Z =

∫

M
e−βV (q) dq,and the overdamped Langevin dynamis on the on�guration spae M:

dQt = −∇V (Qt) dt+

√
2

β
dWt. (4.109)It an be assumed without loss of generality that β = 1 (replaing the potential V by βV ). Thedensity ψ(t, ·) ≡ ψt(·) of the law of Qt evolves aording to the Fokker-Plank equation

∂tψt = ∇ ·
(
ψ∞∇

(
ψt
ψ∞

))
.Notie that ψt is the density of a probability measure, so that ∫M ψt = 1. Sine ψ∞ is a stationarysolution of the above equation, it is expeted that ψt(q) → ψ∞(q) as t→ +∞. This is indeed thease when the dynamis is ergodi and an exponential rate of onvergene an even be obtainedwhen a onvenient Lyapounov funtion an be found (see Setion 3.2.3). However, the Lyapounovondition (3.45) may be di�ult to hek.An alternative way to obtain exponential onvergene of the density ψt to the target densityis to resort to entropy estimates. Consider the onvex funtion

Φ(x) = x lnx− x+ 1,and de�ne the relative entropy of ψt with respet to ψ∞ as
H(ψt |ψ∞) =

∫

M
Φ

(
ψt
ψ∞

)
ψ∞ =

∫

M
ln

(
ψt
ψ∞

)
ψt (4.110)sine ∫M ψt = 1. Jensen's inequality shows that

H(ψt |ψ∞) =

∫

M
Φ

(
ψt
ψ∞

)
ψ∞ ≥ Φ

(∫

M

ψt
ψ∞

ψ∞

)
= Φ(1) = 0.An alternative proof of the non-negativity of the entropy an be done by remarking that Φ ≥ 0.Atually, Φ(x) > 0 if and only of x 6= 1, so that H = 0 if and only if ψt = ψ∞ almost everywhere.Straightforward omputations also show that

d

dt
H(ψt |ψ∞) = −I(ψt |ψ∞), (4.111)where I is the Fisher information of ψt with respet to ψ∞: Denoting ft = ψt/ψ∞,

I(ψt |ψ∞) =

∫

M

|∇ft|2
ft

ψ∞ ≥ 0.Equality (4.111) therefore implies the deay of the relative entropy. An exponential deay rate anbe obtained when ψ∞ satis�es a logarithmi Sobolev inequality (LSI) with onstant ρ.



4.4 Adaptive omputation of free energy di�erenes 177De�nition 4.1. The probability measure ψ∞(q) dq satis�es a logarithmi Sobolev inequality withonstant ρ > 0 (in short: LSI(ρ)) if
∀f ∈ L1(ψ∞), f ≥ 0,

∫

M
fψ∞ = 1,

∫

M
Φ(f)ψ∞ ≤ 1

2ρ

∫

M

|∇f |2
f

ψ∞. (4.112)In other words, for all probability measures absolutely ontinuous with respet to the Lebesguemeasure, with density φ(q) dq,
H(φ |ψ∞) ≤ 1

2ρ
I(φ |ψ∞).Then, ombining (4.111) and (4.112), it follows, using a Gronwall inequality:

0 ≤ H(ψt |ψ∞) ≤ H(ψ0 |ψ∞) e−2ρt.The onvergene ψt → ψ∞ an be preised using the Csizár-Kullbak inequality:
∫

M
|ψt − ψ∞| ≤ 2

√
H(ψt |ψ∞),whih implies an exponentially fast onvergene of ψt to ψ∞ in L1(M).Obtaining logarithmi Sobolev inequalitiesTo prove onvergene results for the density of the proess suh as (4.109), it therefore su�esto show that a LSI of the form (4.112) holds for the target measure ψ∞(q) dq = Z−1 exp(−V (q)) dq(reall that we assumed β = 1 thoughout this setion). A LSI an for instane be obtained in thefollowing ases:(i) when the potential V satis�es a strit onvexity ondition of the form Hess(V ) ≥ ρ Id with

ρ > 0, then a LSI with onstant ρ holds, as �rst shown by Bakry and Emery [19℄;(ii) when ψ∞ =
∏M
i=1 ψ

i
∞ and eah measure ψi∞(q) dq satisi�es a LSI with onstant ρi, then

ψ∞ satis�es a LSI with onstant ρ = min{ρ1, . . . , ρM} (see Gross [139℄);(iii) when a LSI with onstant ρ is satis�ed by Z−1
V e−V (q) dq, then Z−1

V+W e−(V (q)+W (q)) dq (with
W bounded) satis�es a LSI with onstant ρ̃ = ρ einfW−supW . This property expresses somestability with respet to bounded pertubations (see Holley and Strook [169℄);(iv) there are also results on a global LSI for the measure when a marginal and the orrespon-ding onditional law satisfy a LSI (see Blower and Bolley [33℄), or when all the marginalssatisfy a LSI under some weak oupling assumption (see Otto and Rezniko� [263℄).A PDE formulation and a preise statement of the resultSine only the law of the proess Qt at a �xed time t is used in (4.107)-(4.108), it is possibleto reast the dynamis in terms of a nonlinear partial di�erential equation (PDE) on the density

ψ(t, ·) of Qt (reall that ξ(q) = ξ(z, q̃) = z):




∂tψ = div
(
∇(V − Fbias(t, z))ψ + β−1∇ψ

)
,

F ′
bias(t, z) =

∫

Rn−1

∂zV (z, q̃)ψ(t, z, q̃) dq̃
∫

Rn−1

ψ(t, z, q̃) dq̃

.
(4.113)



178 4 Computation of free energy di�erenesMeasure of the onvergeneLet us introdue the longtime limit of the distribution of Xt:
ψ∞ = exp(−β(V − F ◦ ξ)),and the longtime limit of the marginal and onditional laws:

ψξ∞(z) =

∫

Rn−1

ψ∞(z, q̃) dq̃ ≡ 1, dµ∞,z(q̃) =
ψ∞(z, q̃) dq̃

ψξ∞(z)
.The �distane� between ψ (respetively ψξ) and ψ∞ (respetively ψξ∞) is measured using therelative entropy H(ψ|ψ∞) de�ned in (4.110) (respetively H(ψξ|ψξ∞)). In the following, the �total�entropy is denoted by

E(t) = H(ψ(t, ·)|ψ∞),the �marosopi entropy� by
EM (t) = H(ψξ(t, ·)|ψξ∞),the �loal entropy� at a �xed value z of the reation oordinate by

em(t, z) = H(µt,z|µ∞,z) =

∫

Rn−1

ln

(
ψ(t, z, q̃)

ψξ(t, z)

/ψ∞(z, q̃)

ψξ∞(z)

)
ψ(t, z, q̃) dq̃

ψξ(t, z)
,and �nally the �mirosopi entropy� by

Em(t) =

∫

T

em(t, z)ψξ(t, z) dz.It is straightforward to obtain the following result whih an be seen as a property of extensivityof the entropy:Lemma 4.2 (Extensivity of the entropy). The total entropy an be deomposed as the sum ofthe marosopi and the mirosopi entropies:
E(t) = EM (t) + Em(t).Remark 4.5 (On the hoie of the entropy). In the ase of linear Fokker Plank equations, itis well known that one an obtain exponential deay to equilibrium by onsidering various entropiesof the form ∫ h(dµdν) dµ, where h is typially a stritly onvex funtion suh that h(1) = 0 (see [10℄for more assumptions required on h). For example, the lassial hoie h(x) = 1

2 (x− 1)2 is linkedto Poinaré type inequalities and leads to L2-onvergene, while the funtion h(x) = x lnx− x+ 1used here to build the entropy is linked to logarithmi Sobolev inequalities and leads to L1 lnL1-onvergene. However, for the study of the non-linear Fokker Plank equation (4.113), it seemsthat the hoie h(x) = x lnx − x + 1 is important to derive the estimates, sine the extensivityproperty of Lemma 4.2 is fundamental for the proof presented here.Let us also introdue another way to ompare two probability measures, namely the Wassersteindistane with quadrati ost:
W (µ, ν) =

√
inf

π∈Π(µ,ν)

∫

Rn−1×Rn−1

|q̃ − q̃′|2 dπ(q̃, q̃′)where Π(µ, ν) denotes the set of oupling probability measures, namely probability measures on
Rn−1 × Rn−1 suh that their marginals are µ and ν. We need the following de�nition:



4.4 Adaptive omputation of free energy di�erenes 179De�nition 4.2. The probability measure ν satis�es a Talagrand inequality with onstant ρ > 0(in short: T(ρ)) if for all probability measures µ suh that µ ≺ ν (i.e. µ is absolutely ontinuouswith respet to ν),
W (µ, ν) ≤

√
2

ρ
H(µ|ν).In the last de�nition, we impliitly assume that the probability measures have �nite moments oforder 2, whih will be always the ase for all the probability measures we onsider. We will needthe following important result (see [264, Theorem 1℄).Lemma 4.3. If ν satis�es LSI(ρ), then ν satis�es T(ρ).Convergene resultsProposition 4.6. The marginal ψξ satis�es the following di�usion equation on T:

∂tψ
ξ =

1

β
∂z,zψ

ξ (4.114)and
∀t ≥ 0, I(ψ(t, ·) |ψ∞) ≤ I(ψ(0, ·) |ψ∞) exp(−8π2β−1t). (4.115)The proof of (4.114) is straightforward (by inegrating (4.113) with respet to q̃ ∈ Rn−1), andimplies the onvergene of the marginals (see Lemma 4.4 for the omplete proof of this proposition).To prove the global onvergene, we need some additional assumptions (on the potential V ):Theorem 4.3. Let (ψ, F ′

bias(t)) be a smooth solution to (4.113), and assume(H1) The funtion V is suh that ‖∂z,q̃V ‖L∞ ≤M <∞;(H2) There exists ρ > 0 suh that for all z ∈ M, the onditional measure µ∞,z satis�es LSI(ρ).Then,(i) the �mirosopi entropy� Em satis�es
Em(t) ≤ C2 exp(−2λt) (4.116)where C = 2 max

(√
Em(0),Mβ|ρ− 4π2|−1

√
I0
2ρ

) with I0 = I(ψ(0, ·) |ψ∞), and
λ = β−1 min(ρ, 4π2).In the speial ase ρ = 4π2, it holds √Em(t) ≤

(√
Em(0) +M

√
I0
2ρ t
)

exp(−4π2β−1 t).(ii) The mean fore observed at time t F ′
bias(t) onverges to the mean fore F ′ in the followingsense:

∀t ≥ 0,

∫

T

|F ′
bias(t) − F ′|2(z)ψξ(t, z) dz ≤ 2M2

ρ
Em(t). (4.117)Therefore, there exist C, t > 0 suh that

∀t ≥ t,

∫

T

|F ′
bias(t) − F ′|(z) dz ≤ C exp(−λt). (4.118)This theorem therefore shows that F ′

bias(t) onverges exponentially fast to F ′ at a rate
λ = β−1 min(ρ, 4π2). The limitations on the rate λ are linked to the rate of onvergene atthe marosopi level, on the equation (4.114) satis�ed by ψξ, and the rate of onvergene at themirosopi level, whih depends on the onstant ρ of the logarithmi Sobolev inequalities satis�edby the onditional measures µ∞,z. This onstant depends of ourse on the hoie of the reation



180 4 Computation of free energy di�erenesoordinate. In our framework, we ould state that a �good reation oordinate� is suh that ρ isas large as possible.Notie also that a onsequene of (4.116), (4.115) and Lemma 4.2 is that the �total entropy� Ealso deays exponentially fast to zero, with the same rate λ. Therefore, by the Csiszár-Kullbakinequality, ψ(t, ·) onverges exponentially fast to ψ∞ in L1(Rn) norm.Remark 4.6 (On the initial ondition). If ψξ(0, ·) is zero at some points or is not su�ientlysmooth, then F ′
bias(0) may be not well de�ned or I(ψξ(0, ·)|ψξ∞) may be in�nite. But sine weshow that ψξ satis�es a simple di�usion equation (see item 1 in Theorem 4.3), these di�ultiesdisappear as soon as t > 0. Therefore, up to onsidering the problem for t ≥ t∗ > 0, we an supposethat ψξ(0, ·) > 0.It an be heked that the assumptions (H1) and (H2) are satis�ed in this ontext for apotential V of the following form:

V (z, q̃) = V0(z, q̃) + V1(z, q̃)where α = infT×Rn−1 ∂q̃,q̃V0 > 0, ‖V1‖L∞ < ∞, ‖∂z,q̃(V0 + V1)‖L∞ < ∞, with the hoie M =

‖∂z,q̃V ‖L∞ , ρ = (infT×Rn−1 ∂q̃,q̃V0) exp(−os V1), where os V1 = supT×Rn−1 V1 − infT×Rn−1 V1. Inwords, the potential V is a uniformly α-onvex potential in the q̃ variable (therefore satisfying aLSI thanks to the Bakry-Emery riterion), perturbed by some bounded potential. The (almost)
α-onvexity in the variables orthogonal to the reation oordinate is indeed natural enough sineit is expeted that the metastable features of the potential are in the reation oordinate variable.Proofs of Proposition 4.6 and Theorem 4.3To simplify the presentation of the proof, we assume β = 1, up to the following hange ofvariable: t̃ = β−1t, ψ̃(t̃, q) = ψ(t, q), Ṽ (q) = βV (q).Lemma 4.4 (Convergene of the Fisher information). Let φ be a positive funtion de�nedfor t ≥ 0 and z ∈ T, satisfying

∂tφ = ∂z,zφ on T,

∫

T

φ = 1. (4.119)Denoting by φ∞ ≡ 1 the longtime limit of φ, it holds
∀t ≥ 0, I(φ(t, ·) |φ∞) ≤ I(φ(0, ·) |φ∞) exp(−8π2t).Proof. Denoting by u =

√
φ, it follows
I(φ |φ∞) =

∫

T

|∂z lnφ|2φ = 4

∫
|∂zu|2.Moreover, from the di�usion equation (4.119),

∂tu = ∂z,zu+
(∂zu)

2

u
.Therefore,
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d

dt

∫

T

(∂zu)
2 = 2

∫

T

∂z,z,zu ∂zu+ 2

∫

T

∂z

(
(∂zu)

2

u

)
∂zu,

= −2

∫

T

(∂z,zu)
2 − 2

∫

T

(∂zu)
2

u
∂z,zu,

= −2

∫

T

(∂z,zu)
2 − 2

∫

T

∂z((∂zu)
3)

3u
,

= −2

∫

T

(∂z,zu)
2 − 2

3

∫

T

(∂zu)
4

u2
,so that �nally

d

dt

∫

T

(∂zu)
2 ≤ −8π2

∫

T

(∂zu)
2,where we have used the Poinaré-Wirtinger inequality on T, applied to ∂zu: For any funtion

f ∈ H1(T), ∫

T

(
f −

∫

T

f

)2

≤ 1

4π2

∫

T

(∂zf)2.This Poinaré inequality is obtained by studying the spetral gap of the operator ∂z,z on [0, 1]. ⊓⊔We now turn to the proof of Theorem 4.3. One fundamental lemma for the following isLemma 4.5. The di�erene between the �urrent mean fore� F ′
bias(t) and the mean fore F ′ anbe expressed in term of the densities as

F ′
bias(t) − F ′ =

∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ

ψξ
dq̃ − ∂z ln

(
ψξ

ψξ∞

)
.Proof. This is a simple omputation:

∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ

ψξ
dq̃ − ∂z ln

(
ψξ

ψξ∞

)
=

∫

Rn−1

∂z lnψ
ψ

ψξ
dq̃ −

∫

Rn−1

∂z lnψ∞
ψ

ψξ
dq̃ − ∂z lnψξ,

=

∫

Rn−1

∂zψ

ψξ
dq̃ +

∫

Rn−1

∂z(V − F )
ψ

ψξ
dq̃ − ∂z lnψξ,

= F ′
bias(t) − F ′,whih onludes the proof. ⊓⊔We will also use the following estimates:Lemma 4.6. Under the assumptions (H1)�(H2), it holds, for all t ≥ 0 and for all z ∈ T,

|F ′
bias(t, z) − F ′(z)| ≤ ‖∂z,q̃V ‖L∞

√
2

ρ
em(t, z).Proof. For any oupling measure π ∈ Π(µt,z, µ∞,z),

|F ′
bias(t, z) − F ′(z)| =

∣∣∣∣
∫

Rn−1×Rn−1

∂zV (z, q̃) − ∂zV (z, q̃′)π(dq̃, dq̃′)

∣∣∣∣ ,

≤ ‖∂z,q̃V ‖L∞

∫
|q̃ − q̃′|π(dq̃, dq̃′)

≤ ‖∂z,q̃V ‖L∞

√∫
|q̃ − q̃′|2 π(dq̃, dq̃′).



182 4 Computation of free energy di�erenesTaking now the in�mum over all π ∈ Π(µt,z, µ∞,z) and using (2) together with Lemma 4.3, itfollows
|F ′

bias(t, z) − F ′(z)| ≤ ‖∂z,q̃V ‖L∞W (µt,z, µ∞,z) ≤ ‖∂z,q̃V ‖L∞

√
2

ρ
H(µt,z |µ∞,z),whih onludes the proof. ⊓⊔Lemma 4.7.When (H2) is satis�ed,

∀t ≥ 0, Em(t) ≤ 1

2ρ

∫

T×Rn−1

∣∣∣∣∂z ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ.Proof. Using (H2), it follows
Em =

∫

T

emψ
ξ dz ≤

∫

T

1

2ρ

∫

Rn−1

∣∣∣∣∂z ln

(
ψ

ψξ

/ψ∞

ψξ∞

)∣∣∣∣
2
ψ

ψξ
dq̃ ψξ dz,whih yields the result sine ψξ/ψξ∞ does not depend on q̃. ⊓⊔We are now in position to prove the �rst assertion (4.116) of Theorem 4.3. The equation on ψan be rewritten as:

∂tψ = div

(
ψ∞∇

(
ψ

ψ∞

))
+ ∂x((F

′ − F ′
bias(t))ψ).Therefore, after integration by parts, using a Cauhy-Shwarz inequality and Lemma 4.5,

d

dt
Em =

d

dt
E − d

dt
EM ,

= −
∫

M

∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ +

∫

M
(F ′

bias(t) − F ′)∂z ln

(
ψ

ψ∞

)
ψ +

∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

= −
∫

M

∣∣∣∣∂q̃ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ −
∫

M

∣∣∣∣∂z ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ

+

∫

T

(∫

Rn−1

∂z ln

(
ψ

ψ∞

)
ψ dq̃

)2
1

ψξ
dz −

∫

M
∂z ln

(
ψξ

ψξ∞

)
∂z ln

(
ψ

ψ∞

)
ψ

+

∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

≤ −
∫

M

∣∣∣∣∂q̃ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ −
∫

T

∂z ln

(
ψξ

ψξ∞

)
ψξ(F ′

bias(t) − F ′).Using now Lemmata 4.6 and 4.7,
d

dt
Em ≤ −2ρEm +

√∫

T

|F ′
bias(t) − F ′|2 ψξ

√∫

T

∣∣∣∣∂z ln

(
ψξ

ψξ∞

)∣∣∣∣
2

ψξ,

≤ −2ρEm + ‖∂z,q̃V ‖L∞

√
2

ρ
Em

√
I(ψξ |ψξ∞).With Lemma 4.4, it then follows

d

dt

√
Em ≤ −ρ

√
Em + ‖∂z,q̃V ‖L∞

√
I(ψξ(0, ·) |ψξ∞)

2ρ
exp(−4π2t),



4.4 Adaptive omputation of free energy di�erenes 183from whih (4.116) is dedued.Let us now turn to the proof of the seond item of Theorem 4.3. Notie �rst that ‖ψ(t, ·) −
ψ∞‖L∞ → 0 when t → +∞. This results from the exponentially fast H1(R3) onvergene of
ψξt → ψξ∞ (whih an be proved using Lemma 4.4) and the inequality

∥∥∥∥f −
∫

T

f

∥∥∥∥
2

L∞(T)

≤
∫

T

(∂zf)2applied to f = ψξ. Sine ψξ∞ ≡ 1, it holds
∫

T

|F ′
bias(t) − F ′| =

∫
T
|F ′

bias(t) − F ′|ψξ∞ =

∫

T

|F ′
bias(t) − F ′|ψξ −

∫

T

|F ′
bias(t) − F ′|(ψξ − ψξ∞)

≤
∫

|F ′
bias(t) − F ′|2ψξ + ‖ψ(t, ·) − ψ∞‖L∞

∫

T

|F ′
bias(t) − F ′|.Thus, for t su�iently large, ∫

T
|F ′

bias(t)−F ′| is bounded from above by c ∫
T
|F ′

bias(t)−F ′|2ψξ (forsome c > 0), whih yields (4.118) (using (4.117) and (4.116)).





Part III
Shok Waves: a Multisale Approah





5A redued model for shok waves
5.1 A simpli�ed one-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1885.1.1 Shok waves in one-dimensional latties . . . . . . . . . . . . . . . . . . . . . . . . . . . 1885.1.2 An augmented one-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1935.1.3 The stohasti limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015.1.4 Extension to the reative ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2055.2 A redued model based on Dissipative Partile Dynamis . . . . . . . . . 2085.2.1 Previous mesosopi models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2085.2.2 A redued model in the inert ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095.2.3 The reative ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214Multimillion atom simulations are nowadays ommon in moleular dynamis (MD) studies.However, the time and spae sales numerially tratable are still far from being marosopi,so that redued models are of primary interest when multisale phenomena are onsidered. Inpartiular, the simulation of shok waves is a hallenging task, involving very small time andspae sales and large energies near the shok front, and muh larger time and spae sales andlower energies for the relaxation of the shoked materials, inluding the evolution of disloationsloops for example.The situation is even worse for detonation waves (Roughly speaking, a detonation wave isa shok wave ombined with very exothermi hemial reations, see [103℄ for a fundamentalreferene). The simulation of detonation requires the desription of a thin shok front, moving ata high veloity, usually using a ompliated empirial potential able to treat the hemial eventshappening (dissoiation, reombination). To this end, toy moleular models were proposed at theearly stages of the moleular simulation of detonation (see e.g. [269℄), until the �rst all-atomstudies in the 90's [38, 39℄. Suh omputations are nowadays ommon (see for example [327℄ for astate of the art study), but are still limited in spatial and temporal sizes, so that a redued modelfor detonations is of interest.Some redued models for shok waves were proposed, for polyrystalline materials [163℄ orresorting to mesopartiles with internal degrees of freedom [326℄ (see a brief overview of all thosemethods in Setion 5.2.1). The latter approah seems to be the most promising and the mostgeneral one, and onsists in replaing a omplex moleule by a single partile. The introdution ofan internal degree of freedom desribing in a mean way the behavior of several degrees of freedomis reminisent from Dissipative Partile Dynamis (DPD) models [98,170℄, whih aim at desribingomplex �uids through some mesodynamis with some additional variables.We present in this hapter redued model for shok and detonation waves desribed at the mi-rosopi level. Starting in Setion 5.1 from a very simple one-dimensional (1D) model where themain features of shok waves are already present, we show how a model redution of dimensionality



188 5 A redued model for shok wavesan be performed under some deoupling or low-oupling assumptions. Though the initial modelis deterministi, the obtained model is stohasti: more preisely, the many-body interations arereplaed by some generalized frition (with memory) depending on the relative veloities of neigh-boring partiles (whih is reminisent of DPD models), and the system is governed by a generalizedLangevin equation instead of the usual Hamiltonian dynamis. However, the temperature jumpsaross the shok front are not reprodued orretly.Building on this one-dimensional model, a simpli�ed DPD dynamis preserving the total energyof the system is proposed in Setion 5.2. Within suh a model, temperature jumps aross the shokfront an be treated. It is also a onvenient framework for an extension to hemially reative shokwaves (detonations).5.1 A simpli�ed one-dimensional modelWe begin in Setion 5.1.1 with some introdution to 1D lattie motion, and brie�y report onsome theoretial results and numerial experiments on piston-impated shoks. It is shown that,in the absene of a spei� treatment, the shok pro�les generated signi�antly di�er from shokwaves. Espeially, their thiknesses grow linearly with time [166,359℄, there is no usual equilibrationdownstream the shok front [87,168,359℄, and relaxation waves do not behave as expeted. Indeed,one would expet the shok wave to be a self-similar jump separating two domains at loal thermalequilibrium at di�erent temperatures. The relaxation waves should then ath up the shok frontand weaken the shok wave until it disappears. So, we have to introdue higher-dimensional e�ets,at least in an averaged way. This is performed in Setion 5.1.2. The onnetion of the hain witha heat bath onsisting of a large number of harmoni osillators, seems to be a good remedy forspurious 1D e�ets. The shoks generated have onstant thiknesses and relaxation waves appearto be properly modelled. We also present the stohasti limit of this model in Setion 5.1.3, andan extension to the reative ase in Setion 5.1.4.5.1.1 Shok waves in one-dimensional lattiesThe aim of this setion is to derive and assess the validity of a simpli�ed mirosopi modelof shok waves whih an useful for a more general derivation. Shok waves are intrinsiallypropagative phenomena. It is thus reasonable to desribe them within a 1D marosopi theory.In some ases depending on the geometry, this approximation has proven to be orret [73℄.A 1D lattie seems an appropriate model that ould, in addition, allow for some mathematialtreatment and thus a better theoretial understanding of the phenomena and mehanisms atplay. Indeed, many mathematial results are known about the behavior of waves in 1D latties,onerning the existene of loalized waves [117,315℄, the form of those waves in the high-energylimit [115℄ or in the low-energy limit [116℄, or the behavior under shok [104℄. There also existextended results for a partiular interation between sites, the Toda potential [344℄ : the strutureof a 1D shok is then preisely known, at least in some regime [359℄.Desription of the lattie modelConsider a one-dimensional hain of partiles with nonlinear nearest-neighbor interations,desribed by a potential V . Initially, the partiles are at rest at positions Xn(0) = nd, whih isan equilibrium state for the system. All the masses are set to 1. The normalized displaementof the n-th partile from its equilibrium position is xn(t) = 1
d(Xn(t) − Xn(0)). The followingnormalization onditions [166℄ for the interation potential V an be used:

V (0) = 0, V ′(0) = 0, V ′′(0) = 1. (5.1)



5.1 A simpli�ed one-dimensional model 189The �rst ondition is more a shift on the energy referene, the seond one expresses the fat that
x = 0 is the equilibrium position, and the last one amounts to a resaling of time. The so-alled�redued relative displaement� is de�ned as δxn(t) = xn+1(t) − xn(t).The Hamiltonian of the system is:

HS({qn, pn}) =

∞∑

n=−∞
V (qn+1 − qn) +

1

2
ṗ2
n, (5.2)where (qn, pn) = (xn, ẋn). The Newton equations of motion read:

ẍn = V ′(xn+1 − xn) − V ′(xn − xn−1). (5.3)The potential taken here an either have a physial origin, like the 1D Lennard-Jones potential:
VLJ(x) =

1

8

(
1

(1 + x)4
− 2

(1 + x)2

)
, (5.4)or more mathematial motivations, like the one-parameter Toda potential [344℄:

V bToda(x) =
1

b2
(
e−bx − 1 + bx

)
. (5.5)De�ne b = −V ′′′(0). The parameter b measures at the �rst order the anharmoniity of the system.For the Lennard-Jones potential b = 9, and for the Toda potential, the parameter b introdued inthe de�nition (5.5) is indeed equal to −d

