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Microscopic description of physical systems

• Positions q (configuration), momenta p = Mq̇ (M diagonal mass matrix)

• Microstate for N particle system: (q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ DN × R
dN

• Hamiltonian H(q, p) =

N
∑

i=1

p2
i

2mi
+ V (q1, . . . , qN )

• All the physics is contained in V ! For instance, pair interactions V (q1, . . . , qN ) =
∑

1≤i<j≤N
v(|qj − qi|)

• Canonical ensemble = probability measure on (q, p) (average energy fixed)

µ|D|,T (dq dp) = Z−1
|D|,T e−βH(q,p) dq dp, β =

1

kBT

• Thermodynamic properties: 〈A〉|D|,T =

∫

A(q, p)µ|D|,T (dq dp)

Sampling the canonical measure

• SDE on the configurational part only (momenta trivial to sample)

dqt = −∇V (qt) dt + σdWt, (1)

where (Wt)t≥0 is a standard Wiener process of dimension dN

• Associated Fokker-Planck equation ∂tψ = div

(

∇V ψ +
σ2

2
∇ψ
)

where ψ(t, ·) is the law of qt

• Invariance of the marginal in positions of the canonical measure ν(dq) = Z−1 e−βV (q) dq, when the fluctua-

tion/dissipation relation σ =

√

2

β
is satisfied

• Invariance + irreducibility (elliptic process): lim
T→∞

1

T

∫ T

0
A(qt) dt =

∫

A(q) dν a.s.

• Several notions of convergence: here, longtime convergence in law

• Rewrite the Fokker-Planck equation as ∂tψ =
1

β
div

(

ψ∞∇
(

ψ

ψ∞

))

with the invariant measure ψ∞ =

Z−1 exp(−βV )

• Define the relative entropy H(ψ(t, ·) |ψ∞) =

∫

ln

(

ψ(t, ·)
ψ∞

)

ψ∞

• It holds ‖ψ(t, ·)−ψ∞‖TV ≤
√

2H(ψ(t, ·) |ψ∞). The aim is therefore to show that the entropy converges to 0.

• A simple computation shows
d

dt
H(ψ(t, ·) |ψ∞) = −β−1I(ψ(t, ·) |ψ∞) where the Fisher information is

I(ψ(t, ·) |ψ∞) =

∫
∣

∣

∣

∣

∇ ln

(

ψ(t, ·)
ψ∞

)∣

∣

∣

∣

2

ψ∞

• When a Logarithmic Sobolev Inequality holds for ψ∞, namely H(φ|ψ∞) ≤ 1

2R
I(φ |ψ∞), then, by Gronwall’s

lemma, the relative entropy converges exponentially fast to 0, as well as the total variation distance

• Obtaining LSI: Bakry-Emery criterion (convexity), Gross (tensorization), Holley-Stroock’s perturbation result

• Other framework: L2 estimates and Poincaré inequalities

Numerical results

• Multiple replica implementation (interacting only through the update of their common temperature)

• In many codes, ergodic limits for a single replica are easier to implement. The temperature is now random:

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















dqt = −∇V (qt) dt +
√

2kBTt dWt,

dTt = −γ











∫ t

0
A(qs) δTt−Ts ds
∫ t

0
δTt−Ts ds











dt,

• Obtain orders of magnitude for γ using non-dimensional evolution: d

(

Tt
Tref

)

= − At(Tt)

NkBTref
ν dt
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Left: Temperature as a function of time (in reduced units) for different values of the frequency ν (in s−1), for a
system of size N = 4, 000, and a fixed compression c = 0.62. Pole: T0 = 10 K, ρ0 = 1.806 × 103 kg/m3 (so that
P0 ≃ 0). Right: Hugoniot curve.
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Physical motivation

• Hugoniot curve = all admissible shocks as given by the third equation of the Rankine-Hugoniot relations for

fluids described by the Euler equation (E internal energy, P pressure, V volume): E−E0−
1

2
(P+P0)(V0−V) = 0

• Statistical physics reformulation: reference temperature T0, simulation cell Dc = cLT × (LT)2 with c = 1 at
the pole → vary the compression rate in the x direction c = |D|/|D0|

• Consider the observable Ac(q, p) = H(q, p) − 〈H〉|D0|,T0
+

1

2
(Pxx(q, p) + 〈P 〉|D0|,T0

)(1 − c)|D0| where the xx

component of the pressure tensor is Pxx(q, p) =
1

|D|

N
∑

i=1

p2
i,x

mi
− qi,x∂qi,xV (q)