3V b
dx3

(0).Shok waves in the 1D lattieA brief review of the existing mathematial and numerial resultsA shok an be generated using a "piston" : the �rst partile is onsidered as being of in�nitemass and onstantly moving at veloity up. We refer to [90℄ for a pioneering study of those shoksin 1D latties, to [164,166,168℄ for areful numerial experiments and formal analysis, and to [359℄for a rigorous mathematial study in the Toda ase. All of these studies identify the parameter
a = bup as ritial. When a < 2, the veloity of the downstream partiles onverge to the pistonveloity, in analogy with the behavior of a harmoni lattie1 (see Figure 5.1). When a > 2, thepartiles behind the shok experiene an osillatory motion (see Figure 5.2). This behavior is quitesimilar to what is happening in hard-rod �uids (see [168℄ for a more preise desription of thatphenomenon), and has to be linked to the exhange of momenta happening when two partilesollide in a 1D setting. This was also notied for other potentials suh as the Lennard-Jonespotential, and an be used to de�ne spei� 1D thermodynamial averages [87℄.In the ase of a strong shok (a > 2) and in the Toda ase, the displaement pattern is parti-ularly well understood from a mathematial point of view [359℄: the lattie an be deomposed inthree regions. In the �rst one, for n > cmaxt, the partiles have �almost� not felt the shok yet, andtheir displaements are exponentially small. The seond region, whose thikness grows linearly intime (cmint < n < cmaxt), is omposed of a train of solitons. Reall that solitons are partiularsolutions of the Toda lattie model, and orrespond to loalized waves [344℄. In the third region(n < cmint), the lattie motion onverges to an osillatory pattern of period 2 (binary wave).The motion behind the shok is asymptotially desribed by the evolution of a single osillator(see [87℄ for a preise desription of this behavior). There is no loal thermal equilibrium in theusual sense (i.e. the distribution of the veloities is not of Boltzmann form). This was alreadymentioned in [168℄.
1 Note that we use b = 2α with the notation of [166℄.
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Fig. 5.1. Relative displaement (left) and veloity pro�les (right) versus partile index for a weak shokat a representative time: number of partiles Npart = 500, Toda parameter b = 1, piston veloity up = 0.2,so that a = 0.2. The partile are taken initially at rest at their equilibrium positions.
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Fig. 5.2. Relative displaement (left) and veloity pro�les (right) versus partile index for a strong shokat time T = 100: b = 10, up = 1, so that a = 10. The partiles are initially at rest.Density plots.To get a better understanding of the shok patterns, it is onvenient to represent the system interms of loal density. This loal density an be obtained as a funtion of the loal average of theinteratomi distanes, both in spae and time. We restrit ourselves to a loal average in spae.More preisely, the loal averaged interatomi distane of the n-th length is denoted by δxn, andgiven by δxn =
∑+∞
i=−∞ αj δxn+j . The loal density ρn is then de�ned as ρn =

(
1 + δxn

)−1. Theweights {αj} are hosen in pratie to be non negative and of sum equal to one. For example:
αj = C−1 cos

(
j

2M+1π
) for −M ≤ j ≤M , αj = 0 otherwise, and with C =

∑M
j=−M cos

(
j

2M+1π
).The integer M is the loal range of averaging. Figure 5.3 presents the densities orresponding tothe relative displaement patterns of Figures 5.1 and 5.2.Simulation of piston ompressionWe �rst implement a preliminary thermalization. The partiles are taken initially at rest at theirequilibrium positions. We then generate displaements xn and veloities ẋn from the probabilitydensity

dν =
∞⊗

n=−∞
Z−1e−

1
2βx(x2

n+ẋ2
n) dxn dẋn, (5.6)
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Fig. 5.3. Density patterns for the relative displaement pattern of the weak shok of Figure 5.1 (left)and the strong shok of Figure 5.2 (right). The loal averaging range is M = 50.with Z = 2π/βx. The initial displaements and veloities are then of order 1√
βx

. Notie thatwe take small initial displaements, so we approximate the full potential V (x) by its harmonipart 1
2x

2. This approximation is of ourse justi�ed only at the beginning of the simulation, whendisplaements are small enough. After this initial perturbation, we let the system free to evolveduring a typial time Tinit = 10. The simulations were performed using a Veloity Verlet sheme,the time step being hosen to have a relative energy onservation ∆E
E

of about 10−3. At time Tinitthe piston impat begins: the �rst partile is kept moving toward the right at onstant veloity up.Let us emphasize that the shok patterns are robust, in the sense that they remain essentiallyunhanged when initial thermal pertubations are supplied. This point was already noted in [168℄where the authors gave numerial evidene of that fat. While rigorously proven only in the Todalattie ase for a lattie initially at rest at equilibrium, the above shok desription seems then toremain qualitatively valid for a quite general lass of potentials and with random initial onditions.A omparison of the di�erent pro�les is made in Figures 5.4 and 5.5. The pro�les are indeed quiteonserved, espeially the density pro�les.
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Fig. 5.4. Relative displaement pro�les for a thermalized strong shok using a Toda potential with
b = 10, and omparison with the referene pro�le orresponding to a lattie initially at rest. The pistonspeed is up = 0.3 (so that a = 3), 1√

βx
= 0.02.
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Fig. 5.5. Loal density pro�les orresponding to Figure 5.4 with M = 50. Dashed line: referene pro�le.Solid line: Thermalized pro�le. Notie that both patterns almost oinide.
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Fig. 5.6. Relative displaement patterns for the same onditions as in Figure 5.4 (referene ase).Left: Snapshot at time T1 = 200. The shok front orresponds (roughly) to the zone between partile
Nmin = cminT1 = 60 and partile Nmax = cmaxT1 = 350. Right: Snapshot at time T2 = 800. The shokfront orresponds to the zone between partile number Nmin = 250 and partile number Nmax = 1500.Thus the shok front is indeed growing linearly in time.For strong shoks (a > 2), the shok front thikens linearly with time as an be seen inFigure 5.6. This is in ontradition with what is observed in shok propagation experiments aswell as in 3D numerial simulations. Moreover the veloity distribution behind the shok frontshows that the downstream partiles experiene a (quasi-)osillatory motion in the range [0, 2up].This is of ourse not the ase for 3D simulations, where the partile veloities are muh lessorrelated, and appears to be a pure 1D e�et.We emphasize one again that initial thermal perturbations are not su�ient to remedy thesespurious 1D e�ets sine the patterns obtained in Figures 5.4 and 5.5 are very similar. In thesequel we are going to build a 1D model that enables us to get rid of these undesired e�ets.Simulation of relaxation wavesIn order to study the relaxation waves, the piston is removed after a ompression time t0, andthe systems evolves freely during time t1 − t0.The results are one again not physially satisfatory. The soliton train of Figure 5.7, whihwas less visible in Figure 5.4, is not destroyed by the relaxation waves. It travels on and widenssine the solitons move away from eah others (the distane between the fastest ones, that is,
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Fig. 5.7. Relative displaement and speed pro�les for the same parameters as for Figure 5.4. Theompression time is now t0 = 50, and the relaxation time is t1 − t0 = 350.the more energeti ones, and the slowest ones, inreases). We emphasize that the energy remainsloalized in those waves, so there is no damping of these solitons. Rarefation is only observed inthe region behind the soliton train.On the other hand, in 3D simulations or in experiments, one observes a progressive dampingof the whole ompressive wave. This is a seond spurious e�et of the 1D model we would like toget rid of and that the model of Setions 5.1.2 and 5.1.3 will be able to deal with.5.1.2 An augmented one-dimensional modelThe results of the previous Setion indiate the need for a modeling of perturbations arisingfrom the transverse degrees of freedom existing in higher dimensional simulations. Suh pertur-bations will interfere with the shok front omposed of a soliton train, and possibly damp thissoliton train. Perturbations in the longitudinal diretion, suh as thermal initialization for the xn,annot do this, as shown by Figures 5.4 and 5.5.Atually, some fats are already known about the in�uene of 3D e�ets on shok waves.In [162,167℄ Holian et. al pointed out the fat that even a 1D shok onsidered in a 3D system (apiston ompression along a prinipal diretion of a rystal for example) may not look like the typial1D pattern of Figures 5.1 or 5.2. If the rystal is at zero temperature, then the ompression patternin 3D is the same as the 1D one, with a soliton train at the front. But if positive temperature e�etsare onsidered, the interations of the partiles with their neighbors - espeially in the transversediretions - lead to the destrution of the oherent soliton train at the front, and a steady-regimean be reahed (shok with onstant thikness).Therefore, 1D models are often supplemented with a postulated dissipation. The orrespondingdamping term in the equations of motion usually aounts for radiative damping [160,313,314℄, ormay ompensate thermal �utuations [9℄ from an external heat bath for a system at equilibrium.Let us point out that purely dissipative models may stabilize shok fronts. However, temperaturee�ets then ompletely disappear. In partiular, no jump in kineti temperature an be observed inpurely dissipative 1D simulations. Besides, we also aim here at motivating the usually postulateddissipation and memory terms, and show that they arise naturally as e�ets of (onvenientlyhosen) higher dimensional degrees of freedom.There is no existing model (to our knowledge) that ould both aount for higher dimensionale�ets in non equilibrium dynamis and be mathematially tratable. We introdue a lassialdeterministi heat bath model, as an idealized way to ouple the longitudinal modes of the atomhain to other modes. This model is justi�ed to some extent by heuristi onsiderations in Se-



194 5 A redued model for shok wavestion 5.1.2. We are then able to derive a generalized Langevin equation desribing the evolution ofthe system, and reover a stohasti model in some limiting regime.Form of the perturbations arising from higher dimensional degrees of freedomConsider the system desribed in Figure 5.8, whih is still a 1D atom hain, but where eahpartile in the 1D hain also interats with two partiles outside the horizontal line. These partilesaim at mimiking some e�ets of transverse degrees of freedom. The transverse partiles are plaedin the middle of the springs and have only one degree of freedom, namely their ordinates yn. Thepartiles in the 1D hain are still assumed to have only one degree of freedom as well. This meansthat we onstrain them to remain on the horizontal line. The interations between the partilesin the hain and the partiles outside the hain are ruled by a pairwise interation potential, forexample the same potential as for interations in the 1D hain.

θ

x

xn+1

dn

yn

dn

xn

y

Fig. 5.8. Notations for the interation of a transverse partile with partiles on the 1D atom hain.Consider small displaements around equilibrium positions. The pairwise interation potentialsan therefore be taken harmoni. Up to a normalization, and for a displaement x from equilibriumposition, V (x) = 1
2x

2.We �rst turn to the ase θ = π
3 orresponding to a 2D regular lattie. At �rst order,

dn =



(

1

2
(1 + xn+1 − xn)

)2

+

(√
3

2
+ yn

)2



1/2

≃ 1 +
1

4
(xn+1 − xn) +

√
3

2
yn.We now fous on the evolution of xn. All the equalities written below have to be understoodas equalities holding at �rst order in O(|xn|),O(|yjn|). Considering only interations with theneighboring partiles on the horizontal line, and the additional interation with the partile yn,

ẍn =
9

8
(xn+1 − 2xn + xn−1) +

√
3

4
(yn − yn−1).The equation governing the evolution of yn is:
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ÿn = −3

2
yn −

√
3

2
(xn+1 − xn).More generally, onsider the system of Figure 5.8 with an arbitrary angle θ. The equilibriumdistane is now d0 = 1

2 cos θ , and the orresponding normalized harmoni potential is V (d) =

1
2 ( dd0 − 1)2. The normalized distane d̄n =

dn
d0

is
d̄n = 1 + cos2 θ(xn+1 − xn) + 2 sin θ cos θ · yn.The additional longitudinal fore exerted on xn by yn is then
fn = cos2 θ [cos θ(xn+1 − xn) + 2 sin θ · yn] .Summing over N partiles that do not interat with eah other, eah one being haraterized byan angle θi, the additional fore on xn is seen to be of the form

Fn = AN (xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yin−1),with Ki = 2 cos2 θi sin θi and AN =

∑N
i=1 cos3 θi. So, the equation of motion for xn is

ẍn = (1 +AN )(xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yin−1). (5.7)The equations for the yin an be obtained in the same way as before:

ÿin = −aiyin − 2Ki(xn+1 − xn). (5.8)These linear perturbations are only valid for small displaements, i.e. when the approximationof the full potential by its harmoni part is justi�ed. Notie moreover that we disard any type ofinteration of the y partiles with eah others. However, this motivates an attempt to take intoaount missing degrees of freedom by introduing a heat bath whose form will lead to equationof motion similar to (5.7) - (5.8). We now turn to this task.Desription of the heat bath modelWe onsider the following Hamiltonian for a oupled system onsisting of the system understudy (S) and a heat bath (B) desribed by bath variables {yjn} (n ∈ Z, j = 1, . . . , N). To use aheat bath is lassial but was never done in the ontext of 1D hains. The full Hamiltonian reads:
H({qn, pn, q̃jn, p̃jn}) = HS({qn, pn}) +HSB({qn, pn, q̃jn, p̃jn}), (5.9)where (qn, pn, q̃

j
n, p̃

j
n) = (xn, ẋn, y

j
n,mj ẏ

j
n), HS is given by (5.2), and

HSB({qn, pn, q̃jn, p̃jn}) =
∞∑

n=−∞

N∑

j=1

1

2mj
(p̃jn)

2 +
1

2
kj
[
γj(qn+1 − qn) + q̃jn

]2
. (5.10)The interpretation is as follows. Eah spring length δxn = xn+1 − xn is thermostated by a heatbath {yjn}, in the spirit of [108,379℄. The parameter kj is the spring onstant of the j-th osillator,

mj its mass, γj weights the oupling between ∆xn and yjn. Note that although more general asesan be onsidered [198,212℄, the oupling is taken bilinear in the variables, for it allows for an exatmathematial treatment. Indeed, a generalized Langevin equation (GLE) an be easily reovered



196 5 A redued model for shok waves(see [108, 379℄ for seminal examples). It is also the only ase where the limit N → ∞ an berigorously justi�ed. Other physial motivations may be presented, suh as the representation ofextra variables in Fourier modes leading to a Hamiltonian similar to (5.9), see [44℄. These extradegrees of freedom allow for some �transverse� radiation of the energy.Derivation of the generalized Langevin equationGeneral proedureUp to a resaling of yjn, we may assume that all masses mj are 1. The only parameters left forthe oupling are the oupling fators γj . Introduing the pulsations ωj given by ωj = k
1/2
j , theequations of motion read:

ẍn = gN(xn+1 − xn) − gN (xn − xn−1) +

N∑

j=1

γjω
2
j (y

j
n − yjn−1), (5.11)

ÿjn = −ω2
j

[
yjn + γj(xn+1 − xn)

]
, (5.12)where

gN (x) = V ′(x) +




N∑

j=1

γ2
jω

2
j


 x. (5.13)Notie the strutural similarities of (5.11) with (5.7) and of (5.12) with (5.8).The solutions {yjn} of (5.12) are then integrated and inserted in (5.11) for {xn}. This proedureis the lassial Mori-Zwanzig projetion [250, 379℄. The integrability of the system is lear (oneinitial onditions in veloities and displaements are set) when the fore gN is globally Lipshitz.This is for example the ase when the sum∑N

j=1 γ
2
jω

2
j is �nite, and when V ′ is globally Lipshitz,whih is indeed true for the Toda potential (5.5). For the Lennard-Jones potential (5.4) it remainstrue as long as the energy of the system is �nite (sine the potential diverges when x → −1, thebound on the total energy implies x > x0 > −1, and a bound on the Lipshitz onstant an begiven by V ′(x0)). The omputation gives:

yjn(t) = yjn(0) cos(ωjt) +
ẏjn(0)

ωj
sin(ωjt) +

∫ t

0

γjωj sin(ωjs)(xn+1 − xn)(t− s) ds.Integrating by parts and inserting in (5.11):
ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+

∫ t

0

KN(s)(ẋn+1 − 2ẋn + ẋn−1)(t− s) ds+ rNn (t),
(5.14)where

KN (t) =
N∑

j=1

γ2
jω

2
j cos(ωjt),and

rNn (t) =

N∑

j=1

(yjn(0) − yjn−1(0))γjω
2
j cos(ωjt) + (ẏjn(0) − ẏjn−1(0))γjω

2
j

sin(ωjt)

ωj

+γ2
j kj cos(ωjt)(xn+1 − 2xn + xn−1)(0).Formally, (5.14) looks like a generalized Langevin equation (GLE), provided rNn is a random foringterm. The dissipation term involves a memory kernelKN and an �inner� frition ẋn+1−2ẋn+ẋn−1.



5.1 A simpli�ed one-dimensional model 197The derivation made here shows that the usually postulated dissipation and memory arise naturallyas e�ets of higher dimensional degrees of freedom. The dissipation term, lassial in elastiitytheory and postulated by some studies [160,314℄, is derived here, as memory e�ets, that were alsoonsidered in [314℄, sine the orresponding model was that of a visoelasti material. So, we areleft with a desription of the system only in terms of {xn}. To further speify the terms, we haveto desribe the hoie of the heat bath spetrum {ωj}, the oupling onstant γj and the initialonditions for the bath variables.Choie of the onstantsWe hoose the values [199℄:
ωj = Ω

(
j

N

)k
, γ2

jω
2
j = λ2f2(ωj) (∆ω)j , f2(ω) =

2α

π

1

α2 + ω2
, (5.15)where (∆ω)j = ωj+1 − ωj , α, λ > 0 and k > 0.The funtion f2 is de�ned this way for reasons that will be made lear in Setion 5.1.3. The heatbath spetrum {ωj} is more dense as N inreases. The exponent k aounts for the repartition ofthe pulsations. More general hoies ould be made, involving randomly hosen pulsations [199℄.However, we restrit ourselves to the ase of deterministi pulsations. We emphasize here oneagain that the onstants hosen and the form of the oupling are not new. A similar hoie ismade in [199℄. The novelty is in the appliation to a 1D hain, where independent heat baths areonsidered, eah heat bath orresponding to a spring length.We now motivate (5.15). Notie that an upper bound to the heat bath spetrum is imposed.This is related to the disreteness of the medium. Indeed, for a system at rest with partiles distantfrom 1, the higher pulsation allowed is π, orresponding to an osillatory motion of spatial period

2. When partiles ome loser (for example if the mean distane between partiles is a < 1), thehigher pulsation inreases to the value π
a sine the lowest spatial period is now 2a. Taking thenlower bound dm for the minimal distane between neighboring partiles, we get an upper boundfor the spetrum, namely Ω = π

dm
.The hoie of the oupling onstants between the system and the bath is an important issue. Theonly purpose of the heat bath in a 1D shok simulation is to mimi some e�ets of dimensionality,suh as energy transfer to the tranverse modes. This energy transfer an be quanti�ed using (5.12).Indeed, the total energy transfer for a harmoni osillator of pulsation ω subjeted to an externalforing σ is known [44℄. More preisely, onsider the following harmoni osillator:

z̈ + ω2z = h(t), (5.16)where h is an external time-dependent foring term. Then the total energy transfered by theexternal foring to the system (from t = −∞ to t = +∞ for a system at rest at t = −∞) is
∆E = 1

2 |ĥ(ω)|2. The energy transfer to the heat bath ours as desribed by (5.12). This gives atotal energy transfer for a spring xn+1 − xn onsidered initially at rest:
∆En =

1

2

N∑

j=1

γ2
jω

4
j |∆̂xn(ωj)|2. (5.17)As a �rst approximation, a shok pro�le an be desribed as a self-similar jump: ∆xn(t) = δH(n−

ctn), where δ < 0 is the jump amplitude, c the shok speed, and H is the Heaviside funtion.Then, |∆̂xn(ω)| = ω−1. The energy transfer (5.17) is therefore
∆En =

δ2

2

N∑

j=1

γ2
jω

2
j .



198 5 A redued model for shok wavesWith the spetrum (5.15), the ondition ∆En → C with 0 < C <∞ is satis�ed:
∆En =

δ2λ2

2

N∑

j=1

f2(ωj)(∆ω)j →
δ2λ2

2

∫ Ω

0

f2 = λ2δ2σ(Ω).The last expression is bounded sine f2 is integrable (reall ∫ ∞

0

f2 = 1). The funtion σ is a C∞funtion. Notie that the above onvergene results from the onvergene of the Riemann sumappearing on the left.Choie of the initial onditions.We onsider initial onditions {yjn(0), ẏjn(0)} randomly drawn from a Gibbs distribution withinverse temperature βy. This distribution is onditioned by the initial data {xn, ẋn}. More prei-sely, set
yjn(0) = −γj(xn+1 − xn)(0) + (βykj)

−1/2ξnj , (5.18)
ẏjn(0) = (βy)

−1/2ηnj , (5.19)where ξnj , ηnj ∼ N (0, 1) are independently and identially distributed (i.i.d.) random Gaussianvariables. With these hoies,
rNn (t) =

1√
βy

N∑

j=1

ωjγj cos(ωjt)(ξ
j
n − ξjn−1) + ωjγj sin(ωjt)(η

j
n − ηjn−1). (5.20)The probability spae is indued by the mutually independent sequenes of i.i.d. random variables

ξjn, η
j
n. Denote D the linear operator ating on sequenes Z = {zn} through DZ = {zn − zn−1}.So,

rNn (t) =
λ√
βy

N∑

j=1

f(ωj) cos(ωjt)Dξ
j
n + f(ωj) sin(ωjt)Dη

j
n (∆ω)

1/2
j .For �xed N , the above expressions give

E(rN (t)(rN (s))T ) =
1

βy
KN(t− s)DDT (5.21)where rN = (. . . , rNn , . . . ) and the linear operator DDT ats on sequenes Z as DDT z = {zn+1 −

2zn + zn−1}. This relation is known as the �utuation-dissipation relation, linking the randomforing term and the memory kernel. Notie that the noise term is orrelated both in time and inspae. The behavior of the system when N → ∞ is then an interesting issue, that an help us toget a better understanding of the phenomenas at play (see Setion 5.1.3).Numerial resultsThe equations of motion (5.11), (5.12) are integrated numerially for a givenN , using a lassialveloity-Verlet sheme. The system is initialized with veloities and displaements generated from(5.18) and (5.19) in the y-oordinates, and from (5.6) in the x oordinates. Note that the quantities
1

βx
and 1

βy
may di�er. The system is then �rst let to evolve freely, so that the oupling betweentransverse and longitudinal diretions starts.Shok waves are generated using a piston in the same fashion as in Setion 5.1.1, giving Fi-gures 5.9 and 5.10. We then study relaxation waves (Figure 5.11). The time-step ∆t is hosento ensure a relative energy onservation of 10−3 in the absene of external foring. Typially,
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∆t = 0.01. The spetrum density parameter k in (5.15) is taken to be k = 1. Other hoies leadto the same kind of simulation results. Notie that, if L represents the size of the 1D hain, thealgorithmi omplexity sales as O(LN).Sustained shok wavesFigures 5.9 and 5.10 show the di�erent patterns obtained in the ase of a system oupled to aheat bath. Notie that the upper bound to the spetrum, Ω, is of order π sine the shok is nottoo strong, and hene the medium is not too ompressed. The parameter α is taken less or equalto Ω so that KΩ and σ(Ω) are su�iently lose from their limiting values.The parameter λ was varied in the range [0, 5]. If λ is too small, the oupling is too weak andthe pro�les look like the pure 1D ones (Note that we reover the purely 1D model with Hamiltonian(5.2) when λ = 0). If λ is too high, the foring may be too strong, leading to the ollapse of twoneighboring partiles if the time step is not small enough. A good hoie of λ involves a good rateof energy transfer to the transverse modes. The hoie of λ is ompletely empirial, but it wouldbe desirable to estimate it from full 3D simulations.The results show that the introdution of transverse degrees of freedom has important onse-quenes on the pure 1D pattern. The soliton train at the front is destroyed, and the shok thiknessis onstant along time, instead of growing in time as in the pure 1D ase. Thus a steady regime annow be reahed, and these simulations really seem to deserve the name �shok waves�. In ontrastto the pure 1D model results, these simulations have now the same qualitative behavior as 3Dsimulations or experiments.
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Fig. 5.9. Relative displaement pro�les for the system oupled to a heat bath (left), and omparisonwith a thermalized shok (right). For the thermalized shok, the parameters are up = 0.3, b = 10 and
1√
βx

= 0.01. For the system oupled to a heat bath, the additional parameters are 1√
βy

= 0.02, α = 5,
Ω = 10, λ = 0.5. The number of transverse osillators is N = 25.Rarefation wavesAs an be seen in Figure 5.11, a rarefation wave develops and progressively weakens theshok (notie that the veloities derease and that the relative displaement inrease omparedto Figures 5.9 and 5.10). This is indeed the expeted physial behavior for a visous �uid. Thisdissipation an be interpreted as energy transfer to the transverse modes.Besides, no soliton train survives, ontrarily to the pure 1D ase, where the solitons are notdestroyed and move on unperturbed. In the pure 1D ase, there is no weakening of the initial wave,only dispersion. One again, to our knowledge, this is the �rst time a 1D disrete model behavesas expeted.
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Fig. 5.10. Same parameters as for Figure 5.9, exept for the system oupled to a heat bath, N = 100.Left: Relative displaement pro�le. Right: Loal density as a funtion of the partile index.
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Fig. 5.11. Relative displaement pro�les for the system oupled to a heat bath (left) and the thermalized1D system (right). The parameters for the system oupled to a heat bath are 1√
βy

= 0.04, α = 2, Ω = 5,
λ = 0.5. The system is ompressed during t0 = 50. The relaxation time is t1 − t0 = 350.Generalizations of the system-bath interationBeyond nearest-neighbor interationsThe Hamiltonian of the system an be written in an abstrat form as

H(x, yN) =
1

2
|ẋ|2 + F (x) +

1

2
˙yN
TM ˙yN +

1

2
|Ax− ByN |2 (5.22)where x = (. . . , xn−1, xn, xn+1, . . .) and yN = (. . . , y1

n−1, . . . , y
N
n−1, y

1
n, . . . , y

N
n , . . .). The matrix Mis a mass matrix (operator), A and B are general operators, F (x) =

∑∞
n=−∞ V (xn+1 − xn). Wehose previously B diagonal. But more generally, B ould be onsidered as tridiagonal: this ouldmodel the interation of two neighboring heat baths linked to neighboring spring lengths.Nonlinear oupling with the heat-bathWhen the shok strength inreases, the heuristi derivation performed in this setion (relyingon small displaements) is no longer valid. The approah an however be generalized by onsideringa nonlinear oupling between the transverse partiles and the partiles in the hain. It is hopedthat the thermalization will be more e�ient this way, in partiular, stronger shoks ould be



5.1 A simpli�ed one-dimensional model 201sustained with less transverse osillatory degrees of freedom. We therefore onsider the followingHamiltonian:
H({qn, pn, q̃jn, p̃jn}) = HS({qn, pn}) +HNLB({qn, pn, q̃jn, p̃jn}), (5.23)with (qn, pn, q̃

j
n, p̃

j
n) = (xn, ẋn, y

j
n, ẏ

j
n), HS still given by (5.2), and

HNLB({qn, pn, q̃jn, p̃jn}) =
∞∑

n=−∞

N∑

j=1

1

2
(p̃jn)2 + kjU [γj(qn+1 − qn) + q̃jn], (5.24)where U is a nonlinear funtion to be spei�ed. The Hamiltonian (5.9) is reovered when U(x) =

1
2x

2. Typially,
U(x) = VLJ(1 + x),so that the interations with the transverse osillators are similar than the interations in thehain. We still onsider the distribution of sti�nesses kj and oupling onstants γj given by (5.15).Figure 5.12 presents numerial results obtained for a strong shok (up = 1). Satisfatory shokpro�les are obtained with N = 8 additional degrees of freedom only.
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Fig. 5.12. Displaement pro�les (Left) and veloity pro�les (Right) for a strong shok (up = 1) for thedeterministi model (5.9) using a nonlinear oupling, with N = 8, the parameters of the spetrum (5.15)being k = 1, Ω = 10, α = 5 and λ = 0.2.5.1.3 The stohasti limitThe model developed in the previous setion shows how the introdution of a ertain numberof transverse degrees of freedom leads to ompression pro�les very di�erent from the purely one-dimensional results. In partiular, some energy relaxation is possible due to the heat bath formedby the transverse osillators. However, even when the heat bath is nonlinearly oupled, severaldegrees of freedom have to be introdued and numerially resolved for eah longitudinal degree offreedom. Therefore, it is interesting to replae the deterministi heat bath with many osillatorsby its average ation. Mathematially, this amounts to replaing the deterministi system (5.14)by a stohasti di�erential equation (SDE) of lower dimension. The only remaining unknowns arethe positions of the partiles (. . . , xn(t), . . . ).



202 5 A redued model for shok wavesLimit of the dynamis (5.14) when N → ∞Limit of the dissipation termThe memory kernel an be seen as a Riemann sum. The limit is then:
KN (t) = λ2

N∑

j=1

f2(ωj) cos(ωjt)(∆ω)j → λ2

∫ Ω

0

f2(ω) cos(ωt) dt = λ2KΩ(t) (5.25)when N → ∞, the onvergene holding in L1[0, T ], T > 0.The speial hoie (5.15) implies KΩ(t) → e−αt when Ω → ∞ in L∞(R+). The memory kernelis then exponentially dereasing.Limit of the �utuation termThe limit N → ∞ gives the onvergene of the noise term in a weak sense in C[0, T ] toward astohasti integral:
rNn (t) → λrΩn (t) =

λ√
βy

∫ Ω

0

f(ω) cos(ωt)D dWn,1
ω + f(ω) sin(ωt)DdWn,2

ω (5.26)where Wn,1
ω ,Wn,2

ω (n ∈ Z) are independent standard Brownian motions.Limit of the equationFormally, a stohasti integro-di�erential equation (SIDE) is obtained in the limit N → ∞ :
ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+λ2

∫ t

0

KΩ(s)(ẋn+1 − 2ẋn + ẋn−1)(t− s) ds+ λrΩn (t),
(5.27)with

KΩ(t) =

∫ Ω

0

f2(ω) cos(ωt) dω,

rΩn (t) =
1√
βy

∫ Ω

0

f(ω) cos(ωt)DdWn,1
ω + f(ω) sin(ωt)DdWn,2

ω ,and the �utuation-dissipation relation
E(rΩ(t)(rΩ(s))T ) =

1

βy
KΩ(t− s)DDT , (5.28)where rΩ = (. . . , rΩn , . . . ). The way the solutions of (5.14) onverge to the solutions of (5.27) anbe made rigorous by a diret adaptation of the results of [199℄: the onvergene of xNn solution of(5.14) to xn solution of (5.27) is weak in C2[0, T ] (in the sense of ontinuous random proesses,see below).The SIDE (5.27) an be rewritten as a stohasti di�erential equation (SDE). In the limitingase Ω → ∞, a Markovian limit an indeed be reovered when onsidering an additional variable[199℄. Notie that when Ω → ∞, KΩ(t) → K(t) = e−αt. Denoting Q = (. . . , xn−1, xn, xn+1, . . . ),

P = (. . . , ẋn−1, ẋn, ẋn+1, . . . ), V (Q) =
∑∞
n=−∞ V (xn+1 −xn) and R = (. . . , Rn−1, Rn, Rn+1, . . . ),

λ =
√
αξ, the previous SIDE (5.27) is equivalent to the following SDE:
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dQt = Pt dt,

dPt = (Rt −∇V (Qt)) dt,

dRt = −α(Rt + ξDDTPt) dt+ α
√

2β−1ξ DdWt,

(5.29)where W is a standard Brownian motion, and with initial onditions rn(0) ∼ λβ−1/2 N (0, 1).The limiting equation (5.26) shows the main e�ets of the heat-bath interation: The pure 1Dequation (5.3) is supplemented by two terms, one dissipation term with an exponentially dereasingmemory, and a random foring. Therefore the heat bath ats �rst as an energy trap, absorbingsome of the energy of the shok when it passes. This energy is then given bak to the systemthrough the random foring term to an amount preised by (5.28). This allows the equilibrationof the downstream domain.Proof of onvergeneThe proof of the onvergene of the solutions of (5.14) to the solutions of (5.27) an be doneas in [199℄, by a straightforward extension to the multi-dimensional ase (in order to deal withonvergene of sequenes). Denote by xNn the solution of (5.14) for a given number N of transversevariables. We set δxNn = xNn+1 − xNn . The solution of (5.27) is noted xn. We set λ = 1 to simplifynotations. The extension to more general values of λ is straightforward. The spae of real sequenesin noted H = RN, and is equiped with the usual l∞-norm. For a sequene z = {zn} ∈ H:
|z|l∞ = sup

n∈Z

|zn|.The spae H endowed with this norm is then a separable omplete metri spae.Consider the array of spring lenghts
QN =




...
δxNn... 

 ,and the array of random foring terms
GN =

1

βy




...
rNn...  .We similarly de�ne Q and G for the sequene {xn}.Reall that the linear operator D, ating on sequenes z = {zn} ∈ H, is de�ned by Dz =

{Dzn} = {zn − zn−1}. It follows |DDT z|l∞ ≤ 4|z|l∞ . Equation (5.14) an be rewritten as (reall
λ = 1)

Q̈N = DDTF (QN ) +

∫ t

0

KN(s)DDT Q̇N (t− s) ds+DGN (t).Introduing KN (t) =
∫ t
0
KN(s) ds and integrating the onvolution term by parts, (5.14) beomes

Q̈N −
(
DDTF (QN) +

∫ t

0

KN (s)DDT Q̈N(t− s) ds

)
= DGN (t) −DDT Q̇N (0)KN (t). (5.30)This equation an be rewritten under a �xed point form as

(Id +RN )Q̈N (t) = hN (t). (5.31)



204 5 A redued model for shok wavesAs F is Lipshitz, ||RN || is small for small T . An usual Piard argument gives the existeneand uniqueness of Q̈N ∈ C([0, T ],H) solving (5.31) for T small enough (see [148℄, Setion 12,for an analogous proof). Standard results also give the ontinuity of Q̈N on KN ∈ L1[0, T ] and
UN = DGN −DDTQN (0)KN ∈ C([0, T ],H). The mapping (KN , UN ) 7→ QN is then ontinuousfrom L1[0, T ]× C([0, T ],H) to C([0, T ],H) with the orresponding norms.The onvergene of KN in L1[0, T ] is straightforward, and implies the onvergene of KN in
L1[0, T ]. The onvergene of UN results from the onvergene of KN ∈ L1[0, T ] and from theonvergene of GN to G (in a way to preise). We refer to [125℄, Setion VI.4., Theorem 2.Considering the olletion of ontinuous real-valued stohasti proesses GN with values in H(whih is a separable omplete metri spae), we have to show:(i) The �nite-dimensional distributions of GN weakly onverge to those of G, whih is aontinuous proess.(ii) A tightness inequality of the form

∀t, t+ u ∈ [0, T ], E
[
|GN (t+ u) −GN (t)|2l∞

]
≤ C|u|.Then it follows GN ⇒ G in C([0, T ],H)-weak.These two points are straightforward generalizations of the proof in [199℄ (in the ase of non-random pulsations ωj) when extended to sequenes with values in H, giving the onvergene

UN ⇒ U in C([0, T ],H)-weak. The onvergenes ofKN toK in L1[0, T ] and UN to U in C([0, T ],H)in a weak sense then give the onvergene of Q̈N in C([0, T ],H) in a weak sense. Therefore,QN ⇒ Qin C2([0, T ],H)-weak. This implies the onvergene in a weak sense for all the omponents of QNfor T small enough.For general t, onsider e−γtQN for γ large enough, and resale appopriately the operatorsappearing in (5.31). The proof then follows the same lines.Numerial implementationThe SDE (5.29) is of the form
dXt = Y (Xt) dt+ΣdWt, (5.32)where Wt is a standard Wiener proess, with the notations

Xt = (Qt, Pt, Rt), Y (Xt) = (Pt, Rt −∇V (Qt),−αRt + αξDDTPt), Σ = α

√
2ξ

β




0 0 0

0 0 0

0 0 Id .The integration is done using the following splitting of the vetor �eld Y :
Y (X) = YNewton(X) + YPR(X) + YRR(X) + YRP (X),with YP (X) = (0, R, 0), YR(X) = (0, 0,−αR + αξDDTP ) and YNewton(X) = (P,−∇V (Q), 0).Denote also by φ∆tNewton, φ∆tP and φ∆tR the assoiated numerial �ows. When Σ = 0, a onsistantnumerial sheme is

Ψ∆t = Φ
∆t/2
R ◦ Φ∆t/2P ◦ Φ∆tNewton ◦ Φ∆t/2P ◦ Φ∆t/2R .The �ow φ∆tNewton is approximated by the Veloity-Verlet sheme Φ∆tNewton. The �ows φ∆tP and φ∆tRan be analytially integrated, so that:

Φ∆tP (Q0, P0, R0) = (Q0, P0 +R0∆t,R0).

Φ∆tR (Q0, P0, R0) =
(
Q0, P0, e−α∆tR0 − ξ(1 − e−α∆t)DDTP0

)
.



5.1 A simpli�ed one-dimensional model 205The random noise is added at the beginning and at the end of the time step. Denoting by i theindex of the partilesn and by n the integration index, the following sheme an be proposed:




r
n+1/2
i = e−α∆t/2rni − ξ(1 − e−α∆t/2)(DDT pn)i +

√
αξ(1 − e−α∆t)

β
(DZn)i,

p
n+1/2
i = pni − ∆t

2
∇V (Qn) +

∆t

2
r
n+1/2
i ,

qn+1
i = qni +∆tp

n+1/2
i ,

pn+1
i = p

n+1/2
i − ∆t

2
∇V (Qn+1) +

∆t

2
r
n+1/2
i ,

rn+1
i = e−α∆t/2rn+1/2

i − ξ(1 − e−α∆t/2)(DDT pn+1)i +

√
αξ(1 − e−α∆t)

β
(DZn+1)i,

(5.33)
where {Zn}n∈N = {(. . . , zni , . . . )}n∈N and (zni )n∈N,i∈Z are i.i.d. standard random gaussian va-riables.Numerial resultsPro�les obtained with a ompression at �xed piston veloity up for one realization of (5.29)are presented in Figure 5.13, as well as averages obtained over 100 realizations (see Figure 5.14).Although the pro�les show sharp transitions, the temperature (given by �utuations in veloitiesor positions downtream the shok front) is not orret sine it is the same as before the shok. Thisis ontrast with simulation results obtained with a few transverse osillatory degrees of freedom.We will see in Setion 5.2 how to maintain hanges in the temperature aross the shok interfae,as observed in all-atom simulations.
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Fig. 5.13. Displaement pro�les (Left) and veloity pro�les (Right) for a single realization of a sustainedshok ompression at up = 1 for (5.29), the parameters being α = 10, β−1/2 = 0.01 and ξ = 1.5.1.4 Extension to the reative aseWe extend here the one-dimensional stohasti model for shok waves to the reative shokwaves, where hemial reations are triggered when the shok passes. The exothermiity of thesereations �rst enhanes, then sustains the propagation of the shok. The physial theorey behindthese reative waves is the ZND theory [103,343℄ of detonation waves, whih deomposes the waveinto three regions: an upstream unperturbed region, a shok front (or reation zone) of onstant
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Fig. 5.14. Average over 100 realizations with the same onditions as for Figure 5.13.width where hemial reations happen, followed by an autosimilar rarefation wave. To give someorders of magintude for real materials, the width of the reation zone ranges between severalmirometers to several millimeters, and the speed of the shok front may reah several km/s.Modelling of reation wavesWe onsider a reative potential in the vein of [361℄. To this end, an additional parameter rnis introdued for eah interatomi bond ∆xn = xn+1 − xn, and models the reation rate of thezone between xn+1 and xn. The interation potential is also a funtion of this additional variable,and sine the reation is exothermi, the ground state of the reation produts is lower than theground state of the reatants. We therefore onsider the following interation potential:
Vr(x) = (1 +Kr)VLJ(x) − VLJ(dc) =

1 +Kr

8

(
1

(1 + x)4
− 2

(1 + x)2

)
− VLJ(dc). (5.34)The potential sti�ens as the reation goes on. The reation starts when enough energy has beenstored in the media, for example when the media is ompressed enough (a less naive ignition of thereation is proposed in Setion 5.2.3). For the bond ∆xn, this orresponds to the �rst time t∗ suhthat ∆xn < dc, where dc < 0 is a parameter (ritial distane). By onstrution, the potential isontinous at x = dc. For t ≥ t∗, the kinetis of the reation is assumed to be

drn
dt

(t) = D if 0 ≤ rn(t) ≤ 1,
drn
dt

(t) = 0 otherwise ,or possibly
drn
dt

(t) = D(1 − rn(t))for a �rst-order kinetis. The bond ∆xn(t) is then desribed by the potential Vrn(t), using (5.34).The exothermiity of the reation is ensured provided dc < 0, and is parametrized by K and dc.Figure 5.15 presents an example of modi�ation of the potential when a reation ours.Modi�ation of the parameters in the generalized Langevin equationThe derivation of (5.29) uses parameters desribing some absorption spetrum. However, as thehemial reation goes on, the mehanial properties of the media evolve, and so, the parametersof the absorption spetrum should evolve as well. Sine the interation potentials get sti�er bya fator 1 + Krn, we arbitrarily modify the distribution of the pulsations {ω}, and replae ω2



5.1 A simpli�ed one-dimensional model 207

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Relative distance

E
ne

rg
y

continuity
point

Energy
differenceFig. 5.15. Modi�ation of the potential during the reation (initial potential: upper urve, �nal potential:lower urve). Note that the equilibrium position is preserved, but the ground state is lower.par (1 +Krn)ω

2. analogously, α is replaed by α√1 +Krn and λ by λ√1 +Krn, while keepingthe {γj} unhanged.Numerial results
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Fig. 5.16. Sustained ompression of reative shok waves. Displaement pro�les (Left) and veloitypro�les (Right) for a single realization of a sustained shok ompression. The parameters are the same asfor Figure 5.13, with K = 1, dc = −0.3, D = 0.025 and a �rst-order reation kinetis.Pro�les reminisent of lassial ZND pro�les are reovered, with shoks stronger than in thenon-reative ase and propagating faster (see Figure 5.16). The shok is also followed by a relaxa-tion wave. When the piston is removed, a steady-state shok front is �nally obtained, whih isnot weakened by the downstream rarefations (see Figure 5.17). However, the material returns toequilibrium after some relaxation period, whereas a �uid behavior is expeted when detonationtakes plae (the order in the material being ompletely lost beause of the large energy release).Therefore, the 1D model, even augmented, is not onvenient to model detonation of real materials.
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Fig. 5.17. Same parameters as for Figure 5.16, a ompression time Tcomp = 20 and a relaxationtime Trelax = 1500.5.2 A redued model based on Dissipative Partile DynamisThe redued model (5.29) obtained in Setion 5.1 is reminisent of DPD models sine thefrition depends on the relative veloities of the partiles. However, the temperature e�ets arenot orretly taken into aount. Let us emphasize at this point that keeping thermal �utuationsin the mirosopi models is of paramount importane to obtain the right relaxation pro�les behindthe shok front [162,323℄.It is not possible to resort diretly to the lassial DPD models to simulate shok waves.Indeed, the dissipative and random fores arising in DPD are linked through some �utuation-dissipation relation, using a loal temperature. But when a shok wave passes, energy is transferedto the material, and the loal temperature hanges. Therefore, it is neessary to onsider DPDmodels where the �utuation-dissipation relation is not �xed a priori, but evolves depending onthe physial events that have happened. DPD with onserved energy [15, 95℄ are suh models.DPD models, introdued in [170℄, have been put on �rm thermodynamis ground in [98℄.Some derivations from moleular dynamis where proposed in a simpli�ed ase in [94℄, the moreonvining general derivation being at the moment [106℄. These studies motivate the modelling ofthe mean ation of the projeted degrees of freedom through some dissipative fores (dependingon the relative veloities of the partiles, so that the global momentum is onserved), balanedby some random fores. Ergodiity of the dynamis an be shown in some simpli�ed ases [307℄.Therefore, DPD dynamis are well established and motivated redued models.Coarser models suh as SPH (Smoothed partile hydrodynamis) [217,246℄ are routinely used tosimulate shok waves at the hydrodynami level, and an also be formulated in a DPD framework(the so-alled Smoothed dissipative partile dynamis [96℄). However, these models require theknowledge of an equation of state Eint = Eint(S, P ) giving the internal energy as a funtion ofentropy and pressure, for instane. Therefore, SPH-like models annot be onsidered when theoarse-grained model is still at the mirosopi level.We present in this setion a dynamis strongly inspired by those models, and show that itprovides an interesting mesosopi model for the simulation of shok waves (see Setion 5.2.2and [324℄). It also opens the way for an extension to detonation waves, where exothermi hemialreations are triggered as the shok passes, with the shok sustained and enhaned through theenergy released (see Setion 5.2.3 and [222℄).5.2.1 Previous mesosopi modelsWe review here some mesosopi models [163,326℄ for shok waves, obtained through a oarse-graining from mirosopi (all-atom) models. The model from [163℄ is more empirial and has been



5.2 A redued model based on Dissipative Partile Dynamis 209derived to reover ertain properties of polyrystalline materials. One partile stand for a grainin this ase, and some assumptions are made on the mehanial behavior at grain boundaries.The model from [326℄ onsiders the elementary oarse-graining, in whih a omplex moleule isreplaed by a single �titious partile with internal degrees of freedom (internal energy).In both [163,326℄, the dissipation fores ating on the i-th partile are of the form −γ(vi− v̄i),where v̄i is a loal average of the veloities around the partile. We will fous in the sequel onthe model [326℄, in whih the Hamiltonian equations of motions are then perturbed by additionalterms: 



dqi
dt

=
pi
mi

− χi∇Vqi (q),

dpi
dt

= −∇Vqi(q) −
ηi
mi

(vi − v̄i).It is assumed that the variations of mehanial energy are exatly ompensated by the variationsof internal energy. Assoiating an internal energy ǫi to eah partile (see Setion 5.2.2), it follows
dEtot = dEmec +

N∑

i=1

dǫi = d

[
1

2
pTMp+ V (q)

]
+

N∑

i=1

dǫi = 0.Therefore,
dǫi
dt

= ηi(vi − v̄i) · vi + χi|∇Vqi (q)|2.The authors of [326℄ then argue that this energy transfer is not Galilean invariant (in view of the�rst term on the right hand side in the above equation: vi − v̄i is Galilean invariant, but vi isnot), even if the dynamis is. To remedy this problem, they restrain themselves to dissipationon the position variable q only, and do not onsider dissipation in the momenta (ηi = 0). Astable dynamis is obtained by onsidering a oe�ient χi depending on the di�erene betweenthe internal and the external (translational or mehanial temperature), and a Berendsen-likefeedbak. The resulting dynamis is not ompletely satisfatory from a physial viewpoint sineit has a struture very di�erent of Newton's equation. It is also not lear whether an invariantmeasure exists.It is however possible to preserve the Galilean invariane by onsidering pair frition fores,depending on the relative veloities of the partiles as is done in DPD models. In this ase,the energy exhanges an indeed be symmetrized, and the resulting proess is totally Galileaninvariant. The resulting dynamis, of DPD form, are physially more natural then the dampeddynamis of [326℄.5.2.2 A redued model in the inert aseDesription of the modelAll atom simulations are performed resorting to Newton's equations of motion. The orrespon-ding mirosopi systems are deterministi, Galilean invariant, and have some invariants, suh asthe total energy. While stohasti models are natural models to desribe systems with redueddynamis (sine the information lost by the averaging proess is modelled by some random pro-ess), it is however not lear that suh a stohasti model an reprodue, even in a mean way, adeterministi dynamis with invariants.It turns out however that DPD models are stohasti dynamis whih are Galilean invariantand preserve total momentum. Some re�nements were also proposed in order to onserve the totalenergy of the system, a model alled 'DPD with onserved energy' (DPDE [15,95℄).We onsider a system of N partiles in a spae of dimension d, desribed by their positions
(q1, . . . , qN ) and momenta (p1, . . . , pN ), with assoiated mass matrix M = Diag(m1, . . . ,mN ),



210 5 A redued model for shok wavesinterating through a potential V . We assume for simpliity that the interations between thepartiles are pairwise and depend only on the relative distanes, so that V(q) =
∑

i<j V (|qi− qj |).Denoting by T̄ the referene temperature and β = 1/(kBT̄ ), the DPD equations read [98,170℄




dqi =
pi
mi

dt,

dpi =
∑

j 6=i
−∇V (rij) dt− γχ2(rij)(vij · eij)eij +

√
2γ

β
χ(rij)dWij eij ,

(5.35)with γ > 0, rij = |qi− qj|, eij = (qi− qj)/rij , vij = pi

mi
− pj

mj
, χ a weight funtion (with support in

[0, rc] where rc is a ut-o� radius), and whereWij are 1-dimensional independent Wiener proessessuh that Wij = Wji.Notie that, sine the dissipation term depends only on the relative veloities, the dynamis areglobally Galilean invariant. Besides, the total momentum is preserved. However, the total energy�utuates, so that some re�nements in the model are required. Relying on the general DPD piture,DPD with onserved energy were introdued in [15,95℄. The idea is that the variations of the totalmehanial energy H(q, p) = 1
2p
TMp + V(q) through the dissipative fores are ompensated bysome reservoir energy variable attahed to eah partile. Introduing an internal energy ǫi for eahpartile, the evolution of the internal energies are onstruted suh that

dH(q, p) +
∑

i

dǫi = 0.An assoiated entropy si = s(ǫi) and an internal temperature an be also de�ned for eah partileas
Ti =

(
∂si
∂ǫi

)−1

.For example, when the internal degrees of freedom are purely harmoni, T (ǫ) = ǫ/Cv, where
Cv is the spei� heat at onstant volume. More generally, this mirosopi state law should beomputed using all-atom MD or ab initio simulations.The model we onsider is strongly inspired from DPD models with onserved energy [15, 95℄,so that all the properties of the usual DPD models with onserved energy an be straightforwardlytransposed to this ase. The derivation of the model is done as in [15, 95℄. The main di�ereneshere is that (i) we present the dynamis for partiles of unequal masses, and (ii) do not projetthe dissipatives and random fores along the lines of enter of the partiles. The generalizationto partiles of unequal masses is done by onsidering dissipation fores depending on the relativeveloities, and not on the relative momenta. This is important if mixtures omposed of (say) twomoleules are simulated, and eah moleule is replaed by a single partile, whose mass is the totalmass of the moleule. The dissipative and random fores ould be projeted as well to onserveangular momentum, but we restrit ourselves to the simpler and more general ase when thesefores are not projeted, sine we are only interested in Galilean invariane, and have in mind anextension to redued models for reative shok waves, whih do not neessarily preserve angularmomentum, even if the dissipative and random fores are projeted. Suh a model is also loserto the Langevin piture of the previous redued models for shok waves [163,326℄.We �nally neglet the thermal ondution here, sine the ontribution to the evolution of theinternal energy arising from the dissipation fores is expeted to be dominant in the nonequilibriumzone near the shok front. Heat di�usion plays a role only after the relaxation towards equilibriumin the shoked zone is ahieved.The equations of motion for the system read:
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dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γijχ

2(rij)vij dt+ σijχ(rij)dWij ,
(5.36)where χ is still a weight funtion (with support in [0, rc] where rc is a ut-o� radius), and Wij arenow d-dimensional independents Wiener proesses suh that Wij = −Wji. The frition γij andthe �utuation magnitude σij will be preised below. As for DPD models with onserved energy,the dynamis is postulated in a manner suh that the total energy E(q, p, ǫ) = H(q, p) +
∑

i ǫi ispreserved. The evolution of dH = −∑i dǫi is inferred from (5.36) using It� rule (see [95℄ for moredetails). Therefore, we onsider the following dynamis:
dqi =

pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γijχ

2(rij)vij dt+ σijχ(rij)dWij ,

dǫi =
1

2

∑

j, j 6=i

(
χ2(rij)γijv

2
ij −

dσ2
ij

2

(
1

mi
+

1

mj

)
χ2(rij)

)
dt− σij χ(rij)vij · dWij ,

(5.37)
with the �utuation-dissipation relation [15, 95℄ :

σij = σ, γij = σ2βij/2, β−1
ij = 2kB(T−1

i + T−1
j )−1.It is then easily heked that measures of the form

dρ(q, p, ǫ) =
1

ZP,E
e−βH(q,p) exp

(∑

i

s(ǫi)

kB
− βǫi

)
δE=E0 δP=P0 dq dp dǫ (5.38)are invariant [15℄. This measure expresses the fat that the translational degrees of freedom aredistributed aording to a lassial Boltzmann statistis, whereas the internal energies are distri-buted aording to some free energy statistis. The total momentum P0 =

∑
i pi and the totalenergy E0 = E(q, p, ǫ) are also preserved by onstrution.If the dynamis is ergodi for the measure (5.38) and in the limit N → +∞, it holds

kB〈Tkin〉 = β−1, kB(〈T−1
int 〉)−1 = β−1,with

Tkin =
1

kBdN

N∑

i=1

p2
i

mi
,

1

Tint
=

1

N

N∑

i=1

1

Ti
,and 〈A〉 =

∫
A(q, p) ρ(q, p, ǫ) dq dp dǫ. Indeed, as T−1

i = s′(ǫi), and assuming s(ǫ) → −∞ when ǫ→
0, s(ǫ)/ǫ→ 0 when ǫ→ +∞ (whih is the ase when s(ǫ) = Cv ln ǫ),

〈
1

kBTi

〉
=

∫ +∞

0

s′(ǫi)

kB
exp

(
s(ǫi)

kB
− βǫi

)
dǫi

∫ +∞

0

exp

(
s(ǫi)

kB
− βǫi

)
dǫi

= β.Notie that these relationships provide estimators for the loal thermodynami temperature
β−1/kB through the arithmeti average kineti temperatures, and the harmoni average inter-



212 5 A redued model for shok wavesnal temperatures. Let us emphasize that a straightforward arithmeti average over the internaltemperatures would give wrong results (the orresponding estimator being biased).A deterministi version of the modelWe intend here to introdue a deterministi version of our model, whih allows to bridge thegap between a previous mesosopi deterministi model [326℄ (see also Setion 5.2.1) and the DPDframework for shok waves. The model proposed in [326℄ introdues damping fores on the positionvariables diretly (and not on the momentum variables as would be expeted) in order to preservethe Galilean invariane. Indeed, the damping terms in the momentum variable are onsidered tobe of the form −γ(vi − v̄i), where v̄i is a loal average of the veloities around the partile, whihmakes the Galilean invariane of the dissipated energy di�ult to preserve. If on the other handthe dissipation term in the momentum variable implies only pairwise veloity di�erenes as forDPD models, the Galilean invariane follows immediately. The following equations of motion thenmix the deterministi equations of motion of [326℄ and the DPD philosophy:




dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇V (rij) dt− γ

T ext
ij − T int

ij

T̄
ω(rij)vij dt,

dǫi =
1

2

∑

j, j 6=i
γ
T ext
ij − T int

ij

T̄
ω(rij)v

2
ij dt,where T ext

ij is the average temperature in the kineti degrees of freedom of partiles i and j (forexample, T ext
ij = (T ext

i + T ext
j )/2 with T ext

i = 2p2
i /kBdmi the kineti temperature assoiatedwith partile i) and T int

ij is the average internal temperatures of partiles i and j (for example,
T int
ij = (T int

i +T int
j )/2). The funtion ω is still a weighting funtion, and γ determines the strengthof the oupling.Notie that the dissipation term is in fat a dissipation term only when T ext

ij > T int
ij , and ananti-dissipation term otherwise (and so, is a Nosé-like feedbak). This ensures that the internaland external (kineti thus potential terms) energies equilibriate in all ases. However, the thermo-dynami properties of suh a model are less lear to state than for the previous stohasti model,and so, we stik to the model (5.37).Numerial disretizationWe use splitting formulas inspired from [305,306℄. Reall that the integration of the equation ofmotion (5.37) is not straightforward sine the dissipation terms depend on the relative veloities.We deompose (5.37) into elementary SDEs, and denote by φ∆t the (stohasti) �ow map for atime ∆t. The elementary SDEs are the usual deterministi Newton part and the dissipation part,whih read respetively

{
dq = M−1p dt,

dp = −∇V (q) dt
and ∀i < j,





dpi = −γijχ2(rij)vij dt+ σχ(rij) dWij ,

dpj = −dpi,
dǫi = − 1

2d
(
p2i

2mi
+

p2j
2mj

)
,

dǫj = dǫi.Denoting by φNewton,∆t and φi,jdiss,∆t (1 ≤ i < j ≤ N) the assoiated stohasti �ow maps, anapproximation of φ∆t is
φ∆t ≃ φ1,2

diss,∆t ◦ · · · ◦ φ
N−1,N
diss,∆t ◦ φNewton,∆t.