• For a given compression with cmax ≤ c ≤ 1, find T ≡ T (c) such that

〈Ac〉|Dc|,T = 0

Sampling constraints in average

• Set some external parameter (temperature, pressure/volume) to obtain the right value of a given thermodynamic
property. For instance, vary the temperature in the canonical ensemble

• Given some observable A, the problem then reads

Find T such that 〈A〉T = 0

• Since the momenta are straightforward to sample, there is no restriction in considering A ≡ A(q)

f (T ) = 〈A〉T =

∫

A(q)µT (dq), µT (q) =
1

ZT
exp

(

−V (q)

kBT

)

, ZT =

∫

exp

(

−V (q)

kBT

)

dq,

• Several methods to find the zero of the function f (T ) = 〈A〉T (Newton strategy, but requires the computation
of the derivative, difficult to converge because of statistical error; New thermodynamic ensemble = (unknown)
ergodic limit of dedicated dynamics such as [3])

• Another idea: Assume that there exists an interval IT = [Tmin, Tmax], a temperature T ∗ ∈ (Tmin, Tmax), and
constants a, α > 0 such that

〈A〉T = 0 ⇔ T = T ∗ and α ≤ 〈A〉T − 〈A〉T ∗

T − T ∗ ≤ a

• Note that the (deterministic) dynamics T ′(t) = −γ 〈A〉T (t) is such that T (t) → T ∗, and that the dynamics (1)
is ergodic for the canonical measure at temperature T

• Approximate the equilibrium canonical expectation by the current one:

dqt = −∇V (qt) dt +
√

2kBT (t) dWt,

T ′(t) = −γ E(A(qt)),
(2)

• Note that (T ∗, µT ∗) is invariant

Convergence of the nonlinear dynamics (2)

• Nonlinear PDE on the law ψ of the process qt


















∂tψ = kBT (t)∇ ·
[

µT (t)∇
(

ψ

µT (t)

)]

= kBT (t) ∆ψ + ∇ · (ψ∇V ),

T ′(t) = −γ
∫

A(q)ψ(t, q) dq

(3)

• Assule that the family of measures {µT}T∈IT satisfies a logarithmic Sobolev inequality (LSI) with a uniform
constant 1/ρ, namely

∫

(

f ln f − f + 1
)

µT ≤ 1

ρ

∫ |∇f |2
f

µT .

Theorem 1 (Short-time existence/uniqueness) Assume that the observable A ∈ C3 and V ∈ C2. For

a given initial condition (T 0, ψ0), with T 0 > 0 and ψ0 ∈ H2, ψ0 ≥ 0,

∫

ψ0 = 1, there exists a time

τ ≥ T 0

2γ‖A‖∞
> 0 such that (3) has a unique solution (T, ψ) ∈ C1([0, τ ],R) × C0([0, τ ],H2). In particular,

the temperature remains positive.

Theorem 2 Consider an initial data (T 0, ψ0) with ψ0 ∈ H2, ψ0 ≥ 0,

∫

ψ0 = 1, and associated entropy

E(0) ≤ E∗, where

E∗ = inf

{

1

2
(Tmin − T ∗)2,

1

2
(Tmax − T ∗)2

}

.

Then, there exists γ0 > 0 such that, for all 0 < γ ≤ γ0, (3) has a unique solution (T, ψ) ∈ C1([0, τ ],R) ×
C0([0, τ ],H2) for all τ ≥ 0, and the entropy converges exponentially fast to zero: There exists κ > 0
(depending on γ) such that

E(t) ≤ E(0) exp(−κt).
In particular, the temperature remains positive at all times: T (t) ≥ Tmin > 0, and it converges exponentially
fast to T ∗.

• Proof of Theorem 1: Schauder fixed-point theorem using a mapping T 7→ ψT 7→ g(T )

• Proof of Theorem 2: entropy estimates using the total entropy E(t) = E(t)+
1

2
(T (t)−T ∗)2, where the reference

measure in the spatial entropy is time-dependent: E(t) =

∫

(f ln f − f + 1)µT (t) with f = ψ
µT (t)

• The proof relies on the estimates |T ′(t)| ≤ γ
(

a |T (t) − T ∗| + ‖A‖∞
√

2E(t)
)

and

E′(t) ≤ −
(

ρkBT (t) − 2|T ′(t)| ‖V ‖∞
kBT (t)2

)

E(t) +
2
√

2|T ′(t)|‖V ‖∞
kBT (t)2

√

E(t)

so that a Gronwall inequality can be shown to hold for E upon choosing γ small enough (since T ′
∝ γ)