5.2 A redued model based on Dissipative Partile Dynamis 213The Newton �ow φNewton,∆t is approximated using a Veloity-Verlet sheme. For an approximation
Φi,jdiss,∆t (i < j) of the dissipation part, we �rst update the veloities at �xed internal temperaturesusing a Verlet-like algorithm as proposed in [306℄. The energy is then updated as

ǫn+1
i − ǫni = ǫn+1

j − ǫnj =
1

2

(
(pn+1
i )2

2mi
+

(pn+1
j )2

2mj
− (pni )2

2mi
−

(pnj )
2

2mj

)
,so that the total energy is indeed onserved by this step. Of ourse, this integration sheme ouldbe re�ned, espeially the dissipation part.Appliation to shok wavesSome numerial simulations of DPD models with onserved energy where proposed in [16,282℄, but were onerned only with the omputation of thermal ondutivities. The orrespondingnonequilibrium states were stabilized using steady temperature gradients. The dissipation termsin the DPDE equations of motions were disarded, and only the di�usive part was retained. Wepresent in this setion pro�les obtained from simulations of shok waves, for whih the di�usivepart of the dynamis an be disarded, but the dissipative part is of paramount importane toreprodue qualitative and quantitative features of all-atom shok waves. This situation is somehowomplementary to the ases studied in [16,282℄, and, to our knowledge, was never onsidered beforefor some physial appliation.We onsider the rystalline polymer (PVDF) system of [326℄, the orresponding redued systembeing modeled by a two-dimensional (2D) triangular lattie of mesopartiles. Results for the all-atom model an also be found in [326℄.The e�etive interation potential between mesopartiles is a pairwise Rydberg potential ofthe form [326℄ V (r) = VR(λ(r/r0)− 1)) with VR(d) = −ǫ (1 + d+ αd3) e−d. The parameters givenby [326℄ were �tted to reprodue the stress in an uniaxial ompression: λ = 7.90, α = 0.185,

r0 = 5.07 Å, ǫ = 1.612 × 10−20 J, m = 64.03 × 10−3 kg/mol. We also hoose a ut-o� radius
Rcut = 15 Å for the pairwise interations. The mirosopi state law is obtained by assuming that
Cv is independent of the temperature: ǫ = CvT , with here Cv = 16 kB sine we represent a three-dimensional moleule formed of 6 atoms by a 2D mesopartile. In general, the heat apaity is afuntion of the temperature Cv = Cv(T ), and should be parametrized by equilibrium simulations.We use the simple weight funtion χ(r) = (1 − r/Rcut)

2 if r ≥ Rcut, χ(r) = 0 otherwise,the ut-o� radius Rcut being the same as the one used for the potential. Of ourse, many otherweight funtions ould be used. We also set γ = 1.5 × 10−14 kg/s and ∆t = 10−14 s. In thesepreliminary tests of the model, the parameter γ was varied to obtain a good agreement with theall-atom results. However, it is expeted that γ is linked to some physial quantity, suh as thedeay rate of the relative veloities autoorrelation in an all-atom simulation, and ould thereforebe estimated using some preliminary small equilibrium simulations.We �rst prepare an initial state aording to the invariant measure (5.38). To this end, wesample independently the internal energies aording to the measure Z−1
ǫ exp(−βǫ + s(ǫ)/kB) =

Z−1
ǫ ǫCv/kB exp(−βǫ), and the initial on�guration in phase-spae by thermalizing a lattie initiallyat rest, using a Langevin dynamis. In this study, the initial temperature is T0 = 300 K, and theedge of the triangles in the triangular lattie is a = 5.13 Å.We then produe a shok using a piston at veloity up = 3000 m/s. Figure 5.18 presentsthe relaxation behind the shok front for the 2D triangular lattie of mesopartiles subjetedto the dynamis (5.37). The results are in good agreement with the all-atom results of [326℄.In partiular, the �nal temperature is very lose to the all-atom value (whereas it is of oursegreatly overestimated by the mesosopi dynamis without oupling), and the time required forthe internal temperatures and kineti temperatures to equilibriate is almost the time needed inall-atom studies.
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Fig. 5.18. Temporal evolution of the temperature of a thin slab of material as the shok runs troughit: mean kineti temperature T̂kin in the diretion of the shok (intermediate urve, red), mean internaltemperature T̂int (lower urve, blue). The orresponding results when the oupling with the internal degressof freedom is turned o� are also shown (upper urve, blak), and a artoon representation of the all-atomresult from [326℄ for the kineti temperature T̂kin is also plotted (dark dash dotted line).5.2.3 The reative aseIn the reative ase, exothermi hemial reations are triggered when the shok passes, andthe energy liberated sustains the shok. To model detonation at the mesosopi level, we introduean additional variable per mesopartile, namely a progress variable. The dynamis an then besplit into three elementary physial proesses:(i) the translational dynamis of the partiles, given by the dynamis of inert materials (seeEq. (5.37));(ii) the evolution of the hemial reation through some kinetis;(iii) the exothermiity of the reation: energy transfers between hemial energy and mehanialand internal energies have to be preised.Treating the exothermiityIn the reative ase, hemial reations are triggered when the shok passes. To model theprogress of the reation, an additional degree of freedom, a progress variable λi, is attahed toeah partile. For the model reation
2AB ⇄ A2 + B2, (5.39)



5.2 A redued model based on Dissipative Partile Dynamis 215the state λ = 0 orresponds to a moleule AB, whereas the state λ = 1 orresponds to A2 + B2.Representing the progress of the hemial reation by a real-value parameter makes sense when themesopartile represent a blob of material, but seems questionable when a mesopartile stands fora single moleule. Therefore, the progress variable should be seen as some dissoiation probability,or progress along some free energy pro�le.Sine the model reation (5.39) involves two speies on eah side, we postulate for example areversible evolution of order 2:
dλi
dt

=
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] , (5.40)the funtion ωr being a weight funtion (with support in [0, rreac]), and the mean temperature Tij =

(Ti +Tj)/2. The reation onstants K1, K2 are assumed to depend only on internal temperaturesof the partiles. For example, a possible form in the Arrhénius spirit is:
K1(T ) = A1 e−E1/kBT , K2(T ) = A2 e−E2/kBT . (5.41)The total inrement of the progress variable is therefore the sum of all elementary pair inrements,whih is very muh in the DPD spirit. Other kinetis (for example, using some loal averagedinternal temperatures 〈T 〉i and loal averaged progress variables 〈λ〉i) are of ourse possible.For very exothermi reations, E2 ≫ E1, and both energies are large sine the ativation energyis usually large for energeti materials. The inrement of a given progress variable is non-negligibleonly if the material is loally heated enough. In pratie, this an be ahieved when a strong shokis initiated in the system. If this shok is not strong enough, hemial reations do not ourfast enough, and sine the energy released is not su�ient, the shok wave is weakened until itdisappears. On the ontrary, if the shok wave is strong enough, the hemial reations happenlose enough from the detonation front, and the energy released sustains the shok wave.The progress of the reation also modi�es the mehanial properties of the material. In partiu-lar, reation produts usually have a larger spei� volume than reatants (at �xed thermodynamionditions). Therefore, some expansion is expeted. The hanges in the nature of the moleules aretaken into aount by introduing two additional parameters ka, kE and using some mixing rulesuh as Berthelot's rule. When the interation potential is of Lennard-Jones form, the interationbetween the mesopartiles i and j separated by a distane rij is then given by
V (rij , λi, λj) = 4Eij

((
aij
rij

)12

−
(
aij
rij

)6
)
, (5.42)with Eij = E

√
(1 + kEλi)(1 + kEλj), aij = a

(
1 + ka

λi+λj

2

). When the reation is omplete, thematerial initially desribed by a Lennard-Jones potential of parameters a,E is then desribed bya Lennard-Jones of parameters a′ = a(1 + ka) and E′ = E(1 + kE).We denote by ∆Eexthm the exothermiity of the reation (5.39). It is expeted that ∆Eexthm =

E2 − E1. We assume that the energy is liberated progressively during the reation, in a mannerthat the total energy of the system (hemial, mehanial, internal) is preserved:
dHtot(q, p, ǫ, λ) = d


 ∑

1≤i<j≤N
V (rij , λi, λj) +

N∑

i=1

p2
i

2mi
+ ǫi + (1 − λi)∆Eexthm


 = 0.In order to propose a dynamis satisfying this ondition, we have to make an additional assumptionabout the evolution of the system. Negeleting di�usive proesses, we require that, during theelementary step orresponding to exothermiity, the total energy of a given mesopartile does not
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d


1

2

∑

i6=j
V (rij , λi, λj)


+ d

(
p2
i

2mi

)
+ dǫi −∆Eexthmdλi = 0. (5.43)We then onsider evolutions of momenta and internal energies balaning the variations in thetotal energy due to the variations of λ (exothermiity, hanges in the potential energies). This isanalogous to the fat that the variations of kineti energy in (5.37) are ompensated by variationsof internal energies. The variations in total energy are distributed between internal energies andkineti energies following some predetermined ratio 0 < c < 1. For the internal energies,

dǫi = −c


d


1

2

∑

i6=j
V (rij , λi, λj)


 −∆Eexthmdλi


 .For the momenta, we onsider a proess Zpi suh that dpi = dZpi with

d

(
p2
i

2m

)
= −(1 − c)


d


1

2

∑

i6=j
V (rij , λi, λj)


−∆Eexthmdλi


 .We explain in the next setion how this is done in pratie (see Eq. (5.46)).Let us emphasize at this point that there are many other possible ways to treat the exother-miity. For instane, it would be possible to onsider instantaneous reations (jump proesses forwhih λ hanges from 0 to 1) ouring at random times, the probability of reation dependingon the progress variable. However, it is not lear whether suh a dynamis is reversible, sine thereverse reation requires partiles to have large kineti and internal energies. In omparison, theproess desribed here is progressive and therefore, muh more reversible.Finally, we propose the following dynamis to desribe reative shok waves:

dqi =
pi
mi

dt,

dpi =
∑

j, j 6=i
−∇qiV (rij , λi, λj) dt− γijχ

2(rij)vij dt+ σχ(rij)dWij + dZpi ,

dǫi =
1

2

∑

j, j 6=i

(
χ2(rij)γijv

2
ij −

dσ2

2

(
1

mi
+

1

mj

)
χ2(rij)

)
dt

−σ χ(rij)vij · dWij + dZǫi ,

dλi =
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] dt,

(5.44)
where dZpi , dZǫi are suh that (5.43) holds, i.e. the total energy is onserved. The �utuation-dissipation relation relating γij and σ is the same as for (5.37). Notie also that the inert dyna-mis (5.37) is reovered when A1 = A2 = 0, starting from λi = 0 for all i.Numerial implementationThe numerial integration of (5.44) is done using a deomposition of the dynamis into ele-mentary stohasti di�erential equations. We denote by φtinert the �ow assoiated with the dyna-mis (5.37), and by φtreac the �ow assoiated with the remaining part of the dynamis (5.44):
2 Of ourse, during the elementary step orresponding to the dynamis (5.37), the total energy hanges.
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∀1 ≤ i ≤ N,





dλi =
∑

j 6=i
ωr(rij) [K1(Tij)(1 − λi)(1 − λj) +K2(Tij)λiλj ] dt,

dpi = dZpi ,

dǫi = dZǫi .

(5.45)A one-step integrator for a time-step ∆t is onstruted as (qn+1, pn+1, ǫn+1, λn+1) = Φ∆treac ◦
Φ∆tinert(q

n, pn, ǫn, λn). A possible numerial �ow Φ∆tinert is given in Setion 5.2.3.Let us now onstrut a numerial �ow Φ∆treac approximating the �ow φ∆treac. Denoting (qn+1, p̃n, ǫ̃n, λn) =

Φ∆tinert(q
n, pn, ǫn, λn), we �rst integrate the evolution equation on the progress variables λi using a�rst-order expliit integration:

λ̃n+1
i = λni +


∑

j 6=i
ωr(r

n+1
ij )K1(T̃

n
ij)(1 − λ̃ni )(1 − λ̃nj ) +K2(T̃

n
ij)λ̃

n
i λ̃

n
j


 ∆t.We then set λn+1

i = min(max(0, λ̃n+1
i ), 1) in order to ensure that the progress variable remainsbetween 0 and 1. One all progress variables are updated, the variation δEni in the total energyof partile i due to the variations of {λj} is omputed as

δEni = (λn+1
i − λni )∆Eexthm +

1

2

∑

j 6=i

(
V (rn+1

ij , λn+1
i , λn+1

j ) − V (rn+1
ij , λni , λ

n
j )
)
.The onservation of total energy is then ensured through variations of internal and kineti energies.The internal energies are updated as ǫn+1

i = ǫ̃ni + c δEni . The update of pn+1
i is done by addingto pni a vetor with random diretion, so that the �nal momentum is suh that the kineti energyis orret. More preisely, when the dimension of the physial spae is d = 2 for example, anangle θni is hosen at random in the interval [0, 2π], the angles (θni )i,n being idependent andidentially distributed (i.i.d.) random variables. The new momentum pn+1

i is then onstrutedsuh that
pn+1
i = pni + αn(cos θn, sin θn),

(pn+1
i )2

2mi
=

(p̃ni )
2

2mi
+ (1 − c) δEni . (5.46)Solving this equation in αn gives the desired result.Numerial resultsWe present in this setion numerial results obtained for the dynamis (5.44) for a two-dimensional �uid. A shok is initiated using a piston of veloity up during a time tp. The initialonditions for the positions qi, momenta pi and internal energies ǫi are sampled as proposed inSetion 5.2.2.We onsider the following parameters, inspired by the nitromethane example, where the mo-leule CH3NO2 is replaed by a mesopartile in a spae of 2 dimensions. The parameters an belassi�ed in four main ategories, the ones desribing the mehanial properties of the material, theparameters used to haraterize the inert dynamis and the hemial kinetis, and the parametersrelated to the exothermiity. We onsider here a system with(i) (Material parameters) a molar massm = 80 g/mol, desribed by a Lennard-Jones potentialof parameter ELJ = 3× 10−21 J (melting temperature around 220 K) and a = 5 Å, with aut-o� radius rcut = 15 Å for the omputation of fores. The hanges in the parameters ofthe Lennard-Jones material during the reation follow (5.42), using kE = 0 and ka = 0.2(pure expansion).



218 5 A redued model for shok waves(ii) (Parameters of the inert dynamis) The mirosopi state law is ǫ = CvT with Cv = 10 kB(i.e., 20 degrees of freedom are not represented). The frition is γ = 10−15 kg/s, and thedissipation weighting funtion χ(r) = (1 − r/rc), with rc = rcut.(iii) (Chemial kinetis) For the hemial reation (5.40), reation onstants are omputedusing (5.41) with Z1 = Z2 = 1017 s−1, E1/kB = 15000 K, the exothermiity being
∆Eexthm = 6.25 eV. The reation weighting funtion ω(r) = χ(r);(iv) (Exothermiity) we hoose c = 0.5.The intial density of the system is ρ = 1.06 g/m3, and the initial temperature T̄ = 300 K.The time-step used is ∆t = 2 × 10−15 s. Figure 5.19 presents veloity pro�les averaged in thinslies of the material in the diretion of the skok, for a ompression time tp = 2 ps at a veloity

up = 5000 m/s. We tested the independene of the resulting pro�les for the initial loadings
(tp, up) = (1 ps, 6000 m/s), (tp, up) = (2 ps, 6000 m/s), (tp, up) = (3 ps, 6000 m/s) and (tp, up) =

(3 ps, 5000 m/s) .
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Fig. 5.19. Veloity pro�les in the material as a funtion of the distane to the shok front (in µm) atdi�erent times (lower urve (red): t = 1.2 × 10−10 s; middle urve (blak): t = 1.6 × 10−10 s; upper urve(blue): t = 2 × 10−10 s).The veloity of the shok front is onstant, and approximately equal to us = 3060 m/s. Notiethat the wave an be divided into three regions: the upstream region is unperturbed; the regionaround the shok front where hemial reations happen is of onstant width (approximately 300-400 Å, whih is onsistent with all-atoms studies, see for instane [154℄); the downstream regionis an autosimilar rarefation wave. This pro�le is therefore reminisent from ZND pro�les [103℄enountered in hydrodynami simulations of detonation waves.
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Fig. 5.20. Left: variations of internal (lower urve, blak) and kineti (upper urve, red) temperaturesin the diretion of the shok, as a funtion of time in a slie of material. Right: evolution of the progressvariable averaged in a slie of material as a funtion of time (upper urve, blue). For omparison, a resaledinternal temperature pro�le is also presented (lower urve, blak).Figure 5.20 presents the evolution of internal and kineti temperatures averaged in a slieof material in the diretion of the shok as a funtion of time (Left), as well as the evolutionof the average progress variables (Right). In partiular, the reation does not start immedialelyat the shok front: the ignition asks �rst for a su�ient heating of the material (through aninreasing internal energy), sine the reation onstant are too low at temperatures lower than afew thousands Kelvins with the values hosen here.
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6Variational Monte-Carlo
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〈ψ, Ôψ〉
〈ψ, ψ〉 (6.1)where Ô is the self-adjoint operator (the observable) assoiated with a physial quantity O and Ψa given wave funtion. For N -body systems in the position representation, ψ is a funtion of 3Nreal variables and

〈ψ, Ôψ〉
〈ψ, ψ〉 =

∫

R3N

[Ôψ](x)ψ(x) dx
∫

R3N

|ψ(x)|2 dx
. (6.2)High-dimensional integrals are very di�ult to evaluate numerially by standard integration rules.For spei� operators Ô and spei� wave funtions ψ, e.g. for eletroni Hamiltonians and Slaterdeterminants built from Gaussian atomi orbitals, the above integrals an be alulated analyti-ally. In some other speial ases, (6.2) an be rewritten in terms of integrals on lower-dimensionalspaes (typially R3 or R6).In the general ase however, the only possible way to evaluate (6.2) is to resort to stohastitehniques. The VMC method [40℄ onsists in remarking that

〈ψ, Ôψ〉
〈ψ, ψ〉 =

∫

R3N

OL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
(6.3)with OL(x) = [Ôψ](x)/ψ(x). The above expetation value is reminisent of expetations valuesomputed in Chapter 3, for the measure
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dπ(x) =

|ψ(x)|2∫

R3N

|ψ|2
dx. (6.4)This measure an be formally interpreted as a Boltzmann measure Z−1 e−βV (x) dx with the hoie

β = 1 and
V (x) = − ln

(
|ψ(x)|2

)
. (6.5)Hene, sampling on�gurations (xn)n≥1 ∈ R3N from the measure (6.4), the expetation value (6.3)an be approximated as

〈ψ, Ôψ〉
〈ψ, ψ〉 ≃ 1

L

L∑

n=1

OL(xn). (6.6)The VMC algorithms desribed below are generi, in the sense that they an be used to omputethe expetation value of any observable, for any N -body system. In the numerial example, we willhowever fous on the important ase of the alulation of eletroni energies of moleular systems.In this partiular ase, the expetation value to be omputed reads
〈ψ, Ĥψ〉
〈ψ, ψ〉 =

∫

R3N

EL(x) |ψ(x)|2 dx
∫

R3N

|ψ(x)|2 dx
(6.7)where the salar �eld EL(x) = [Ĥψ](x)/ψ(x) is alled the loal energy. Remark that if ψ is aneigenfuntion of Ĥ assoiated with the eigenvalue E, EL(x) = E for all x. Most often, VMCalulations are performed with trial wave funtions ψ that are good approximations of someground state wave funtion ψ0. These trial wavefuntions are sums of single determinantal wavefuntions built upon Slater-type atomi orbitals, multiplied by a Jastrow fator. More preisely,for a system of N eletrons (omitting spin variables and eletron-nuleus orrelations, see e.g. [105℄for more general expressions), a typial expression of the wavefuntion is

ψ(x1, . . . , xN ) =

[
Ndet∑

n=1

anDet(φn1 , . . . , φ
n
N )(x1, . . . , xN )

]
·

∏

1≤i<j≤N
exp

(
b|xi − xj |

1 + c|xi − xj |

)
, (6.8)where the funtions φni are atomi-like orbitals

φni (x) = Z−1
αn

i , ξ
n
i , l

n
i ,m

n
i
|x|αn

i e−ξ
n
i |x| Ylni ,mn

i

(
x

|x|

)
.In this last expression, the notation x/|x| is a formal notation for the angles (θ, ϕ) assoiated with

x ∈ R3 in spherial oordinates, and the funtions Yl,m are spherial harmonis.Sine the trial wave funtions are good approximations of some ground state wave funtion,
EL(x) usually is a funtion of low variane (with respet to the probability density π(x)). This isthe reason why, in pratie, the approximation formula

〈ψ, Ĥψ〉
〈ψ, ψ〉 ≃ 1

L

L∑

n=1

EL(xn) (6.9)is fairly aurate, even for relatively small values of L (in pratial appliations on realisti mole-ular systems L ranges typially between 106 and 109).Of ourse, the quality of the above approximation formula depends on the way the points (xn)n≥1are generated. In Setion 6.1.1, we desribe the standard sampling method urrently used for VMCalulations. It onsists in a biased random walk (overdamped Langevin dynamis) in the on�-



6.1 Desription of the algorithms 225guration spae R3N orreted by a Metropolis-Hastings aeptane/rejetion proedure. However,the numerial results of Chapter 3 suggest that Langevin dynamis have better sampling pro-perties than overdamped Langevin dynamis. Therefore, in Setion 6.1.2, we introdue �titiousmasses, and onsider a sampling sheme in whih the points (xn)n≥1 are the projetions on theon�guration spae of one realization of some Markov hain on the phase spae R3N ×R3N . ThisMarkov hain is obtained by a modi�ed Langevin dynamis, orreted by a Metropolis-Hastingsaeptane/rejetion proedure.Another advantage of suh a dynamis on an extended on�guration spae is a better behaviorlose to singularities of the formal potential V (as given by (6.5). Those singularities arise atthose points where ψ(x) = 0. The set ψ−1(0) is alled the nodal surfae, and has its origin in theantisymmetri property of the wavefuntion. Reall indeed that
ψ(x1, x2, x3, . . . , xN ) = −ψ(x2, x1, x3, . . . , xN ),so that ψ(x) = 0 whenever x1 = x2 for example. A spei� problem enountered in VMC alu-lations on fermioni systems is that the standard disretization of the biased random walk (Eulersheme) does not behave properly lose to the nodal surfae of the trial wave funtion ψ. This isdue to the fat that the drift term blows up as the inverse of the distane to the nodal surfae:if a random walker gets lose to the nodal surfae, the drift term repulses it far apart in a singletime step. In some studies [47, 352℄, this di�ulty is partially irumvented by resorting to morelever disretization shemes. Using here a Langevin dynamis, the walkers have a mass (henesome inertia) and the singular drift does not diretly at on the position variables (as it is the asefor the biased random walk), but indiretly via the momentum variables. The undesirable e�etsof the singularities are thus expeted to be damped down.Numerial results were performed by Anthony Semama when he was a post-do at CERMICS.These results, presented in Setion 6.2, on�rm these intuitions and demonstrate on a benh ofrepresentative examples that the algorithm based on the modi�ed Langevin dynamis is the moste�ient one of the algorithms studied here (the mathematial riteria for measuring the e�ienywill be made preise below).6.1 Desription of the algorithms6.1.1 Random walks in the on�guration spaeIn this setion, the state spae is the on�guration spae R3N , so that the Metropolis-Hastingsalgorithm atually samples the probability density π(x) (see Setion 3.1.3 for a general presenta-tion of the Metropolis-Hastings algorithm). Reall that the Metropolis-Hastings algorithm has atransition kernel given by

P (x, dy) = r(x, y)P(x, y) dy +

(
1 −

∫
r(x, y′)P(x, y′) dy′

)
δx,where the density r(x, ·) is given by

r(x, y) = min

(
1,
π(y)P(y, x)

π(x)P(x, y)

)
.The funtion P is the proposal funtion. In words, the on�guration y is proposed with probability

P(x, y) from x, and aepted with probability r(x, y), rejeted otherwise.Simple random walkIn the original paper [238℄ of Metropolis et al., the Markov hain is a simple random walk:
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x̃n+1 = xn + δ Un,where δ is the step size and Un are independent and identially distributed (i.i.d.) random vetorsdrawn uniformly in the 3N -dimensional ube K = [−1, 1]3N . The orresponding transition densityis

P(x, y) = (2δ)−3N χK

(
x− y

δ

)
,where χK is the harateristi funtion of the ubeK. Notie that in this partiular ase, P(x, y) =

P(y, x) so that the aeptane rate r(x, y) only depends on the ratio π(y)/π(x).Biased random walkThe simple random walk is far from being the optimal hoie: it indues a high rejetion rate,hene a large variane. A variane redution tehnique onsists in onsidering the overdampedLangevin dynamis [58℄:
dxt = ∇[ln |ψ|](xt)dt+ dWt, (6.10)where Wt is a 3N -dimensional Wiener proess. Note that |ψ|2 is an invariant measure of theMarkov proess (6.10), and, better, that the dynamis (6.10) is in fat ergodi (see the results inChapter 3) and satis�es a detailed balane property:

|ψ(x)|2 P∆t(x, y) = |ψ(y)|2 P∆t(y, x)for any ∆t > 0, where P∆t(x, y) is the probability density that the Markov proess (6.10) is at yat time t + ∆t starting from x at time t. These above results are lassial for regular, positivefuntions ψ, and have been reently proven for fermioni wave funtions [50℄ (in the latter ase,the dynamis is ergodi in eah nodal poket of the wave funtion ψ).Notie that if one uses the Markov hain of density P∆t(x, y) in the Metropolis-Hastingsalgorithm, the aeptane/rejetion step is useless, sine (thanks to the detailed balane property)the aeptane rate always equals one. The exat value of P∆t(x, y) is however unknown, so thata disretization of equation (6.10) with a simple Euler-Maruyama sheme is generally used
xn+1 = xn +∆t∇[ln |ψ|](xn) +∆Wn (6.11)where ∆Wn are i.i.d. Gaussian random vetors with zero mean and ovariane matrix ∆t I3N (I3Nis the identity matrix). The Euler sheme leads to the approximated transition density

PEuler
∆t (x, y) =

1

(2π∆t)3N/2
exp

(
−| y − x−∆t∇[ln |ψ|](x) |2

2∆t

)
.The time disretization introdues the so-alled time-step error, whose onsequene is that (6.11)samples dπ only approximately. This error is however orreted by the Metropolis-Hastings aep-tane/rejetion proedure, whih ensures that dπ is exatly sampled.This sampling method is muh more e�ient than the Metropolis-Hastings algorithm based onthe simple random walk, sine the Markov hain (6.11) does a large part of the work (it samplesa short time-step approximation of dπ), whih is learly not the ase for the simple random walk.The standard method in VMC omputations urrently is the Metropolis-Hastings algorithm basedon the Markov hain de�ned by (6.11) (for re�nements of this method, see [41, 332,350℄).



6.1 Desription of the algorithms 2276.1.2 Random walks in the phase spaeIn this setion, the state spae is the phase spae R3N ×R3N . Let us emphasize that the intro-dution of momentum variables is nothing but a numerial arti�e. The phase spae trajetoriesthat will be dealt with in this setion do not have any physial meaning.Langevin dynamisWe onsider here the following Langevin dynamis of a system ofN partiles of massm evolvingin an external potential V :



dxt =

pt
m
dt,

dpt = −∇V (xt) dt− γpt dt+ σdWt.
(6.12)The magnitudes σ and γ of the random fores σWt and of the drag term −γpt dt are related herethrough the �utuation-dissipation formula

σ2 =
2mγ

β
, (6.13)with β = 1 in the VMC framework. Sine, for regular potentials, the anonial distribution

dΠ(x, p) = Z−1 exp

[
−β
(
V (x) +

|p|2
2m

)]
dx dp (6.14)is an invariant probability measure for the system (Z being a normalization onstant), the proje-tion on the position spae of the Langevin dynamis samples dπ. On the other hand, the Langevindynamis does not satisfy the detailed balane property. We will ome bak to this importantpoint in the forthoming setion.In this ontext, the parameters m and γ (σ being then obtained through (6.13)) should beseen as numerial parameters to be optimized to get the best sampling. We now desribe howto disretize and apply a Metropolis-Hastings algorithm to the Langevin dynamis (6.12), in theontext of VMC.Time disretization of the Langevin dynamisMany disretization shemes exist for Langevin dynamis (see Setion 3.2.4). In order to hoosewhih algorithm is best for VMC, we have tested four di�erent shemes available in the literature [4,45,183,280℄, with parameters β = 1, γ = 1 and m = 1. The benhmark system is a Lithium atom,and ψ is a single determinantal wave funtion built upon Slater-type atomi orbitals, multiplied bya Jastrow fator1. We turn o� the aeptane/rejetion step in these preliminary tests, sine ourpurpose is to ompare the time-step errors for the various algorithms. From the results displayedin Table 6.1, one an see that the Rii-Ciotti algorithm [280℄ is the method whih generatesthe smallest time-step error. This algorithm reads





xn+1 = xn +∆t
pn

m
e−γ∆t/2 +

∆t

2m
[−∇V (xn)∆t+ Un] e−γ∆t/4,

pn+1 = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 + Une−γ∆t/2,

(6.15)
1 For all the numerial omputations presented in this hapter, the interested reader should ask AnthonySemama for details of the omputations, in partiular the values of the parameters for ψ given by (6.8).



228 6 Variational Monte-Carlowhere Un are i.i.d. Gaussian random vetors with zero mean and variane σ2I3N with σ2 = 2γm
β ∆t.It an be seen from Table 6.1 that the Rii-Ciotti algorithm also outperforms the biased randomwalk (6.11), as far as sampling issues are onerned. In the following, we shall therefore use theRii-Ciotti algorithm.Table 6.1. Comparison of the energies omputed with di�erent disretization shemes for Langevindynamis. The referene energy is -7.47198(4) a.u.

∆t BRW BBK [45℄ Fore interpolation [4℄ Splitting [183℄ Rii & Ciotti [280℄0.05 -7.3758(316) -7.4395(246) -7.4386(188) -7.4467(137) -7.4576(07)0.005 -7.4644(069) -7.4698(015) -7.4723(015) -7.4723(015) -7.4701(20)0.001 -7.4740(007) -7.4728(013) -7.4708(017) -7.4708(017) -7.4696(17)0.0005 -7.4732(010) -7.4700(023) -7.4709(022) -7.4708(022) -7.4755(26)Metropolized Langevin dynamisThe disretized Langevin dynamis does not exatly sample the target distribution Π , butrather some approximation Π∆t of Π . It is therefore tempting to introdue a Metropolis-Hastingsaeptane/rejetion step to further improve the quality of the sampling. Unfortunately, this ideaannot be straightforwardly implemented for two reasons:(i) �rst, this is not tehnially feasible, sine the Markov hain de�ned by (6.15) does not havea transition density. Indeed, as the same Gaussian random vetors Un are used to updateboth the positions and the momenta, the onditional measure p((xn, pn), ·) is supportedon a 3N -dimensional submanifold of the phase spae R3N × R3N ;(ii) seond, leaving apart the above mentioned tehnial di�ulty, whih is spei� to the Rii-Ciotti sheme, the Langevin dynamis is a priori not an e�ient Markov hain for theMetropolis-Hastings algorithm beause it does not satisfy the detailed balane property.Let us now explain how to takle these two issues, starting with the �rst one. To make it om-patible with the Metropolis-Hastings framework, one needs to slightly modify the Rii-Ciottialgorithm. Following [4, 62℄ (see also the derivation in Setion 3.2.4), we thus introdue i.i.d. or-related Gaussian vetors (Gn1,i, G
n
2,i) (1 ≤ i ≤ 3N) suh that:





〈(Gn1,i)2〉 = σ2
1 =

∆t

βmγ

(
2 − 3 − 4e−γ∆t + e−2γ∆t

γ∆t

)
,

〈(Gn2,i)2〉 = σ2
2 =

m

β

(
1 − e−2γ∆t

)
,

〈Gn1,iGn2,i〉
σ1σ2

= c12 =
(1 − e−γ∆t)2

βγσ1σ2
.Setting Gn1 = (Gn1,i)1≤i≤3N and Gn2 = (Gn2,i)1≤i≤3N , the modi�ed Rii-Ciotti algorithm reads





xn+1 = xn +
∆t

m
pne−γ∆t/2 − ∆t2

2m
∇V (xn)e−γ∆t/4 +Gn1 ,

pn+1 = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 +Gn2 .

(6.16)The above sheme is a onsistent disretization of (6.12) and the orresponding Markov hain doeshave a transition density, whih reads (see Setion 4.3.1 for example)
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PMRC
∆t ((xn, pn), (xn+1, pn+1)) = Z−1 exp

[
− 1

2(1 − c212)

(( |d1|
σ1

)2

+

( |d2|
σ2

)2

− 2c12
d1

σ1
· d2

σ2

)]
,(6.17)with

d1 = xn+1 − xn −∆t
pn

m
e−γ∆t/2 +

∆t2

2m
∇V (xn)e−γ∆t/4,

d2 = pn+1 − pne−γ∆t +
1

2
∆t
[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2.Unfortunately, inserting diretly the transition density (6.17) in the Metropolis-Hastings algorithmleads to a high rejetion rate. Indeed, if (xn, pn) and (xn+1, pn+1) are related through (6.16),

PMRC
∆t ((xn, pn), (xn+1, pn+1)) usually is muh greater than PMRC

∆t ((xn+1, pn+1), (xn, pn)), sine theprobability that the random fores are strong enough to make the partile go bak in one stepfrom where it omes, is very low in general. This is related to the fat that the Langevin dynamisdoes not satisfy the detailed balane relation.
Fig. 6.1. Left: Usual Langevin dynamis; in this ase, it is very unlikely to re-obtain the initial on�gu-ration starting from the �nal one. Right: Momentum reversal after integration time ∆t; in this ase, thedynamis is reversible.It is however possible to further modify the overall algorithm by ensuring some mirosopireversibility, in order to �nally obtain low rejetion rates. For this purpose, we introdue momen-tum reversions. Suh a proedure was already onsidered for Hybrid Monte Carlo algorithms (seefor instane [2℄). Denoting by PLangevin

∆t the transition density of the Markov hain obtained byintegrating (6.12) exatly on the time interval [t, t+∆t], it is indeed not di�ult to hek (underonvenient assumptions on V = − ln |ψ|2), that the Markov hain de�ned by the transition density
P̃Langevin
∆t ((x, p), (x′, p′)) = PLangevin

∆t ((x, p), (x′,−p′)) (6.18)is ergodi with respet to Π and satis�es the detailed balane property (see Figure 6.1)
Π(x, p) P̃Langevin

∆t ((x, p), (x′, p′)) = Π(x′, p′) P̃Langevin
∆t ((x′, p′), (x, p)) . (6.19)Replaing the exat transition density PLangevin

∆t by the approximation PMRC
∆t , we now onsiderthe transition density

P̃MRC
∆t ((x, p), (x′, p′)) = PMRC

∆t ((x, p), (x′,−p′)) . (6.20)These onsiderations are summarized in Algorithm 6.1. Note that a momentum reversion issystematially performed just after the Metropolis-Hastings step. As the invariant measure Π isleft unhanged by this operation, the global algorithm (Metropolis-Hastings step based on thetransition density P̃MRC
∆t plus momentum reversion) atually samples Π . The role of the �nalmomentum reversion is to preserve the underlying Langevin dynamis: while the proposals areaepted, the above algorithm generates Langevin trajetories, that are known to e�iently sample



230 6 Variational Monte-Carloan approximation of the target density Π . Numerial tests seem to show that, in addition, themomentum reversion also plays a role when the proposal is rejeted: it seems to inrease theaeptane rate of the next step, preventing the walkers from being trapped in the viinity of thenodal surfae ψ−1(0).As the points (xn, pn) of the phase spae generated by the above algorithm form a samplingof Π , the positions (xn) sample dπ and an therefore be used for VMC alulations.Langevin Metropolized VMC algorithmAlgorithm 6.1. Starting from some initial on�guration (x0, p0),(1) Propose a move from (xn, pn) to (x̃n+1, p̃n+1) using the transition density P̃MRC
∆t . Inother words, perform one step of the modi�ed Rii-Ciotti algorithm (6.16)





xn+1
∗ = xn +

∆t

m
pne−γ∆t/2 − ∆t2

2m
∇V (xn) + e−γ∆t/4 +Gn1 ,

pn+1
∗ = pne−γ∆t − ∆t

2

[
∇V (xn) + ∇V (xn+1)

]
e−γ∆t/2 +Gn2 ,and set (x̃n+1, p̃n+1) = (xn+1

∗ ,−pn+1
∗ );(2) Compute the aeptane rate

αn = min

(
Π(x̃n+1, p̃n+1) P̃MRC

∆t ((x̃n+1, p̃n+1), (xn, pn))

Π(xn, pn) P̃MRC
∆t ((xn, pn), (x̃n+1, p̃n+1))

, 1

)
;(3) Draw a random variable Un ∼ U(0, 1):� if Un ≤ αn, aept the proposal and set (xn+1, pn+1) = (x̃n+1, p̃n+1);� if Un > αn, rejet the proposal, and set (xn+1, pn+1) = (xn, pn);(4) Reverse the momenta: (xn+1, pn+1) = (xn+1,−pn+1).A Hybrid Monte Carlo VMC algorithmGeneralized Hybrid Monte Carlo (HMC) algorithms ould also be used (see Setion 3.2.2 formore preisions on the HMC algorithm), relying in partiular on the idea of using orrelatedmomenta from one HMC step to the other [173℄. For i.i.d. standard Gaussian random vetors Gn,the momenta may be updated as

pn+1 =
√

1 − 2γ∆t pn +
√

2γ∆tGn ≃ (1 − γ∆t) pn +
√

2γ∆tGnwhen γ∆≪ 1. Therefore, using a very strong orrelation from one step to another, and ombiningthis momentum update in a HMC algorithm results in an approximation of Langevin dynamis.The interesting point in HMC algorithms is that the integration sheme to be used is a disretiza-tion of the Hamiltonian dynamis, and often the Störmer-Verlet algorithm is the most onvenientsheme to use. Only some tuning of the parameters γ, m, ∆t (and possibly the number of HMCsteps before the aeptane/rejetion step) has to be made.6.2 Numerial experiments and appliations6.2.1 Measuring the e�ienyA major drawbak of samplers based on Markov proesses is that they generate sequentiallyorrelated data. For a trajetory of L steps, the e�etive number of independent observations is



6.2 Numerial experiments and appliations 231in fat Le� = L/Norr, where Norr is the orrelation length, namely the number of suessiveorrelated moves. In the following appliations, we provide estimators for the orrelation length
Norr and for the so-alled ine�ieny η (see below), whih are relevant indiators of the quality ofthe sampling. In this setion, following Stedman et al. [322℄, we desribe the way these quantitiesare de�ned and omputed.The sequene of samples is split into NB bloks of LB steps, where the number LB is hosensuh that it is a few orders of magnitude higher than Norr. The mean energy is 〈EL〉|ψ|2 and thevariane is σ2 = 〈

(
EL − 〈EL〉|ψ|2)2〉|ψ|2 . These quantities are de�ned independently on the VMCalgorithm used. The empirial mean of the loal energy reads

〈EL〉NB ,LB

|ψ|2 =
1

NBLB

NBLB∑

i=1

EL(xi). (6.21)The empirial variane over all the individual steps is given by
[σNB ,LB ]2 =

1

NBLB

NBLB∑

i=1

(
EL(xi) − 〈EL〉NB ,LB

|ψ|2
)2 (6.22)and the empirial variane over the bloks by

[σNB ,LB

B ]2 =
1

NB

NB∑

i=1

(
EB,i − 〈EL〉NB ,LB

|ψ|2
)2

, (6.23)where EB,i is the average energy over blok i:
EB,i =

1

LB

iLB∑

j=(i−1)LB+1

EL(xj). (6.24)Following [322℄, we de�ne the orrelation length as
Norr = lim

NB→∞
lim

LB→∞
LB

[σNB ,LB

B ]2

[σNB ,LB ]2
, (6.25)and the ine�ieny η of the run as:

η = lim
NB→∞

lim
LB→∞

LB[σNB ,LB

B ]2. (6.26)On the numerial examples presented below, the relative �utuations of the quantities LB [σ
NB,LB
B ]2

[σNB,LB ]2and LB[σNB ,LB

B ]2 beome small for LB > 50 and NB > 50.The de�nition of these two quantities an be understood as follows. Sine LB ≫ Norr andonly LB/Norr are independent samples among the samples in the blok, the entral limit theoremyields
EB,i ≃ 〈EL〉|ψ|2 +

σGi√
LB/Norrwhere Gi are i.i.d. normal random variables. Thus, in the limit NB → ∞ and LB → ∞, we obtain

(σNB ,LB

B )2 =
σ2

LB/Norr .



232 6 Variational Monte-CarloSine limNB→∞ limLB→∞[σNB ,LB ]2 = σ2, we obtain (6.25). The ine�ieny η is thus equal to
Norrσ2 and is large if the variane is large, or if the number of orrelated steps is large.Using this measure of e�ieny, we an now ompare the sampling algorithms (the simplerandom walk, the biased random walk and the Langevin algorithm) for various systems. In anyase, a Metropolis-Hastings aeptane/rejetion step is used. We found empirially from severaltests that onvenient values for the parameters of the Langevin algorithm are γ = 1 and m = Z3/2where Z is the highest nulear harge among all the nulei. For eah algorithm, we omparethe e�ieny for various values of the step length, namely the inrement δ in the ase of thesimple random walk, and the time-step ∆t for the other two shemes. For a given algorithm,simple arguments orroborated by numerial tests show that there exists an optimal value ofthis inrement: for smaller (resp. for larger inrements), the orrelation between two suessivepositions inreases sine the displaement of the partile is small (resp. sine many moves arerejeted), and this inreases the number of orrelated steps Norr.One an notie on the results (see tables 6.2, 6.3, 6.4, 6.5) that a large error bar orrespondsto large values for Norr and η. The quantities Norr and η are a way to re�ne the measure ofe�ieny, sine the same length of error bar may be obtained for di�erent values of the numerialparameters.6.2.2 Numerial resultsSome numerial tests based on the above estimators of (in)e�ieny are presented in thissetion. We ompare the algorithms and parameters at a �xed omputational ost. The referenevalues are obtained by ten times longer VMC simulations. The error bars given in parenthesis are
60% on�dene intervals. We also provide the aeptane rate (denoted by A in the tables) and,when it is relevant, the mean of the length of the inrement xn+1−xn over one time-step (denotedby 〈|∆x|〉 in the tables) for the biased random walk and the Langevin dynamis. These tests wereperformed by Anthony Semama using the QMC=Chem program2.Lithium.The Lithium atom was hosen as a �rst simple example. The wave funtion is the same as forthe benhmark system used for the omparison of the various Langevin shemes, namely a singleSlater determinant of Slater-type basis funtions improved by a Jastrow fator to take aount ofthe eletron orrelation. The referene energy assoiated with this wave funtion is −7.47198(4)a.u., and the omparison of the algorithms is given in Table 6.2. The runs were made of 100 randomwalks omposed of 50 bloks of 1000 steps. For the simple random walk, the lowest values of theorrelation length and of the ine�ieny are respetively 11.4 and 1.40. The biased random walkis muh more e�ient, sine the optimal orrelation length and ine�ieny are more than twiesmaller, i.e. 4.74 and 0.55. The proposed algorithm is even more e�ient: the optimal orrelationlength is 3.75 and the optimal ine�ieny is 0.44.Fluorine.The Fluorine atom was hosen for its relatively �high� nulear harge (Z = 9), leading to atimesale separation of the ore and valene eletrons. The wave funtion is a Slater-determinantwith Gaussian-type basis funtions where the 1s orbital was substituted by a Slater-type orbital,with a referene energy of −99.397(2) a.u. The runs were made of 100 random walks omposed of100 bloks of 100 steps. The results are given in Table 6.3. For the simple random walk, the lowestvalues of the orrelation length and of the ine�ieny are respetively 15.6 and 282. The biasedrandom walk, for whih the optimal orrelation length and ine�ieny are 7.4 and 137, is again
2 Chem is a Quantum Monte Carlo program written by M. Ca�arel, IRSAMC, Université Paul Sabatier �CNRS, Toulouse, Frane. The wave funtions are available upon request.



6.2 Numerial experiments and appliations 233Table 6.2. The Lithium atom: Comparison of the Simple random walk, the Biased random walk andthe proposed Langevin algorithm. The runs were arried out with 100 walkers, eah realizing 50 bloks of1000 steps. The referene energy is -7.47198(4) a.u., and A is the average aeptane rate.
∆R 〈EL〉 Norr η ASimple random walk0.05 -7.47126(183) 94.5 ± 3.3 11.72(42) 0.910.10 -7.47239(97) 35.2 ± 1.2 4.08(14) 0.820.15 -7.47189(75) 20.5(5) 2.30(06) 0.740.20 -7.47157(56) 14.3(4) 1.62(04) 0.660.25 -7.47182(56) 12.1(3) 1.40(05) 0.590.30 -7.47189(56) 11.4(3) 1.57(17) 0.520.35 -7.47275(59) 12.4(3) 1.57(17) 0.460.40 -7.47130(63) 14.4(5) 1.93(22) 0.40
∆t 〈EL〉 Norr η 〈|∆x|〉 ABiased random walk0.01 -7.47198(53) 10.31(29) 1.23(3) 0.284(09) 0.980.03 -7.47156(39) 5.26(14) 0.73(7) 0.444(21) 0.920.04 -7.47195(35) 4.82(12) 0.57(3) 0.486(26) 0.880.05 -7.47219(32) 4.74(11) 0.55(2) 0.514(31) 0.850.06 -7.47204(38) 4.95(11) 0.58(3) 0.533(36) 0.810.07 -7.47251(32) 5.39(14) 0.61(3) 0.546(40) 0.780.10 -7.47249(42) 7.56(25) 0.87(5) 0.555(50) 0.68Langevin0.20 -7.47233(34) 5.07(10) 0.60(1) 0.236(08) 0.970.30 -7.47207(34) 4.14(09) 0.47(1) 0.328(15) 0.930.35 -7.47180(31) 3.96(08) 0.45(1) 0.366(18) 0.910.40 -7.47185(29) 3.75(08) 0.44(2) 0.399(22) 0.890.45 -7.47264(29) 3.88(08) 0.45(2) 0.426(25) 0.860.50 -7.47191(29) 4.07(14) 0.46(2) 0.426(25) 0.840.60 -7.47258(32) 4.78(16) 0.52(2) 0.481(36) 0.78twie more e�ient than the simple random walk. The Langevin algorithm is more e�ient thanthe biased random walk: the optimal orrelation length is 5.3 and the optimal ine�ieny is 102.Copper.We an go even further in the timesale separation and take the Copper atom (Z = 29) as anexample. The wave funtion is a Slater determinant with a basis of Slater-type atomi orbitals,improved by a Jastrow fator to take aount of the eletron orrelation. The referene energy is

−1639.2539(24). The runs were made of 40 random walks omposed of 500 bloks of 500 steps.From Table 6.4, one an remark that the Langevin algorithm is again more e�ient than thebiased random walk, sine the optimal orrelation length and ine�ieny are respetively 28.7 and
4027, whereas using the biased random walk, these values are 51.0 and 5953.The phenol moleule.The Phenol moleule was hosen to test the proposed algorithm beause it ontains threedi�erent types of atoms (H, C and O). The wave funtion here is a single Slater determinant withGaussian-type basis funtions. The ore moleular orbitals of the Oxygen and Carbon atoms weresubstituted by the orresponding atomi 1s orbitals. The omparison of the biased random walkwith the Langevin algorithm is given in Table 6.5. The optimal orrelation length using the biased



234 6 Variational Monte-CarloTable 6.3. The Fluorine atom : Comparison of the Simple random walk, the Biased random walk andthe proposed Langevin algorithm. The runs were arried out with 100 walkers, eah realizing 100 bloksof 100 steps. The referene energy is -99.397(2) a.u.
∆R 〈EL〉 Norr η ASimple random walk0.02 -99.398(72) 38.9(7) 823(31) 0.870.05 -99.426(39) 20.3(4) 405(11) 0.690.08 -99.406(28) 15.6(4) 326(17) 0.530.10 -99.437(23) 15.8(3) 282(07) 0.440.12 -99.402(24) 16.6(4) 341(24) 0.360.15 -99.398(25) 19.4(5) 412(41) 0.27
∆t 〈EL〉 Norr η 〈|∆x|〉 ABiased random walk0.002 -99.411(21) 9.9(2) 206(04) 0.211(08) 0.940.003 -99.424(17) 8.8(2) 173(04) 0.242(11) 0.900.004 -99.430(15) 7.6(2) 147(03) 0.263(16) 0.860.005 -99.399(14) 7.3(2) 142(03) 0.275(17) 0.820.006 -99.406(14) 7.4(1) 137(03) 0.282(19) 0.790.007 -99.430(14) 7.4(2) 142(08) 0.286(21) 0.750.008 -99.421(13) 7.6(2) 141(05) 0.287(23) 0.710.009 -99.406(13) 7.8(2) 177(19) 0.285(25) 0.670.010 -99.419(15) 7.8(2) 162(10) 0.281(27) 0.640.011 -99.416(14) 8.3(2) 147(05) 0.276(28) 0.600.012 -99.420(15) 9.1(3) 205(34) 0.270(29) 0.570.013 -99.425(17) 10.2(4) 224(38) 0.263(30) 0.54Langevin0.10 -99.402(16) 8.9(2) 199(04) 0.095(02) 0.980.20 -99.403(12) 6.0(1) 123(02) 0.174(06) 0.940.25 -99.402(12) 5.4(1) 108(02) 0.204(09) 0.910.30 -99.395(11) 5.3(1) 104(02) 0.228(10) 0.870.35 -99.409(12) 5.4(1) 108(06) 0.245(15) 0.830.40 -99.402(11) 5.5(1) 102(03) 0.256(18) 0.780.45 -99.406(11) 5.9(1) 114(06) 0.261(21) 0.730.50 -99.408(12) 6.6(2) 124(07) 0.262(24) 0.680.55 -99.407(14) 7.9(4) 149(10) 0.257(26) 0.620.60 -99.405(15) 9.2(4) 178(13) 0.250(42) 0.56random walk is 10.17, whereas it is 8.23 with our Langevin algorithm. The optimal ine�ieny isagain lower with the Langevin algorithm (η = 544) than with the biased random walk (η = 653).6.2.3 Disussion of the resultsIn onlusion, the numerial tests show that the Langevin dynamis is always more e�ientthan the biased random walk. Indeed,(i) The error bar (or Norr, or η) obtained with the Langevin dynamis for an optimal set ofnumerial parameters is always smaller than the error bar obtained with other algorithms(for whih we also optimize the numerial parameters);(ii) The size of the error bar does not seem to be as sensitive to the hoie of the numerialparameters as for other methods. In partiular, we observe on our numerial tests that the



6.2 Numerial experiments and appliations 235Table 6.4. The Copper atom: Comparison of the Biased random walk with the proposed Langevinalgorithm. The runs were arried out with 40 walkers, eah realizing 500 bloks of 500 steps. The refereneenergy is -1639.2539(24) a.u.
∆t 〈EL〉 Norr η 〈|∆x|〉 ABiased random walk0.0003 -1639.2679( 78) 79.1 ± 2.7 10682(420) 0.1311(108) 0.860.0004 -1639.2681( 98) 70.4 ± 1.3 8682(204) 0.1385(137) 0.810.0005 -1639.2499( 96) 61.3 ± 2.5 7770(297) 0.1414(162) 0.750.0006 -1639.2629( 96) 56.0 ± 1.2 6834( 88) 0.1414(183) 0.700.0007 -1639.2575( 73) 53.8 ± 0.8 6420( 81) 0.1393(201) 0.650.00075 -1639.2518( 85) 53.1 ± 0.9 6330( 91) 0.1377(209) 0.620.0008 -1639.2370( 86) 55.7 ± 3.6 6612(405) 0.1357(216) 0.600.00105 -1639.2694( 85) 51.0 ± 0.8 5953( 90) 0.1228(241) 0.480.0011 -1639.2563(110) 54.3 ± 1.8 6513(221) 0.1198(245) 0.460.0012 -1639.2523( 72) 59.9 ± 5.5 7266(658) 0.1136(251) 0.43Langevin0.05 -1639.2553( 92) 61.3 ± 1.7 8256( 89) 0.0371( 1) 0.990.10 -1639.2583( 76) 40.6 ± 3.1 5319( 383) 0.0705( 30) 0.970.15 -1639.2496( 65) 30.1 ± 0.8 4042( 103) 0.0978( 60) 0.930.20 -1639.2521( 71) 28.7 ± 0.9 4027( 403) 0.1173( 96) 0.870.30 -1639.2510( 67) 35.2 ± 2.5 4157( 291) 0.1326(170) 0.710.40 -1639.2524( 78) 50.5 ± 3.7 5922( 455) 0.1210(225) 0.52Table 6.5. The Phenol moleule : Comparison of the Biased random walk with the proposed Langevinalgorithm. The runs were arried out with 100 walkers, eah realizing 100 bloks of 100 steps. The refereneenergy is -305.647(2) a.u.
∆t 〈EL〉 Norr η 〈|∆x|〉 ABiased random walk0.003 -305.6308(83) 18.71(24) 1368(12) 0.522(29) 0.850.004 -305.6471(78) 16.00(28) 1193(30) 0.547(36) 0.800.005 -305.6457(65) 15.29(20) 1077(14) 0.555(43) 0.740.006 -305.6412(79) 15.00(17) 1018(11) 0.552(48) 0.690.007 -305.6391(67) 14.52(26) 1051(53) 0.540(52) 0.630.008 -305.6530(65) 14.72(19) 980(10) 0.523(56) 0.580.009 -305.6555(82) 15.28(28) 1272(163) 0.502(59) 0.54Langevin0.05 -305.6417(101) 23.13(41) 1932(41) 0.126(02) 0.990.1 -305.6416(68) 13.97(22) 1189(23) 0.240(06) 0.970.2 -305.6496(57) 9.70(13) 812(12) 0.408(20) 0.890.3 -305.6493(56) 9.36(16) 817(36) 0.487(36) 0.780.4 -305.6473(58) 12.21(22) 834(20) 0.485(50) 0.610.5 -305.6497(80) 17.51(44) 1237(52) 0.425(58) 0.43value ∆t = 0.2 seems to be onvenient to obtain good results with the Langevin dynamis,whatever the atom or moleule.





7Seond-order redued density matries
7.1 The eletroni struture problem in terms of seond orderredued density matries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2387.1.1 The ensemble of N-repsentable seond-order density matries . . . . . . . . 2387.1.2 The energy minimization problem in terms of seond orderredued-density matries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2397.2 The N-representability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2407.2.1 Some neessary N-representability onditions for 2-RDMs . . . . . . . . . . . 2407.2.2 An expliit (ounter)example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2427.3 A dual formulation of the optimization problem . . . . . . . . . . . . . . . . . 2437.3.1 Dual Formulation of the RDM Minimization Problem . . . . . . . . . . . . . . . 2437.3.2 Algorithm for solving the dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2447.3.3 Numerial results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246As early as in 1951, it was notied by Coleman that the eletroni N -body ground-state energyould be obtained by minimizing over the set of N -representable two-body redued density ma-tries (2-RDM), and Mayer de�nitely opened the �eld in 1955 with his pioneering artile [232℄. Ata onferene in 1959, Coulson then proposed to ompletely eliminate wavefuntions from QuantumChemisty, sine all the eletroni ground-state properties of moleular systems an be omputedfrom the 2-RDM [72,220,232℄. Unfortunately, the set of N -representable 2-RDM is not known ex-pliitly. Some mathematial haraterizations were provided [70,71,197℄ but they ould not be usedto derive a numerial method with a omplexity of a lower order than the usual N -body problem.In pratie, only approximate RDM minimization problems, in whih only a few neessary N -representability onditions are imposed (for example the so-alled P,Q,G onditions [69,121℄), anbe onsidered. The �rst numerial studies relying on this strategy gave enouraging results [120℄.Reently a new interest in the Redued Density Matrix (RDM) approah arose. Very goodnumerial results have been obtained by two di�erent strategies issued from semide�nite pro-gramming: primal-dual interior point methods [118, 233, 253, 376℄ on the one hand, augmentedLagrangian formulations using matrix fatorizations of the 2-RDM [234�236℄ on the other hand.These results use a small number of known neessary onditions of N -representability. Yet, the so-obtained ground-state energies are as aurate as the ones obtained with oupled-luster methods,see e.g. [234,235℄. In addition, these energies provide lower bounds of the Full CI energies, whereasthe variational post Hartree-Fok methods, suh as CI or MCSCF, all provide upper bounds.Sine the RDM method is a linear minimization problem over a onvex set of ompliatedstruture, it is natural to use the onept of duality to mathematially haraterize and numeriallyompute the minimum. Duality is an underlying issue in all the RDM studies [70,71,92,93,121,197℄,but surprisingly, the spei� form of the dual formulation of the RDM problem has not yet been



238 7 Seond-order redued density matriesused to derive an e�ient algorithm. The urrent methods (see, e.g. [118, 234, 235, 253, 376℄) alluse general duality onsiderations in their algorithms, but none of them solves diretly (and only)the dual RDM problem. As will be shown below, the assoiated dual optimization problem boilsdown to the searh of the zero of a one-dimensional onvex funtion.This hapter is organized as follows. We �rst present the reformulation of the eletroni problemin terms of 2-RDMs in Setion 7.1, and reall the N -representability problem in Setion 7.2.We then propose a dual formulation of the eletroni problem in Setion 7.3, and illustrate thisapproah with some numerial results.7.1 The eletroni struture problem in terms of seond order redueddensity matries7.1.1 The ensemble of N-repsentable seond-order density matriesWe denote by x = (x, σ) the vetor ontaining both the spae variable x ∈ R3 and thespin variable σ ∈ {|↑〉, |↓〉}. The summation on the spin variable will sometimes be denoted as anintegral to simplify notations. For an antisymmetriN -body wavefuntions ψ(x1, ..., xN ) ∈ ∧Nn=1 h,the seond-order redued density matrix Γ is
Γ (x1, x2; y1, y2) = N(N − 1)

∫

(R3×{±1})N−2

ψ(x1, x2, x3, . . . , xN )ψ(y1, y2, x3, . . . , xN ) dx3 . . . dxN ,(7.1)while the �rst-order redued density matrix γ is
γ(x, y) =

1

N − 1

∫

R3×{±1}
Γ (x, z; y, z) dz

= N

∫

(R3×{±1})N−1

ψ(x, x2, x3, . . . , xN )ψ(y, x2, x3, . . . , xN ) dx2 . . . dxN .For a basis (φi)i∈N∗of the spae L2(R3 × {|↑〉, |↓〉},C),
Γ (x1, x2; y1, y2) =

∑

i1,i2,j1,j2∈N∗

Γ j1,j2i1,i2
φi1(x1)φi2(x2)φj1 (y1)φj2 (y2), γ(x, y) =

∑

i,j

γji φi(x)φj(y).In the ase of fermions, the matrix Γ j1,j2i1,i2
is antisymmetri, whih means that Γ j1,j2i1,i2

= −Γ j1,j2i2,i1
=

Γ j2,j1i1,i2
. This ensures that Γ (x1, x2; y1, y2) = −Γ (x2, x1; y1, y2) for instane.For any vetor spae X , we denote by S(X) the spae of self-adjoint matries ating on X , andby P(X) ⊂ S(X) the one of positive semi-de�nite matries. We also use the simpli�ed notation

PN := P
(∧N

1 h
) and SN := S

(∧N
1 h
). The one of ensemble representable N -order densitymatries is the onvex envelope

PN =

{
+∞∑

i=1

ni |ψi 〉 〈ψi | , ψi ∈
N∧

n=1

h

}
,where |ψi 〉 〈ψi | is the projetor onto span(ψi) :

|ψi 〉 〈ψi | ψ 〉 =

(∫

(R3×{±1})N

ψi(x)ψ(x) dx

)
ψiTherefore, the one of 2-RDM arising from an ensemble representable N -order density matrix is



7.1 The eletroni struture problem in terms of seond order redued density matries 239
CN = L2

N (PN ) ⊂ C2.In this expression, the Kummer ontration operator L2
N [71,197℄ is the linear operator |ψ 〉 〈ψ | 7→

Γ de�ned by (7.1). The orresponding Γ ∈ CN are said to be N -representable. Of ourse the 2-RDMs of physial interest are the elements Γ ∈ CN whih arise from a normalized N -body densitymatrix Υ ∈ PN (satisfying Tr(Υ ) = 1), so that Γ = L2
N (Υ ) satis�es Tr(Γ ) = N(N − 1).7.1.2 The energy minimization problem in terms of seond order redued-densitymatriesThe eletroni HamiltonianHN ating on the N -body fermioni spae∧Nn=1 h of antisymmetri

N -body wavefuntions ψ(x1, ..., xN ) is formally de�ned as
HN =

N∑

i=1

hxi +
∑

1≤i<j≤N

1

|xi − xj |
,where h = −∆/2 + V and V is the external Coulomb potential generated by the nulei. It holds

E = inf
Ψ∈VN

n=1 h,
||Ψ ||=1

〈Ψ,HNΨ〉 = inf
Υ∈PN ,
Tr(Υ )=1

Tr(HNΥ ). (7.2)The seond equality holds true sine the minimum of a linear funtion over a onvex set is attainedon an extremal point of the onvex set (on a point Γ = |ψ0 〉 〈ψ0 | , whih is a rank 1 projetoron Span{ψ0})). The physial interpretation is that the in�mum of the energy over the set of mixedstates oinides with the in�mum of the energy over the set of pure states.Sine the Hamiltonian HN only ontains two-body interations, the energy of the system anbe expressed in terms of the two-body density matrix Γ only (see, e.g. [71,233℄). By linearity, thisproperty has to be shown only for extremal points Γψ = |ψ 〉 〈ψ | . Let us then show that
〈
ψ
∣∣∣ Ĥ
∣∣∣ ψ
〉

= Tr(KΓ ),where the two-body operator K is de�ned as
K =

1

2(N − 1)
(hx1 + hx2) +

1

2|x1 − x2|
.It holds:

〈
ψ
∣∣∣ Ĥ

∣∣∣ ψ
〉

=
N∑

i=1

∫

(R3×{±1})N

ψ((x1, σ1), . . . , (xN , σN )) [h(xi) · ψ((x1, σ1), . . . , (xN , σN )) ]

+
∑

1≤i<j≤N

∫

(R3×{±1})N

|ψ((x1, σ1), . . . , (xN , σN ))|2
|xi − xj |

,

=
∑

σ1∈{±1}

∫

R3

h(x1) · γ((x1, σ1), (x
′
1, σ1))|x′

1=x1
dx1

+
1

2

∑

(σ1,σ2)∈{±1}2

∫

R6

Γ ((x1, σ1), (x2, σ2) ; (x1, σ1), (x2, σ2))

|x1 − x2|
dx1 dx2. (7.3)Therefore,
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E = inf

Γ∈CN ,
Tr(Γ )=N(N−1)

Tr(KΓ ). (7.4)Notie that we did not impose any onstraint on the spin state in (7.4), but suh onstraints anbe easily taken into aount.The Galerkin approximationIn pratie, �nite-dimensional spaes are used:
h := span(χi, i = 1, ..., r),where (χi)i≥1 is a Hilbert basis of the one-body spae L2(R3 ×{|↑〉, |↓〉},C). The 2-RDM Γ asso-iated with an N -body density matrix Υ ∈ PN is still de�ned by means of Kummer's ontrationoperator L2

N as
Γ j1,j2i1,i2

= L2
N(Υ )j1,j2i1,i2

= N(N − 1)

r∑

k3,...,kN=1

Υ j1j2k3...kN

i1i2k3...kN
. (7.5)The 2-RDM Γ is now ompletely haraterized by the matrix (Γ j1,j2i1,i2

)i1<i2, j1<j2 .7.2 The N -representability problemThe eletroni ground state problem reformulated as (7.4) is not tratable sine the set CN =

L2
N (PN ) over whih the minimization is performed is unknown. This set is the set of 2-RDMobtained from a wavefuntion (or an ensemble of wavefuntions) through the Kummer ontration.Charaterizing this set is the so-alled N -representability problem. No neessary and su�ientonditions of N -representability are known for 2-RDM (or higher order RDMs). This is in ontrastwith �rst-order redued density matries [69℄, whih are N -representable as soon as 0 ≤ γ ≤ 1 (asan operator) and Tr(γ) = N .Only neessary onditions are known for 2-RDM. The most famous ones are the so-alled P,Q, G onditions [69, 121℄, and we will fous on them in the sequel. Additional onditions T1 et
T2 [92℄ an also be onsidered. Imposing only this neessary onditions results in minimizing theenergy on too large a variational spae. Therefore, only lower bounds to the true energy are foundthis way.7.2.1 Some neessary N-representability onditions for 2-RDMsOrigin of the P, Q, G onditionsAn operator Γ ∈ S(h ∧ h) is non-negative if and only if, for any g ∈ h ∧ h, 〈g, Γg〉 ≥ 0. The P,Q, G onditions are obtained by requiring

〈
ψ
∣∣A†A

∣∣ ψ
〉
≥ 0,for ertain operators A. In the formalism of seond quantization (see [71℄ for more preisions), theP ondition orrespond to the positivity of the matrix 〈ψ ∣∣∣ a†i1a†i2aj1aj2 ∣∣∣ ψ 〉, the ondition Q tothe positivity of 〈ψ ∣∣∣ aj1aj2a†i1a†i2 ∣∣∣ ψ 〉, and G to the positivity of 〈ψ ∣∣∣ a†i1aj2a†i2aj1 ∣∣∣ ψ 〉.



7.2 The N-representability problem 241Expliit formulation of the P,Q,G onditionsThe P, Q, G onditions are linear equalities of the form
LP (Γ ) ≥ 0, LQ(Γ ) ≥ 0, LG(Γ ) ≥ 0.The above operators are

LP (Γ ) = Γ, (7.6)
LQ(Γ )j1,j2i1,i2

= Γ j1,j2i1,i2
− δj1i1 γ

j2
i2

− δj2i2 γ
j1
i1

+ δj2i1 γ
j1
i2

+ δj1i2 γ
j2
i1

+ (δj1i1 δ
j2
i2

− δj2i1 δ
j1
i2

)Tr(Γ ), (7.7)
LG(Γ )j1,j2i1,i2

= −Γ j1,i2i1,j2
+ δj1i1 γ

j2
i2
. (7.8)The �rst order redued density matrix is still obtained by means of the Kummer ontration

γji =
1

N − 1

N∑

k=1

Γ j,ki,k .Notie that the operators LP and LQ de�ned on S(h ∧ h) have values in S(h ∧ h), so that
L∗
P = LP , L∗

Q = LQ (where the notation ∗ refers to the adjoint operator). Therefore, the onstraints
LP (Γ ),LQ(Γ ) ≥ 0 must be understood as

∀B ∈ S(h ∧ h), Tr(BLP (Γ )) ≥ 0, Tr(BLQ(Γ )) ≥ 0.The operator LG is also de�ned on S(h∧h) but has values in a spae larger than S(h∧h), a priorithe whole set S(h ⊗ h). Therefore, LG(Γ ) ≥ 0 means
∀B ∈ S(h ⊗ h), Tr(BLG(Γ )) ≥ 0.Relationship with the N-representability of the �rst-order RDMWe verify here that the neessary N -representability onditions for the 2-RDM imply the N -representability of the �rst-order RDM. It is straightforward that the P ondition ensures γ ≥ 0.It then remains to hek γ ≤ 1 [69℄. The proof we present here is suited for �nite-dimensionalspaes (whih is the ase of interest in pratie), with r spatial basis funtions (2r basis funtionswhen onsidering the spin variable).Up to an orthogonal transformation, the �rst-order redued density matrix an be hosendiagonal. It is then enough to show that γii ≤ 1 for any 1 ≤ i ≤ 2r. Sine the diagonal elements of

LQ(ΓN ) are positive, if follows
Γ i1,i2i1,i2

− γi1i1 − γi2i2 + 1 ≥ 0.Summing over i2 6= i1 and dividing by N − 1,
1

N − 1

∑

i2 6=i1
Γ i1,i2i1,i2

− 2r − 1

N − 1
γi1i1 − 1

N − 1
(Tr(γ) − γi1i1 ) +

2r − 1

N − 1
≥ 0,sine∑i2 6=i1 γ

i2
i2

= Tr(γ)− γi1i1 . The �rst term of the above inequality being γi1i1 (by ontration ofthe 2-RDM) and using Tr(γ) = N , it �nally holds
γi1i1

(
1 − 2r

N − 1

)
+

2r − 1 −N

N − 1
≥ 0,so that, when 2r − 1 −N > 0 (as in the ase in pratie), γi1i1 ≤ 1.



242 7 Seond-order redued density matries7.2.2 An expliit (ounter)exampleThe aim of this setion is to show on an example that the set of N -representable 2-RDM hasa very ompliated topology. In partiular, there exist N -representable 2-RDM that are no longer
N -representable after an arbitrary small perturbation.Consider N = 3 eletrons, and an orthonoral system (φ1, . . . , φ5) in L2(R3). We denote Υψ thedensity matrix of order N = 3 assoiated with the wavefuntion ψ, and Γψ the 2-RDM obtainedfrom Υψ through the Kummer operator L ≡ L2

3. A basis of the 3-body spae H3 ⊂ h3 is given bythe Slater determinants { |φiφjφk 〉}1≤i<j<k≤5, where
|φiφjφk〉(x, y, z) =

1√
3!

∣∣∣∣∣∣

φi(x) φi(y) φi(z)

φj(x) φj(y) φj(z)

φk(x) φk(y) φk(z)

∣∣∣∣∣∣
.The spae H3 is of dimension (5

3

)
= 10. We will use in the sequel the short-hand notations

ψ1 = |φ1φ2φ3〉, ψ2 = |φ1φ4φ5〉, ψ3 = |φ2φ4φ5〉, ψ4 = |φ3φ4φ5〉, ψ5 = |φ2φ3φ5〉.The remaining basis funtions ψ6, · · · , ψ10 are hosen arbitrarily among the remaining Slaterdeterminants, so that B3 = (Ψ1, ..., Ψ10) is a basis of H3. The spae of 2-body funtions H2 is alsoof dimension 10. A basis of this spae is given by the Slater determinants {|φiφj〉}1≤i<j≤5, wherefor example
|φ1φ2〉(x, y) =

1√
2

∣∣∣∣
φ1(x) φ1(y)

φ2(x) φ2(y)

∣∣∣∣ .This basis is ordered as
B2 := {|φ1 φ2〉, |φ1 φ3〉, |φ1 φ4〉, |φ1 φ5〉, |φ2 φ3〉, |φ2 φ4〉, |φ2 φ5〉, |φ3 φ4〉, |φ3 φ5〉, |φ4 φ5〉}.Let us �rst ompute the matries τi assoiated with the 2-RDM Γψi in the basis B2. Forexample,

L(Υψ1) =
1

3
(|φ1φ2〉 〈φ1φ2| + |φ1φ3〉 〈φ1φ3| + |φ2φ3〉 〈φ2φ3|),so that, in the ordered basis B2,
τ1 =

1

3
Diag(1, 1, 0, 0, 1, 0, 0, 0, 0, 0).Analogously,

τ2 =
1

3
Diag(0, 0, 1, 1, 0, 0, 0, 0, 0, 1),

τ3 =
1

3
Diag(0, 0, 0, 0, 0, 1, 1, 0, 0, 1),

τ4 =
1

3
Diag(0, 0, 0, 0, 0, 0, 0, 1, 1, 1).The 3-order density matrix

Υ =
1

4
(ΓΨ1 + ΓΨ2 + ΓΨ3 + ΓΨ4) (7.9)is therefore in P3 sine it is a onvex ombination of elements of P3. The matrix τ assoiated withthe orresponding 2-RDM is

τ =
1

3
Diag

(
1

4
, . . . ,

1

4
,
3

4

)
.



7.3 A dual formulation of the optimization problem 243The 2-RDM Γ = L(Υ ) is then suh that Γ > 0, and Υ de�ned by (7.9) is in fat the unique elementin B3 suh that Γ = L(Υ ) (beause L is one-to-one in the spei� ase we onsider). Notie that
Υ is non-negative but not positive, sine its kernel is of dimension 6.Consider now an arbitrary small perturbation of Γ of the form

Γǫ(x, y ; x′, y′) = Γ (x, y ; x′, y′) +
ǫ

2
{|φ1φ4〉(x, y) 〈φ2φ3|(x′, y′) + |φ2φ3〉(x, y) 〈φ1φ4|(x′, y′)}The matrix τǫ orresponding to Γǫ reads in the B2 basis

τǫ = τ +
ǫ

2
(δ3,5 + δ5,3).Therefore, for ǫ small enough, the symmetri matrix τǫ still veri�es τǫ > 0 and tr(τǫ) = 3. However,

τǫ is not 3-representable! Indeed, sine L is one-to-one, τǫ is obtained by ontration of
Υǫ = Υ +

ǫ

2
{|φ1φ4φ5〉〈φ2φ3φ5| + |φ2φ3φ5〉〈φ1φ4φ5|}

= Γ +
ǫ

2
{|Ψ5〉〈Ψ2| + |Ψ2〉〈Ψ5|}.In the basis {ψi}i=1,...,M , the matrix Tǫ orresponding to Υǫ is

Tǫ = Diag

(
1

4
,
1

4
,
1

4
,
1

4
, 0, 0, 0, 0, 0, 0

)
+
ǫ

2
(δ2,5 + δ5,2),whih has a negative eigenvalue −ǫ, so that the operator Γǫ is not positive semi-de�nite.7.3 A dual formulation of the optimization problem7.3.1 Dual Formulation of the RDM Minimization ProblemWe now present the dual formulation of the minimization (7.4). We reall that the polar one

C∗ of a one C in any Hermitian spae is de�ned as C∗ = {x | ∀y ∈ C, 〈x, y〉 ≥ 0}, where 〈·, ·〉denotes the onsidered salar produt (here, the Frobenius salar produt). The dual method thenonsists in formulating (7.4) in terms of (CN )∗ instead of CN :
E = N(N − 1) sup{µ | K − µ ∈ (CN)∗}. (7.10)Formula (7.10) an be easily derived from (7.4). Introduing the Lagrangian

L(Γ,B, µ) = Tr(KΓ ) − Tr(BΓ ) − µ{Tr(Γ ) −N(N − 1)},it follows
E = inf

Γ∈S2

sup
B∈(CN )∗, µ∈R

L(Γ,B, µ). (7.11)As usual when using Lagrangian, the onstraints are not stated expliitely, but penalized usingsome Lagrange parameter: µ is used to ensure that Tr(Γ ) = N(N − 1), and B ∈ (CN )∗ ensuresthat Γ ∈ CN . It then su�es to exhange the inf and the sup in (7.11) to obtain (7.10).We therefore obtain an optimization problem in dimension 1 over µ ∈ R whih is the variabledual to the onstraint Tr(Γ ) = N(N − 1). Of ourse haraterizing the polar one (CN )∗ is asdi�ult as haraterizing CN , this issue is alled the N -representability problem. Indeed CN =

(CN )∗∗. Even if the dual formulation (7.10) does not simplify the theoretial N -representabilityproblem, it turns out to be more onvenient for numerial purposes.



244 7 Seond-order redued density matriesSine both (CN )∗ and CN are unknown and di�ult to haraterize, it is neessary to ap-proximate (7.10) by a variational problem that an be arried out numerially. To this end, someneessary onditions for N -representability are seleted. We onsider L onditions of the followinggeneral form
∀ℓ = 1...L, Lℓ(Γ ) ≥ 0 (7.12)where for any ℓ, Lℓ : S2 → S(Xℓ) is a linear map and Xℓ is some vetor spae. Here, we restritourselves to the P, Q, G onditions, with assoiated operators LP , LP and LG given respetivelyby (7.6), (7.7) an (7.8), and assoiated vetor spaes XP = XQ = h ∧ h and XG = h ⊗ h.Imposing only the neessary onditions (7.12) means that CN is replaed by the approximateone Capp ⊃ CN de�ned as

Capp := {Γ ∈ S2 | ∀ℓ = 1...L, Lℓ(Γ ) ≥ 0}.Its polar one an easily be shown to be
(Capp)∗ :=

{
L∑

ℓ=1

(Lℓ)∗Bℓ | Bℓ ∈ S(Xℓ), Bℓ ≥ 0

}
, (7.13)and the assoiated approximate energy is then, in view of (7.10),

Eapp = inf
Γ∈Capp,

Tr(Γ )=N(N−1)

Tr(KΓ ) (7.14)
= N(N − 1) sup{µ | K − µ ∈ (Capp)∗}. (7.15)Let us emphasize again that, sine Capp ⊃ CN , the energyEapp is a lower bound to the full CI energyin the hosen basis, Eapp ≤ E. We present in Setion 7.3.2 an algorithm for solving problem (7.15).Notie that we obtain only the ground-state energy (and not the ground state density matrix), but,resorting to �rst order perturbation theory, any observable inluding at most two-body interationterms an be obtained by a �nite di�erene of energies.7.3.2 Algorithm for solving the dual problemLet us introdue the distane to the dual one (Capp)∗

δ(µ) = dist (K − µ, (Capp)
∗) .Denoting µ∗

app = Eapp/(N(N − 1)), the funtion δ satis�es the following properties:(1) δ ≡ 0 on (−∞, µ∗
app] and is inreasing on [µ∗

app,∞);(2) δ is onvex on R;(3) δ2 is ontinuously di�erentiable on R, thus δ is ontinuously di�erentiable on R\{µ∗
app} and

∀µ > µ∗
app, δ′(µ) = −Tr(K − µ−Aµ)

||K − µ−Aµ||
(7.16)where Aµ denotes the projetion of K − µ onto the polar one (Capp)∗.Proofs for (ii) − (iii) an be found in [249℄. To prove (i), one noties that when µ ≤ µ∗

app,
K−µ = K−µ∗ +(µ∗−µ) belongs to (Capp)

∗ sine µ∗ −µ ∈ P2 ⊂ (Capp)∗. To illustrate the aboveproperties, we provide a plot of δ(µ) for N2 in a STO-6G basis set (see Figure 7.1).In order to ompute µ∗
app, we use a Newton-like sheme that strongly exploits the abovementioned properties in a natural way: starting from an initial energy above µ∗

app (suh as theHartree-Fok energy for instane) and using the onvexity of the funtion δ, the Newton algorithm
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Fig. 7.1. Left: Distane δ(µ) of K − µ to the one (Capp)
∗ as a funtion of µ for N2 in a STO-6Gbasis set. The tangent at the estimated value for µ∗

app is also displayed (dashed line). Right: Zoom nearthe FCI referene value. The Hartree-Fok value is µHF = −1.4435153 while the referene FCI value is
µCI = −1.4453909.ensures that the energy µ dereases at eah step of the optimization proess and onverges to µ∗

app.The right derivative of δ at µ∗
app being always positive, the onvergene rate is guaranteed to beat least superlinear.Of ourse, the most di�ult part of the algorithm is the omputation of the distane δ(µ) tothe one, and of the projetion Aµ of K − µ. To this end, we hose to minimize, for a given µ, theobjetive funtion

Jµ(B1, . . . , BL) =
1

2

∥∥∥∥∥K − µ−
L∑

ℓ=1

(Lℓ)∗Bℓ
∥∥∥∥∥

2

,under the onstraintsBℓ ≥ 0 (ℓ = 1...L), aording to the de�nition (7.13) of the polar one (Capp)
∗.The above minimization is performed using a lassial limited-memory BFGS algorithm [36℄,keeping the last m = 3 desent diretions. The positivity onstraints were parametrized by Bℓ =

(Cℓ)
2 with Cℓ symmetri, as suggested by Mazziotti in [234,235℄.Computing δ(µ) with su�ient auray when µ is lose to µ∗

app an be di�ult beause theminimization of Jµ(B) then is ill-onditioned. We therefore onsider a �trunated" version of theNewton algorithm where µ is updated by a fration 0 < a ≤ 1 of the Newton step. We then usethe linearity of δ for values lose to µ∗
app to devise a stopping riterion limiting the number ofiterations. The algorithm is as follows:Dual RDM optimizationAlgorithm 7.1. Consider an initial value µ0 (for example the Hartree-Fok value µHF), and

0 < a ≤ 1. Compute the projetion Aµ0 of K − µ0 on (Capp)∗ and the distane d0 = δ(µ0),and onsider µ1 = µ0 − δ(µ0)
δ′(µ0) . For n ≥ 1, and ǫ > 0 small,(1) Compute the projetion Aµn =

∑L
ℓ=1(Lℓ)∗

[
(Cnℓ )2

] of K−µn on (Capp)
∗, the assoiateddistane dn = δ(µn) = ||K − µn −Aµn || and the derivative δ′(µn);(2) Compute the interpolation slope pn = dn−1−dn

µn−1−µn ;(3) If pn ≤ (1 + ǫ)δ′(µn), then the linear assumption is satis�ed and the �nal value isextrapolated from the urrent position as µ∗ = µn − δ(µn)
δ′µn) ;(4) Otherwise, set µn+1 = µn − a δ(µ

n)
δ′(µn) and start again from (1) using as initial guess

Cn+1
ℓ = Cnℓ for any ℓ = 1...L.



246 7 Seond-order redued density matriesIn pratie, the above algorithm onverges in a few iterations. The only time onsuming stepis the projetion performed in Step (1). As desribed above, this projetion is done iteratively byminimizing the objetive funtion Jµ by a limited-memory BFGS algorithm. The ost of one BFGSiteration sales as O(r6). We did not observe a lear saling of the number of BFGS iterationswith respet to the basis set size. The memory requirements sale as O(r4). Both omputationaltime and memory requirements are omparable to those of [234℄.7.3.3 Numerial resultsWe have tested the method on several moleules at equilibrium geometries using data fromthe EMSL Computational Results DataBase,1 for STO-6G and 6-31G basis sets. The results arereported in Table 7.1 and 7.2 respetively.Table 7.1. Correlation energies in a STO-6G basis set.System FCI energy Correlation energy Dual RDM energy (% of the orrelation energy)Be -14.556086 -0.0527274 -14.556123 (100.07)LiH -7.972557 -0.0190867 -7.9727078 (100.79)BH -25.058806 -0.0569044 -25.061771 (105.21)Li2 -14.837571 -0.0286889 -14.839066 (105.21)BeH2 -15.759498 -0.0335151 -15.761284 (105.33)H2O -75.735839 -0.0546392 -75.738582 (105.02)NH3 -56.0586005 -0.0693410 -56.074805 (123.37)Table 7.2. Correlation energies in a 6-31G basis set.System FCI energy Correlation energy Dual RDM energy (% of the orrelation energy)Be -14.613545 -0.0467812 -14.613653 (100.23)LiH -7.995678 -0.0185565 -7.9959693 (101.57)BH -25.171730 -0.0630461 -25.176736 (107.94)Li2 -14.893607 -0.0277581 -14.895389 (106.42)BeH2 -15.798440 -0.0402691 -15.801066 (106.52)H2O -76.120220 -0.1401501 -76.142125 (115.63)NH3 -56.291315 -0.1336141 -56.318065 (120.02)The referene Full CI (FCI) energies have been omputed using GAMESS [300℄. The orrelationenergies are reovered with a good auray. This is onsistent with previous results alreadyobtained with di�erent RDM methods [118,234,235,253,376℄.In general, we have observed that the funtion δ is almost linear in quite large a right neigh-borhood of µ∗
app (see Figure 7.1). Usually, only 3 or 4 Newton iterations are neessary to ahieveonvergene. Therefore, the only limiting step of the method is the omputation of the distane

δ(µ) and of the projetion Aµ of K −µ on the polar one. The method is very robust with respetto initial hoies of the energy µ0 and the matries C0
k . However, we have observed that the om-putational time needed for �nding the projetion Aµ highly depends on the quality of the initialguess. The hoie of genuine initial onditions is not obvious sine we are manipulating abstratobjets (dual elements of 2-RDM). Some CPU times are reported in Table 7.3 for very rude initialonditions C0

k = Id and µ0 ≃ 0.9µHF.
1 See the web site http://www.emsl.pnl.gov/proj/rdb/



7.3 A dual formulation of the optimization problem 247Table 7.3. CPU time (s) in a STO-6G basis using very rude initial guesses (Cl = I).System Spatial basis size r CPU time (s) Newton iterationsBe 5 25.7 2LiH 6 240.9 3H2O 7 958.8 4BeH2 7 1143.3 3We would like to underline that our projetion algorithm is far from being optimal. There islearly muh room for improvement here. Let us also mention that the urve µ 7→ δ(µ) an beeasily sampled using parallel omputing (one value of µ per proessor).
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Fig. 7.2. Dissoiation urve for N2 in a STO-6G basis set.We �nally present in Figure 7.2 dissoiation urves for N2 in a STO-6G basis set. This examplewas already studied in several works [124,188,252℄. The agreement of our results with the refereneFull CI is exellent, and the dissoiation energy is therefore reovered with a very good auray.
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8.1 The Slater exhange potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.2 The Optimized E�etive Potential problem . . . . . . . . . . . . . . . . . . . . . . 2538.2.1 Usual formulation of the OEP problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2538.2.2 A well-posed reformulation of the OEP problem . . . . . . . . . . . . . . . . . . . . 2548.3 The e�etive loal potential minimization problem . . . . . . . . . . . . . . . 2568.4 Mathematial proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2578.4.1 Some useful preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2578.4.2 Proofs for the Slater potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2588.4.3 Proof of Proposition 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263This hapter presents a work on progress with E. Canès, E. Davidson, A. Izmaylov,G. Suseria and V. Staroverov, on the mathematial understanding of the optimized e�e-tive potential (OEP) and other loal potentials mathematially motivated by some minimizationproedure. We seek here a loal potential aounting for the exhange part of the eletroni inter-ations (of ourse, eletroni orrelations should ultimately be handled as well), and reproduingas aurately as possible the Hartree-Fok exhange, also alled 'exat exhange' in the physisand hemistry literature.The Hartree-Fok method, presented in Setion 2.1.4, is a variational wavefuntion methodrestriting the variational spae to single Slater determinants:

ψ(x1, . . . , xN ) =
1√
N !

Det(φi(xj)), (8.1)with φi ∈ H1(R3), ∫
R3 φi(x)φj(x) dx = δij . In the sequel,
XN =

{
Φ = (φi)1≤i≤N ∈ (H1(R3))N

∣∣∣∣
∫

R3

φiφj = δij

}
.The Hartree-Fok energy funtional of a system of N spin-less eletrons reads

EHF(Φ) =
1

2

N∑

i=1

∫

R3

|∇φi|2+

∫

R3

VnucρΦ+
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy− 1

2

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y| dx dy,(8.2)where the density ρΦ and the density matrix γΦ are de�ned respetively by

ρΦ(x) =

N∑

i=1

|φi(x)|2, γΦ(x, y) =

N∑

i=1

φi(x)φi(y). (8.3)



250 8 Loal Exhange Potentials and Optimized E�etive PotentialsThe potential reated by the nulei is, for a moleule with K atoms of harge zk at positions x̄k,
Vnuc(x) = −

K∑

k=1

zk
|x− x̄k|

.For simpliity, we will onsider in the sequel the Coulombi atomi potential
Vnuc(x) = − Z

|x|for Z ≥ 0. A minimizer of (8.2) satis�es the Hatree-Fok equations, whih are the Euler-Lagrangeequations assoiated with (8.2) (up to a unitary transformation):
FΦφi = −1

2
∆φi + Vnucφi +

(
ρΦ ⋆

1

|x|

)
φi +KΦφi = ǫiφi. (8.4)In this expression, the exhange operator KΦ is de�ned as

KΦϕ(x) = −
∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy. (8.5)It is therefore a non-loal operator depending on the orbitals Φ = {φi}i=1,...,N .Mathematial settingWe onsider here a given N -tuple Φ = {φi}1≤i≤N of funtions de�ned on R3, orthogonalfor the L2(R3) inner produt and belonging to the Sobolev spae H2(R3) (notie that the lattertwo onditions are automatially satis�ed for any solution of the Hartree-Fok or Kohn-Shamequations). The orresponding density and density matrix are de�ned as in (8.3). As the {φi}1≤i≤Nare assumed to be in H2(R3), it follows from Sobolev embedding theorems that the density ρΦis a ontinuous funtion going to zero at in�nity. We also assume that ρΦ does not vanish on R3(this ondition is automatially satis�ed if the {φi}1≤i≤N are the lowest N eigenfuntions of aKohn-Sham operator).The exhange operator (8.5) assoiated with the N -tuple {φi}1≤i≤N is the Hilbert-Shmidtoperator on L2(R3) de�ned for all ϕ ∈ L2(R3) as
(KΦϕ)(x) = −

∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy.Note that the right hand side of the above de�nition atually makes sense as a L2(R3) funtion.This is a onsequene of Cauhy-Shwarz and Hardy inequalities (for the Hardy inequality, seee.g. [52, Theorem 2.12℄), sine, for �xed x ∈ R3,
∣∣∣∣
∫

R3

γΦ(x, y)

|x− y| ϕ(y) dy

∣∣∣∣ ≤
N∑

i=1

|φi(x)| ‖ϕ‖L2(R3)

∥∥∥∥
φi

| · −x|

∥∥∥∥
L2(R3)

≤ 2

N∑

i=1

|φi(x)| ‖ϕ‖L2(R3)‖∇φi‖L2(R3).

(8.6)Reall that a Hilbert-Shmidt operator on L2(R3) is a linear operator on L2(R3) for whih thereexists g ∈ L2(R3 × R3) suh that
∀f ∈ L2(R3), (Gf)(x) =

∫

R3

g(x, y)f(y) dy.



8.1 The Slater exhange potential 251The funtion g (whih is unique) is alled the kernel of G. The set of Hilbert-Shmidt operatorson L2(R3) is denoted by σ2(L
2(R3)). Endoved with the inner produt de�ned by
〈G,H〉HS =

∫

R3

∫

R3

g(x, y)h(x, y) dx dy(where g and h are the kernels of G and H respetively), σ2(L
2(R3)) is a Hilbert spae. Theorresponding norm is thus de�ned by

‖G‖HS =

(∫

R3

∫

R3

|g(x, y)|2 dx dy
)1/2

.Here, the kernel kΦ of KΦ reads
kΦ(x, y) = −γΦ(x, y)

|x− y| ,and, making use one again of Cauhy-Shwarz and Hardy inequalities,
‖KΦ‖2

HS =

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y|2 dx dy ≤

N∑

i=1

∫

R3

|φi(x)|2 dx
N∑

j=1

∥∥∥∥
φj

| · −x|

∥∥∥∥
2

L2(R3)

≤ 4N

N∑

j=1

‖∇φj‖2
L2(R3) < +∞.The one-body density matrix γΦ is also the kernel of a Hilbert-Shmidt operator on L2(R3),denoted by γΦ (abusing notations) and de�ned as

∀f ∈ L2(R3), (γΦf)(x) =

∫

R3

γΦ(x, y)f(y) dy =

N∑

i=1

φi(x)

∫

R3

φi(y)f(y) dy.8.1 The Slater exhange potentialThe exhange operator (8.5) is not a loal operator (see Setion 8.2.1 for a tentative de�nition ofloal operators). In order to redue the omplexity of the Hartree-Fok equations, Slater proposedto replae the non-loal exhange operator by some loal operator [312℄. This loal operator isobtained by some averaging proedure (but an also be de�ned in terms of some variationalproedure, see Remark 8.3), and an be expressed in terms of the density matrix of the system as
vΦx,S(x) = − 1

ρΦ(x)

∫

R3

|γΦ(x, y)|2
|x− y| dy. (8.7)Nowadays, the omplexity of the Hartree-Fok equations is no more an obstale for ground-stateomputations. However, it is still very interesting to �nd approximate loal exhange operators forthe purpose of interpretation, or to improve the exhange part of exhange-orrelation funtionalsin Density Funtional Theory. The loal exhange potentials an also be used as an input in otherapproahes, espeially time-dependent methods.The existene of a radial solution to the self-onsistent Kohn-Sham equations with the Slaterexhange potential as an exhange-orrelation potential is given by the following theorem. Reallthat a funtion φ is said to be radial if there exists a funtion ϕ suh that φ(x) = ϕ(|x|). We willdenote by L2

r(R
3) (resp. H1

r (R
3)) the set of radial L2(R3) (resp. radial H1(R3)) funtions, and set

X r
N =

{
Φ = (φi)1≤i≤N ∈ (H1

r (R
3))N

∣∣∣∣
∫

R3

φiφj = δij

}
.



252 8 Loal Exhange Potentials and Optimized E�etive PotentialsTheorem 8.1. In the ase of a single nuleus of harge Z ≥ N , the nonlinear eigenvalue problem
1 ≤ i ≤ N,

(
−1

2
∆− Z

|x| + ρΦ ⋆
1

|x| −
1

ρΦ(x)

∫

R3

|γΦ(x, y)|2
|x− y| dy

)
φi = ǫiφi, (8.8)with ǫ1 < · · · ≤ ǫN ≤ 0 and ρΦ, γΦ de�ned as in (8.3), has a solution1 Φ = (φi) ∈ X r

N and theorresponding exhange potential vΦx,S is globally Lipshitz in R3, C∞ away from the nuleus, andsatis�es, for all η > 0,
vΦx,S(x) = − 1

|x| + o
(
e−(2

√
−2ǫN−η)|x|

)
.Besides, the minimum of the Hartree-Fok energy over the set of the radial solutions to (8.8) isattained.The proof of Theorem 8.1 an be read in Setion 8.4.Remark 8.1 (Pratial omputation through an iterative proedure). To ompute inpratie a solution (8.8), it is possible to onsider the following iterative proedure:Algorithm 8.1. Starting from some set of N orbitals Φ0 = {φ0

1, . . . , φ
0
N},(1) ompute the loal Slater exhange potential vΦn

x,S given by (8.7) using the orbitals Φn =

{φni }i=1,...,N ;(2) ompute the �rst N eigenvetors of the operator
(
−1

2
∆− Z

|x| + ρΦn ⋆
1

|x| + vΦ
n

x,S

)
φn+1
i = ǫn+1

i φn+1
i . (8.9)When there are degeneraies in the highest energy levels, some arbitrary hoie is made;(3) replae n by n+ 1 and go bak to Step 1.In some ase, we will restrit ourselves to radial eigenvetors. Reall that, when the orbitals areradial, the eigenvalues of the operators appearing in Algorithm 8.1 are non-degenerate, and theradial i-th eigenvetor φi has exatly i− 1 nodal spheres.The well-posedness of this iterative proedure is ensured provided the operator in (8.9) has atleast N negative eigenvalues, its essential spetrum still being [0,+∞). This is easier to hekwhen the orbitals are radial, or when the nulear harge satis�es Z > N . In the general ase, someexponential deay of the initial orbitals has to be assumed. The well-posedness of the iterativeproedure is preised in the following propositions:Proposition 8.1. Assume Z > N − 1. For initial radial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N , andwhen (φn+1

1 , . . . , φn+1
N ) are the �rst N radial orbitals in the diagonalization (8.9), the iterativeproedure of Algorithm 8.1 is well-de�ned.Proposition 8.2. Assume Z > N . For initial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N , the iterativeproedure of Algorithm 8.1 is well-de�ned.Proposition 8.3. Assume Z = N . For initial orbitals (φ0

1, . . . , φ
0
N ) ∈ [H2(R3)]N exponentiallydereasing, i.e. suh that there exists C0, γ0, R0 > 0 with

∀1 ≤ i ≤ N, ∀|x| ≥ R0, |φ0
i (x)| ≤ C0e−γ

0|x|,the iterative proedure of Algorithm 8.1 is well-de�ned.However, we were not able to show that this numerial proedure indeed onverges to a solutionof the self-onsistent Kohn-Sham equations with Slater exhange potential.
1 In the Aufbau ondition (ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of “

− 1
2
∆ + Vnuc + ρΦ ⋆

1
|x| + vΦ

x,S

”),the mean-�eld Hamiltonian is here onsidered as an operator on L2
r(R

3).



8.2 The Optimized E�etive Potential problem 2538.2 The Optimized E�etive Potential problem8.2.1 Usual formulation of the OEP problemIn order to generalize and improve Slater's approah, Sharp and Horton [308℄ proposed a syste-mati way to obtain loal potentials approximating the non loal exhange operator. They suggestto minimize the energy of the Slater determinant onstruted with the lowest N eigenfuntionsof some one-eletron Shrödinger operator − 1
2∆ + W , W being a 'loal potential'. This trakwas further explored by Talman and Shadwik [338℄. Note that what is preisely meant by 'loalpotential' is not lear.Leaving this issue aside until next setion, we introdue the set of admissible 'loal potentials'

W =

{
W 'loal potential' ∣∣∣∣ HW = −1

2
∆+W is a self-adjoint operator on L2(R3),bounded from below, with at least N eigenvalues below its essential spetrum},and the OEP minimization set

X =
{
Φ = {φi}1≤i≤N

∣∣ φi ∈ H1(R3), (8.11) and (8.12) hold for some W ∈ W
}
, (8.10)where onditions (8.11) and (8.12) are de�ned as

(
−1

2
∆+W

)
φi = ǫiφi,

∫

R3

φiφj = δij , (8.11)and
ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of HW = −1

2
∆+W. (8.12)The optimized e�etive potential problem then reads

inf
Φ∈X

EHF(Φ). (8.13)Denoting by ΦOEP a minimizer to (8.13), an optimal e�etive potential is a 'loal potential'
WOEP ∈ W whih allows to generate ΦOEP through (8.11)-(8.12). It is onvenient to deompose
WOEP as

WOEP(x) = Vnuc(x) +

∫

R3

ρΦOEP(y)

|x− y| dy + vx,OEP(x).In order to emphasize the mathematial issues arising from the above formulation of the OEP pro-blem, it is worth realling the general method for proving existene of solutions to a minimizationproblem suh as (8.13). The �rst step onsists in onsidering a so-alled minimizing sequene, thatis a sequene (Φn)n∈N of elements of X suh that
lim

n→+∞
EHF(Φn) = inf

Φ∈X
EHF(Φ).It is easy to hek that the sequene (Φn)n∈N is bounded in (H1(R3))N , hene weakly onverges, upto extration, toward some Φ∞ ∈ (H1(R3))N . It is then standard to show (see [211℄ for instane)that

EHF(Φ∞) ≤ inf
Φ∈X

EHF(Φ). (8.14)The di�ult step of the proof is to show that Φ∞ ∈ X (if Φ∞ ∈ X , we an immediately onlude,using (8.14), that Φ∞ is a solution to (8.13)). For this purpose, we need to introdue a sequene
(Wn)n∈N of 'loal potentials' suh that Φn an be generated by Wn via (8.11)-(8.12). If (Wn)n∈N



254 8 Loal Exhange Potentials and Optimized E�etive Potentialswas bounded in some onvenient funtional spae Y, (Wn)n∈N would onverge (up to extrationand in some weak sense) to some potential W∞ ∈ Y. We ould then try to pass to the limit in thesystem 



−1

2
∆φni +Wnφ

n
i = ǫni φ

n
i ,∫

R3

φni φ
n
j = δij ,

ǫn1 ≤ · · · ≤ ǫnN are the lowest N eigenvalues of HWn = −1

2
∆+Wn,using more or less sophistiated funtional analysis arguments, in order to prove that Φ∞ satis�es





−1

2
∆φ∞i +W∞φ

∞
i = ǫ∞i φ

∞
i ,∫

R3

φ∞i φ
∞
j = δij ,

ǫ∞1 ≤ · · · ≤ ǫ∞N are the lowest N eigenvalues of HW∞ =
1

2
∆+W∞,hene belongs to X .To make this strategy of proof work, we therefore need to �nd a funtional spae Y in whihthe sequene (Wn)n∈N is bounded. This will allow us in addition to larify the notion of loalpotential in this setting (a loal potential will be de�ned as an element of Y). Unfortunately, wehave not been able to �nd any non trivial2 funtional spae W satisfying the above request. Thismathematial di�ulty has well-known numerial ounterparts [321℄:(i) it is easy to onstrut dramati modi�ations of the (omputed) optimized e�etive po-tential that are �almost solutions� of the OEP problem;(ii) variational approximations of the OEP problem in whih the moleular orbitals and thetrial e�etive potentials are disretized in independent basis sets lead to unphysial results.8.2.2 A well-posed reformulation of the OEP problemA way to irumvent the issue raised in the above disussion is to replae (8.11)-(8.12) withformally equivalent onditions that do not expliitly refer to a 'loal potential' W [25℄.Let us �rst deal with (8.11). Consider some operator W suh that (Wφ)ψ = φ(Wψ) for all

(φ, ψ) ∈ H1(R3) × H1(R3) (whih is the least we an demand to a 'loal potential'). It is thenlear that if Φ = {φ1, . . . , φN} ∈ (H1(R3))N satis�es (8.11), we also have




div (φi∇φ1 − φ1∇φi) = ciφ1φi,∫

R3

φiφj = δij ,
(8.15)with ci = 2(ǫi − ǫ1). Conversely, if Φ = {φi} ∈ (H1(R3))N satis�es (8.15), then at least formally,

Φ satis�es (8.11) with, for instane,
W =

N∑

i=1

φi∆φi +

N∑

i=2

ciφ
2
i

2ρΦ
, (8.16)

ǫ1 = 0, and ǫi = ci/2 for 2 ≤ i ≤ N . We are therefore now in position to rigorously de�ne a set ofadmissible loal potentials
2 It is of ourse possible to onstrut �nite dimensional funtional spaes W for whih (8.13), with Xde�ned by (8.10), has a solution. Reduing arti�ially the lass of admissible potentials is however nota very satisfatory way to takle the OEP problem.
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W =

{
W operator on L2(R3)

∣∣∣∣ HW = −1

2
∆+W is a self-adjoint operator on L2(R3)with domain D(W ) ⊂ H1

loc(R
3),bounded from below with at least N eigenvalues below its essential spetrum,and suh that ∀(φ, ψ) ∈ D(W ) ×D(W ), (HWφ)ψ − (HWψ)φ =

1

2
div (φ∇ψ − ψ∇φ)

}
.In order to aount for ondition (8.12), we remark that for any Φ ∈ X , it holds for all 1 ≤ i ≤ N ,

∀ψ ∈ C∞
0 (R3),

1

2

∫

R3

φ2
i |∇ψ|2 = 〈ψφi, (HW − ǫi)ψφi〉.It follows from the above equality (see [25℄ for details) that onditions (8.11)-(8.12) are rigorouslyequivalent to





(
−1

2
∆+W

)
φi = ǫiφi,

∫

R3

φiφj = δij ,

∀ψ ∈ C∞
0 (R3), ∀1 ≤ i ≤ N − 1,

∫

R3

φ2
i |∇ψ|2 ≥ 2

i∑

j=1

(ǫj − ǫ1)

(∫

R3

ψφiφj

)2

+ 2(ǫi+1 − ǫ1)



∫

R3

ψ2 φ2
i −

i∑

j=1

(∫

R3

ψφiφj

)2

 .Combining the above result with the formal equivalene between (8.11) and (8.15) with ci =

2(ǫi − ǫ1), it is natural to introdue the optimization problem
inf
Φ∈ eX

EHF(Φ). (8.17)wherẽ
X =

{
Φ = {φi}1≤i≤N

∣∣∣∣ φi ∈ H1(R3),

∫

R3

φiφj = δij ,

∃0 = c1 ≤ c2 ≤ · · · ≤ cN <∞, ∀2 ≤ i ≤ N, div (φi∇φ1 − φ1∇φi) = ciφ1φi,

∀1 ≤ i ≤ N − 1, ∀ψ ∈ C∞
0 (R3),

∫

R3

φ2
i |∇ψ|2 ≥

i∑

j=1

cj

(∫

R3

ψφiφj

)2

+ ci+1



∫

R3

ψ2 φ2
i −

i∑

j=1

(∫

R3

ψφiφj

)2




 .We have therefore eliminated any expliit referene to a 'loal potential'. The onnetion betweenthe original OEP problem (8.13) and its reformulation (8.17) an be stated as follows:(i) if ΦOEP is solution to (8.13), then ΦOEP is solution to (8.17);(ii) if Φ̃OEP =

{
φ̃OEP
i

}
1≤i≤N

is solution to (8.17), and if the reonstruted potential
WOEP =

N∑

i=1

φ̃OEP
i ∆φ̃OEP

i +

N∑

i=2

ci|φ̃OEP
i |2

2ρeΦOEP

(8.18)de�nes an element of W , then Φ̃OEP is solution to (8.13) and WOEP is an optimizede�etive potential.It is proved in [25℄ that for a neutral or positively harged two eletron system, problem (8.17) hasat least one global minimizer Φ̃OEP. Unfortunately, we have not been able to establish whether ornot the reonstruted potential formally de�ned by (8.18) is in W .



256 8 Loal Exhange Potentials and Optimized E�etive Potentials8.3 The e�etive loal potential minimization problemAs shown in Setion 8.2, the OEP problem in its original formulation is not well posed. Weonsider here an alternative way of obtaining an e�etive loal potential (ELP), relying on somevariane minimization. We show that the orresponding minimization problem is well-posed inthe sense that the ELP is uniquely de�ned up to a uniform onstant. We also provide an expliitanalytial expression for it.The e�etive loal potential assoiated with a given Φ ∈ XN was originally de�ned as the loalpotential minimizing the funtion [185℄
v 7→ SΦ(v) =

N∑

i=1

+∞∑

a=N+1

|〈φi|(v −KΦ)|φa〉|2 ,

(φa)a≥N+1 being a Hilbert basis of the orthogonal of the vetor spae generated by (φi)1≤i≤N . Asimple alulation shows that SΦ(v) = JELP
Φ (v) where

JELP
Φ (v) =

1

2
‖[v −KΦ, γΦ]‖2

HS,

[A,B] = AB − BA denoting the ommutator of the operators A and B. An intrinsi formulationof the ELP problem therefore reads
inf {JELP

Φ (v), v ∈ L3(R3) + L∞(R3)}. (8.19)Proposition 8.4. Let Φ = (φi)1≤i≤N ∈ XN . Any solution vΦx,ELP to (8.19) satis�es
ρΦ(x)vΦx,ELP(x) = −

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

(
〈φi|vΦx,ELP|φj〉 − 〈φi|KΦ|φj〉

)
φi(x)φj(x) (8.20)and the symmetri matrix MΦ = [〈φi|vΦx,ELP|φj〉] is solution to the linear system

(I −AΦ)MΦ = GΦ (8.21)with
AΦkl,ij =

∫

R3

φi φj φk φl
ρΦ

, GΦkl =

∫

R3

vΦx,Sφkφl −
N∑

i,j=1

AΦkl,ij〈φi|KΦ|φj〉.Besides, if the orbitals φi are ontinuous and if the open set R3 \ ρ−1
Φ (0) is onneted, then thesolutions to (8.21) form a one-dimensional a�ne set of the form

M̄ + RIN ,so that vΦx,ELP is uniquely de�ned, up to an additive onstant, on the set where ρΦ > 0, and anbe given arbitrary values on the set where ρΦ = 0.Remark 8.2 (ELP for systems with spin states). We denote the spin variables by α, β,and the number of eletrons of spin σ by Nσ. The Euler-Lagrange equations assoiated with theUnrestrited Hartree-Fok problem read




−1

2
∆φαi + Vnucφ

α
i +

(
ρΦ ⋆

1

|x|

)
φαi +KΦαφαi = ǫαi φ

α
i ,

−1

2
∆φβi + Vnucφ

β
i +

(
ρΦ ⋆

1

|x|

)
φβi +KΦβφβi = ǫβi φ

β
i ,



8.4 Mathematial proofs 257where ρΦ is the total density ρΦ(x) = ρΦα(x) + ρΦβ (x), with ρΦσ(x) =
∑Nσ

i=1 |φσi (x)|2, and KΦαand KΦβ the exhange operators de�ned by
(KΦαϕ)(x) = −

∫

R3

γΦα(x, y)

|x− y| ϕ(y) dy, (KΦβϕ)(x) = −
∫

R3

γΦβ (x, y)

|x− y| ϕ(y) dy,with γΦσ(x, y) =
∑Nσ

i=1 φ
σ
i (x)φ

σ
i (y). The e�etive loal potentials vα and vβ are then obtained bysolving

inf {JΦσ(vσ), vσ ∈ L3(R3) + L∞(R3) }, (8.22)where JΦσ : L3(R3) + L∞(R3) → R3 is de�ned as
JΦσ(vσ) =

1

2
‖[vσ −KΦσ , γΦσ ]‖2

HS.The results obtained in the spinless ase straightforwardly apply.Remark 8.3 (Variational de�nition of the Slater potential). There is also an alternativede�nition of the Slater potential in terms of some minimization proedure in Hilbert-Shmidt norm,namely
vΦx,S = arginf

v∈L3(R3)+L∞(R3)

‖vγΦ −KΦ‖2
HS.This variational haraterization is reminisent of the de�nition of the e�etive loal potential(ELP) through the minimization (8.19). Atually, as will be seen below, the ELP an be deomposedas a Slater part, plus orretion terms. The Slater potentiel is believed to represent the long-rangepart of the exhange potential (deaying as −1/|x| when |x| → +∞), whereas the remaining termsare believed to be exponentially dereasing.8.4 Mathematial proofs8.4.1 Some useful preliminary resultsReall that the set L3/2(R3) + (L∞(R3))ǫ is the set of all funtion φ whih an be written,for all ǫ > 0, as a sum φ = φ3/2 + φ∞ with φ3/2 ∈ L3/2(R3) and ‖φ∞‖L∞(R3) ≤ ǫ. When W ∈

L3/2(R3) + (L∞(R3))ǫ, the essential spetrum of the operator − 1
2∆+W is still [0,+∞) [52,277℄.Lemma 8.1 (Exponential deay of the orbitals). Consider an orbital φ ∈ H2(R3) satisfyingan equation of the form

−1

2
∆φ+Wφ = −µφ, (8.23)where the potential W ∈ L3/2(R3)+(L∞(R3))ǫ is suh that W (x) → 0 when |x| → +∞, and µ > 0.Then, for any η > 0, there exists Mη > 0 and Rη > 0 suh that

∀|x| ≥ Rη, |φ(x)| ≤Mηe
−√

2µ−η|x|. (8.24)Proof of Lemma 8.1. Kato's inequality −∆|φ| ≤ −sgn(φ)∆φ implies
−∆|φ| ≤ 2(µ+W )φ sgn(φ) = −2(µ+W )|φ|.For 0 < η < 2µ, there exists Rη > 0 suh that 2|W (x)| ≤ η when |x| ≥ Rη. Then,

−∆|φ| + (2µ− η)|φ| ≤ (2W − η)|φ|.



258 8 Loal Exhange Potentials and Optimized E�etive PotentialsUsing the elementary solution of −∆ + (2µ − η), namely u(x) = (4π|x|)−1 exp(−√
2µ− η|x|), itfollows

|φ(x)| =

∫

R3

u(x− y)(−η + 2W (y))|φ(y)| dy ≤
∫

|y|≤Rη

u(x− y)(−η + 2W (y))|φ(y)| dysine −η + 2W (y) ≤ 0 when |x| ≥ Rη and |φ| ≥ 0. Finally, the last integral in the above equalityan be bounded by Mη exp(−√
2µ− η|x|) for some Mη > 0 and for |x| ≥ Rη > 0, so that (8.24)follows. ⊓⊔Lemma 8.2 (Asymptoti behavior of the Slater potential for exponentially dereasingorbitals). Consider Φ⋆ = (φ⋆1, . . . , φ

⋆
N ) ∈ [H2(R3)]N and assume that there exists R⋆ > 0 suhthat, for |x| ≥ R⋆,

∀1 ≤ i ≤ N, |φ⋆i (x)| ≤ C⋆ exp (−γ⋆|x|) , (8.25)for some γ⋆, C⋆ > 0. Then the Slater potential vΦ⋆

x,S de�ned by (8.7) is suh that
vΦ

⋆

x,S(x) ∼ − 1

|x|when |x| → +∞.Proof of Lemma 8.2. First, for any R > R⋆,
∫

|y|≥R

φ⋆i φ
⋆
j (y)

|x− y| dy ≤
(∫

|y|≥R

|φ⋆i (y)|2
|x− y|2

)1/2(∫

|y|≥R
|φ⋆i (y)|2

)1/2

≤ CR2 e−γ⋆R (8.26)for some C > 0, using Hardy's inequality to bound the �rst term on the right hand-side, and theexponential fall-o� of the j-th orbital for the seond term. Seond,
∣∣∣∣∣

∫

|y|≤R

φ⋆iφ
⋆
j (y)

|x− y| dy −
∫
|y|≤R φ

⋆
i φ

⋆
j (y) dy

|x|

∣∣∣∣∣ ≤
∫

|y|≤R
|φ⋆i (y)φ⋆j (y)|

∣∣∣∣
|y − x| − |x|
|x| · |y − x|

∣∣∣∣ dy,so that
∣∣∣∣∣

∫

|y|≤R

φ⋆i φ
⋆
j (y)

|x− y| dy −
∫
|y|≤R φ

⋆
i φ

⋆
j (y) dy

|x|

∣∣∣∣∣ ≤
1

|x|

∫

|y|≤R
|y| |φ⋆i (y)φ⋆j (y)|

1

|y − x| dy.Using a Hölder inequality,
∫

|y|≤R
|y| |φ⋆i (y)φ⋆j (y)|

1

|y − x| dy → 0when |x| → +∞, whih onludes the proof. ⊓⊔8.4.2 Proofs for the Slater potentialProof of Theorem 8.1. The strategy of proof is based on a �xed-point argument. Notie thatvariational methods annot be used sine (8.8) seems to have no variational interpretation.For all η ≥ 0, we onsider the problem
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(
−1

2
∆− Z + η

|x| + ρΦη ⋆
1

|x| + vΦ
η ,η

x,S

)
φηi = ǫηi φ

η
i ,∫

R3

φηi φ
η
j = δij ,

ǫη1 ≤ · · · ≤ ǫηN are the lowest N eigenvalues of (− 1
2∆− Z+η

|x| + ρΦη ⋆ 1
|x| + vΦ

η ,η
x,S

) (on L2
r(R

3))(8.27)where
vΦ,ηx,S (x) = − 1

ρΦ(x) + η

∫

R3

|γΦ(x, y)|2
|x− y| dy.The proof of existene of a solution to (8.27) for η = 0 follows the lines of the proof of Theorem III.3in [214℄. We �rst onstrut, for η > 0, a ontinuous appliation T η whose �xed points are solutionsto (8.27) in X r

N . We then prove the existene of a �xed point of T η using Shauder Theorem. Theexistene of a solution to (8.27) in the ase when η = 0 is �nally obtained using some limitingproedure. Note that we have introdued the parameter η both in the nuleus-eletron interationand in the Slater potential. In the former term, η plays the same role as in [214℄ (i.e. it enables usto ontrol the deay of the orbitals at in�nity). The role of η in the latter term is to ensure theontinuity of the nonlinear appliation T η for η > 0.First step. Constrution of the appliation T η.Let η > 0 and
K =

{
Ψ = (ψi)1≤i≤N ∈ (H1

r (R
3))N

∣∣∣∣
[∫

R3

φiφj

]
≤ IN

}
,

IN denoting the identity matrix of rank N . The semide�nite onstraint [∫
R3 φiφj

]
≤ IN means

∀x ∈ RN ,

N∑

i,j=1

(∫

R3

φiφj

)
xixj ≤ |x|2.It is easy to see that K is a nonempty, losed, bounded, onvex subset of the Hilbert spae

(H1
r (R

3))N , ontaining X r
N . For Ψ ∈ K, we denote by γΨ (x, y) =

∑N
i=1 ψi(x)ψi(y), ρΨ (x) =

γΨ (x, x) and
F̃ ηΨ = −1

2
∆− Z + η

|x| + ρΨ ⋆
1

|x| + vΨ,ηx,S .As the potential V ηΨ = −Z+η
|x| + ρΨ ⋆

1
|x| + vΨ,ηx,S belongs to

L2(R3)+L∞
ǫ (R3) =

{
W | ∀ǫ > 0, ∃(W2,W∞) ∈ L2(R3) × L∞(R3), ‖W∞‖L∞ ≤ ǫ, W = W2 +W∞

}
,it is a ompat perturbation of the kineti energy operator. By Weyl Theorem [277℄, σess(F̃

η
Ψ ) =

σess(− 1
2∆) = [0,∞). Besides, using Gauss theorem and the inequalities−N

|·| ≤ −ρΨ⋆ 1
|x| ≤ vΨ,ηx,S ≤ 0,one has −Z+η

|x| ≤ V ηΨ ≤ − η
|x| . Hene,

GZ+η := −1

2
∆− Z + η

|x| ≤ F̃ ηΨ ≤ Gη := −1

2
∆− η

|x| . (8.28)As the hydrogen-like Hamiltonian Gη, onsidered as an operator on L2
r(R

3), has in�nitely manynegative eigenvalues, so does F̃Ψ (this is a straightforward onsequene of Courant-Fisher min-max priniple). Besides, the eigenvalues of the radial Shrödinger operator F̃ ηΨ being simple, thespetral problem
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F̃ ηΨφi = ǫiφi,∫

R3

φiφj = δij ,

ǫ1 ≤ · · · ≤ ǫN are the lowest N eigenvalues of F̃ ηΨ (on L2
r(R

3)),has a unique solution Φ = (φi) in X r
N ⊂ K up to the signs of the orbitals φi. We an thereforede�ne a nonlinear appliation T η from K to K whih assoiates with any Ψ ∈ K the uniquesolution Φ = (φi) ∈ X r

N ⊂ K to (8.27), for whih φi ≥ 0 in a neighborhood of x = 0, for all
1 ≤ i ≤ N (by the strong maximum priniple, φi annot vanish on an open set of R3).Seond step. Existene of a solution to (8.27) for η > 0.By standard perturbation theory, it is not di�ult to prove that T η is ontinuous (for the H1norm topology). Let us prove that T η is ompat. Let (Ψn) be a bounded sequene in K, and let
Φn = T ηΨn. There is no restrition in assuming that (Ψn) onverges to some Ψη ∈ (H1(R3))N ,weakly in (H1(R3))N , strongly in (L2

loc(R
3))N and almost everywhere. This implies in partiularthat the sequene (ρΨn ⋆ 1

|x| + vΨ
n,η

x,S ) is bounded in L∞ and onverges almost everywhere to
ρΨη ⋆ 1

|x| + vΨ
η,η

x,S when n goes to in�nity. Using again (8.28) and denoting by ǫni the i-th eigenvalueof F ηΨn , one obtains
1

2

N∑

i=1

(‖∇φni ‖L2 − 2(Z + η))
2 − 2(Z + η)2 ≤

N∑

i=1

1

2

∫

R3

|∇φni |2 −
∫

R3

Z + η

|x| ρΦn ≤
N∑

i=1

ǫni < 0.Thus, for all 1 ≤ i ≤ N , the sequene (φni )n∈N∗ is uniformly bounded in H1(R3) (independentlyof (Ψn)), and therefore onverges, up to extration, to some φηi ∈ H1
r (R

3), weakly in H1(R3),strongly in L2
loc(R

3) and almost everywhere. Besides, using (8.28) and Courant-Fisher formula,one obtains
− (Z + η)2

2i2
≤ ǫni ≤ − η2

2i2
.Up to extration, (ǫni ) therefore onverges to some ǫηi ∈ [− (Z+η)2

2i2 ,− η2

2i2 ]. Next, by Kato inequa-lity [277℄,
−∆|φni | ≤ −sgn(φni )∆φni = 2(ǫni − V ηΨn)|φni |

≤ 2

(
Z + η

|x| − η2

i2

)
|φni |. (8.29)As, moreover, (Ψn) and (Φn) are bounded for the H1 norm topology, (V ηΨnφni ) is bounded in

L2(R3), so that (φni ) is bounded in H2(R3), hene in L∞(R3). Consequently, it follows from (8.29)and the maximum priniple that there exists δ > 0 small enough and M ≥ 0 independent of iand n, suh that
|φni (x)| ≤M e

−
“ √

2 η
N −δ

”
|x|
.This implies that (φni )n∈N∗ onverges (up to extration) to φηi strongly in L2(R3). In partiular,

Φη = (φηi ) ∈ X r
N . It is therefore possible to hek, using the onvergene of (Ψn) to Ψη and theonvergene - up to extration - of (Φn) to Φη and of (ǫni ) to ǫηi , that

−1

2
∆φηi + V ηΨηφ

η
i = ǫηi φ

η
iand then, using the positivity of ρΨn ⋆ 1

|x| + vΨ
n,η

x,S and Fatou lemma on the one hand, and thelower semi-ontinuity of the funtional φ 7→
∫

R3 |∇φ|2 on the other hand, that
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lim inf
n→+∞

−
∫

R3

|∇φni |2 = lim inf
n→+∞

2

∫

R3

(V ηΨn − ǫni )|φni |2

≥ 2

∫

R3

(V ηΨη − ǫηi )|φηi |2 = −
∫

R3

|∇φηi |2.As on the other hand, ∫

R3

|∇φηi |2 ≤ lim inf
n→+∞

∫

R3

|∇φni |2,

(Ψn) onverges to Ψη strongly in (H1(R3))N , whih proves that T η is ompat. It then followsfrom Shauder �xed point theorem [375℄ that T η has a �xed point Φη ∈ X r
N , whih is solution to(8.27).Third step. Existene of a solution to (8.27) for η = 0.Let (ηn) be a sequene of positive real numbers onverging to zero. As the sequene of orrespon-ding �xed points (Φηn) is uniformly bounded in (H1(R3))N and as − (Z+ηn)2

2i2 ≤ ǫηn

i ≤ 0, there isno restrition in assuming that (Φηn) onverges to some Φ⋆ ∈ (H1(R3))N , weakly in (H1(R3))N ,strongly in (L2
loc(R

3))N and almost everywhere, and that (ǫηn

i ) onverges to ǫ∗i ≤ 0. Besides, thesequene (Φηn) is bounded in (H2(R3))N , hene in (L∞(R3))N .Passing to the limit in the equation F̃ηn

Φηnφ
ηn

i = ǫηn

i φηn

i yields
−1

2
∆φ⋆i −

Z

|x|φ
⋆
i +

(
ρΦ⋆ ⋆

1

|x|

)
φ⋆i + vΦ

⋆

x,Sφ
⋆
i = ǫ⋆iφ

⋆
i .Assume that ∫

R3 ρΦ⋆ < N . As
F̃Φηn ≤ −1

2
∆− Z

|x| + ρΦηn ⋆
1

|x| ,one has, using Courant-Fisher formula, and denoting by λi(A) the i-th eigenvalue of A,
ǫ⋆i = lim

n→+∞
ǫηn

i

= lim
n→+∞

λi

(
F̃Φηn

)

≤ lim
n→+∞

λi

(
−1

2
∆− Z

|x| + ρΦηn ⋆
1

|x|

)

= λi

(
−1

2
∆− Z

|x| + ρΦ⋆ ⋆
1

|x|

)

≤ λi

(
−1

2
∆− N −

∫
R3 ρΦ⋆

|x|

)

= − (N −
∫

R3 ρΦ⋆)2

2i2
< 0.It follows that for n large enough, the sequene (ǫηn

i ) is isolated from zero. As (Φηn) is boundedin (L∞(R3))N , we onlude, reasoning as above, that there exists M ∈ R+ and α > 0 suh thatfor n large enough
|φηn

i (x)| ≤M e−α|x|.This implies that (Φηn) onverges to Φ⋆ ∈ (H1(R3))N strongly in (L2(R3))N , and onsequentlythat ∫
R3 ρΦ⋆ = N . We reah a ontradition. This means that ∫

R3 ρΦ⋆ = N and therefore that
Φ⋆ ∈ X r

N .
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Φ⋆ . The fat that ǫ⋆1 < · · · < ǫ⋆N are thelowest eigenvalues of F̃ 0

Φ⋆ follows from Courant-Fisher formula.In view of the proof of Proposition 8.1, the Slater potential vΦ⋆

x,S is equivalent to − 1
|x| at in�nity.This proves that ǫ⋆1 < · · · < ǫ⋆N < 0, from whih it follows that the orbitals φ⋆i enjoy exponentialdeay: For all η > 0, there exists M ∈ R3 suh that

|φ⋆i (x)| ≤M e−(
√

−2ǫ⋆N−η/3)|x|,so that
vΦ

⋆

x,S(x) = − 1

|x| + o
(
e−(2

√
−2ǫ⋆N−η)|x|

)
.Lastly, the same arguments as above an be used to prove that the minimum of the Hartree-Fokenergy over the set of solutions to (8.8) is attained. ⊓⊔Proof of Proposition 8.1. The well-posedness of the iterative proedure is granted provided theaufbau priniple assoiated with the Hamiltonian

HΦn = −1

2
∆− Z

|x| + ρΦn ⋆
1

|x| + vΦ
n

x,S (8.30)is well-posed for all n ≥ 0. This in turn is guaranteed provided the lowest N negative eigen-values of HΦn an be omputed unambiguously (Notie that the essential spetrum of HΦn isstill [0,+∞)).When the orbitals Φ = {φi}i=1,...,N are radial, the asymptoti behavior of the Slater potentialan be preised. Gauss's theorem shows that
∫

R3

φiφj(y)

|x− y| dy =

∫

R3

φiφj(y)

max(|x|, |y|) dy =





1

|x| + o

(
1

|x|

) when i = j,

o

(
1

|x|

) when i 6= j.Indeed, ∫

R3

φiφj(y)

max(|x|, |y|) dy =
1

|x|

(
δij −

∫

|y|≥|x|
φiφj

)
+

∫

|y|≥|x|

φiφj(y)

|y| dy.The seond integral on the right hand side onverges to 0 when |x| → +∞, and the rate ofonvergene an be preised as
∣∣∣∣∣

∫

|y|≥|x|

φiφj(y)

|y| dy

∣∣∣∣∣ ≤
1

|x|

(∫

|y|≥|x|
φ2
i

)1/2(∫

|y|≥|x|
φ2
j

)1/2

= o

(
1

|x|

)sine the funtions φi are in L2(R3). The �rst term is handled in a similar manner. Finally,
vΦx,S(x) = −

N∑

i=1

φ2
i (x)

ρ(x)

1

|x| + o

(
1

|x|

)
= − 1

|x| + o

(
1

|x|

)when |x| → +∞.A lassial saling argument (as for in proof of Lemma II.1 in [214℄ for instane) then showsthat, for all n ≥ 0, HΦn has in�nitely many single negative eigenvalues. Therefore, the new orbitalsan be uniquely onstruted. ⊓⊔Proof of Proposition 8.2. Using a Cauhy-Shwarz inequality, the following bound is obtained:
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−1

2
∆− Z

|x| ≤ HΦn ≤ H̃Φn = −1

2
∆− Z

|x| + ρΦn ⋆
1

|x| . (8.31)It is not su�ient to obtain the existene of in�nitely many negtive eigenvalues when Z = N andthe orbitals are not required to be radial. This is however the ase when Z = N + η (for some
η > 0), using again a saling argument as in [214, Lemma II.1℄. The proof of Proposition 8.2 istherefore analogous to the proof of Proposition 8.1, and we skip it. ⊓⊔Proof of Proposition 8.3. When Z = N and the orbitals are not radial but have an initial expo-nential deay, we show that(i) the Hamiltonian HΦn de�ned by (8.30) has in�nitely many eigenvalues below 0;(ii) the orresponding eigenvetors are still exponentially dereasing.The proof of well-posedness of the iterative proedure is done using the following reurreneassumption:Reurrene assumption 8.1. There exists Rn > 0 suh that, for |x| ≥ Rn,

∀1 ≤ i ≤ N, |φni (x)| ≤ Cn exp (−γn|x|) , (8.32)for some γn, Cn > 0.This assumption is veri�ed for n = 0. If it is veri�ed for n ≥ 0, then, by Lemma 8.2, the Slaterpotential behaves as −1/|x| at in�nity. A lassial saling argument then shows that there are in�-nitely many negatives eigenvalues. The exponential fall-o� of the assoiated orbitals {φn+1
i }i=1,...,Nan then be shown using Lemma 8.1, so that the reurrene assumption (8.1) is satis�ed for n+1.

⊓⊔8.4.3 Proof of Proposition 8.4For all v ∈ L3(R3) + L∞(R3), the operator BΦv = [v, γΦ] is Hilbert-Shmidt. One an thereforede�ne on L3(R3) + L∞(R3) the funtional
JELP
Φ (v) =

1

2
‖[v −KΦ, γΦ]‖2

HS =
1

2
‖BΦv − [KΦ, γΦ]‖2

HS.For all v and h in L3(R3) + L∞(R3),
JELP
Φ (v + h) = JELP

Φ (v) + 〈BΦv − [KΦ, γΦ], BΦh〉HS +
1

2
‖BΦh‖2

HSand
〈BΦv − [KΦ, γΦ], BΦh〉HS

=

∫

R3


ρΦ(x)v +

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

〈φi |v −KΦ |φj〉φi(x)φj(x)


 h(x) dx.The global minimizers v of (8.19) are therefore exatly the solutions to the equation

ρΦ(x)v(x) = −
∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

〈φi|v −KΦ|φj〉φi(x)φj(x). (8.33)Multiplying the above equation by φiφj

ρ and integrating over R3, one then observes that a funtion
v satisfying
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ρΦ(x)v(x) = −

∫

R3

|γΦ(x, y)|2
|x− y| dy +

N∑

i,j=1

(Mij − 〈φi|KΦ|φj〉)φi(x)φj(x).is solution to (8.33) if and only if the matrix M is solution to the linear system
(I −AΦ)M = GΦ. (8.34)Let us now prove that, if the orbitals φi are ontinuous and if R3 \ ρ−1

Φ (0) is onneted, thenKer(I−AΦ) = RIN and GΦ ∈ Ran(I−AΦ). For this purpose, let us onsider a matrixM ∈ MS(N)suh that (I −AΦ
)
M = 0. AsM is symmetri, it an be diagonalized in an orthonormal basis setas

M = UT Diag(λ1, · · · , λN ) Uwhere U is a unitary matrix. Denoting by (ψ1, . . . , ψN )T = U(φ1, . . . , φN )T , a simple alulationleads to
0 = (

(
I −AΦ

)
M,M)F =

N∑

i=1

λ2
i −

∫

R3

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

dx

ρΦ(x)
,where (·, ·)F is the Frobenius inner produt on MS(N). As U is a unitary transform, the ψiare orthonormal for the L2(R3) inner produt and N∑

i=1

ψi(x)
2 = ρΦ(x). Therefore, using Cauhy-Shwarz inequality,

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

≤
(

N∑

i=1

ψi(x)
2

) (
N∑

i=1

λ2
iψi(x)

2

)
= ρΦ(x)

N∑

i=1

λ2
iψi(x)

2,with equality if and only if there exists C(x) suh that λiψi(x) = C(x)ψi(x) for all 1 ≤ i ≤ N .Hene,
N∑

i=1

λ2
i −

∫

R3

∣∣∣∣∣
N∑

i=1

λiψi(x)
2

∣∣∣∣∣

2

dx

ρΦ(x)
≥

N∑

i=1

λ2
i −

∫

R3

N∑

i=1

λ2
iψ

2
i = 0,with equality if and only if for almost all x ∈ R3, there exists C(x) suh that λiψi(x) = C(x)ψi(x)for all 1 ≤ i ≤ N .If the orbitals φi are ontinuous, so are the funtions ψi. Let us onsider the open sets Ωi =

R3 \ ψ−1
i (0) and Ω = ∪Ni=1Ωi = R3 \ ρ−1

Φ (0). On Ωi, one has C(x) = λi. This implies that thefuntion C(x) is onstant on eah onneted omponent of Ω. If Ω is onneted, one therefore has
λ1 = λ2 = · · · = λN , i.e. M is proportional to the identity matrix.In summary, under the assumptions that the orbitals φi are ontinuous and that R3 \ ρ−1

Φ (0)is onneted,(1) the linear equation (8.34) has a solution if and only if GΦ ∈ Ran (I −AΦ
). Note thatRan (I −AΦ

)
= Ker (I − (AΦ)∗

)⊥
= Ker (I −AΦ

)⊥, sine AΦ is self-adjoint for the Fro-benius inner produt. It then follows Ran (I − AΦ
)

= Span(IN )⊥. Sine (IN , G
Φ)F =

Tr(GΦ) = 0, GΦ ∈ Ran (I − AΦ
) and (8.34) has at least one solution MΦ

⋆ ;(2) ifMΦ
⋆ is a solution to (8.34), then the set of the solutions of (8.34) is {MΦ

⋆ + λIRN , λ ∈ R
}.Note that replaingMΦ withMΦ+λIRN in (8.34) amounts to replaing vΦx,ELP with vΦx,ELP+λ. ⊓⊔
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