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Microscopic description of physical systems

e Positions ¢ (configuration), momenta p = Mq (M diagonal mass matrix)

e Microstate for N particle system: (q,p) = (q1, ..., 9N, P1,--.,pN) € DV x RAN
N2

e Hamiltonian H(q,p) = Z 22:;. +Vig,...,qN)

i=1 ¢

e All the physics is contained in V! For instance, pair interactions V' (qq,...,qy) = Z v(lg; — qil)
1<i<j<N
e Canonical ensemble = probability measure on (g, p) (average energy fixed)

K| rdgdp) = Zp e dgdp, [ = T

e Thermodynamic properties: <A>\D|,T — /A(q,p) N\D|,T<dq dp)

Physical motivation

e Hugoniot curve = all admissible shocks as given by the third equation of the Rankine-Hugoniot relations for

1
fluids described by the Euler equation (€ internal energy, P pressure, V volume): £ —&j— §(P+770) Vo—V) =0

e Statistical physics reformulation: reference temperature Tf), simulation cell D, = ¢LT X (LT)2 with ¢ =1 at
the pole — vary the compression rate in the x direction ¢ = |D|/| Dy

1
o Consider the observable Ac(q,p) = H(q,p) — (H)p,| 1 + §(Pm(q,p) + (P)p,|,1,)(1 — ¢)|Do| where the zx

N 2
1 p;
component of the pressure tensor is Pry(q, p) = ﬁ E —;;x — i +0g,.V (q)
i=1 "

e [or a given compression with cpax < ¢ < 1, find T = T'(¢) such that

<AC>\DC|,T =0

Sampling the canonical measure
e SDE on the configurational part only (momenta trivial to sample)
dgr = —=VV(q) dt + odWy, (1)

where (W)y>0 is a standard Wiener process of dimension dN

2
e Associated Fokker-Planck equation 0y = div (va + %Vzb) where (¢, -) is the law of ¢

e [nvariance of the marginal in positions of the canonical measure v(dq) = Z —1 o=BVia) dg, when the fluctua-
2
tion/dissipation relation o = \/% is satisfied
1 T
e [nvariance + irreducibility (elliptic process): lim — A(q) dt = / A(q)dv as.

I'—00 0

e Several notions of convergence: here, longtime convergence in law

1
e Rewrite the Fokker-Planck equation as Oy = Ediv (woov <_¢¢ )) with the invariant measure 9o, =
0.9
7 _1exp(—ﬁV)

e Define the relative entropy H(w(t, ) | eo) = / In (@b(t, )> Yoo

Yoo

o It holds |[1(t, ) — YoollTv < /2H(¥(1, ) | too). The aim is therefore to show that the entropy converges to 0.
d

e A simple computation shows %H (P(t, ) |[hoe) = —B (Y(t, )| o) where the Fisher information is

w t, - .
10 ve) = [ |71 (S50 o
Yoo
1

e When a Logarithmic Sobolev Inequality holds for ¥)oo, namely H (o] 1s0) < ﬁ] (¢ | ¥oo), then, by Gronwall’s

lemma, the relative entropy converges exponentially fast to 0, as well as the total variation distance
e Obtaining LSI: Bakry-Emery criterion (convexity), Gross (tensorization), Holley-Stroock’s perturbation result

e Other framework: L? estimates and Poincaré inequalities

Sampling constraints in average

e Set some external parameter (temperature, pressure/volume) to obtain the right value of a given thermodynamic
property. For instance, vary the temperature in the canonical ensemble

e GGiven some observable A, the problem then reads

Find T such that (A)7 =0

e Since the momenta are straightforward to sample, there is no restriction in considering A = A(q)

11) = Wr = [ urtdn). urle) = (—%) Zr = [ew (—%) i

e Several methods to find the zero of the function f(7T') = (A)7 (Newton strategy, but requires the computation
of the derivative, difficult to converge because of statistical error; New thermodynamic ensemble = (unknown)
ergodic limit of dedicated dynamics such as [3])

e Another idea: Assume that there exists an interval I = [Ty, Tinax], a temperature T € (T, Timax), and
constants a, o > 0 such that
(A)r — (A)

(A)p =0T =T* and a< R <a

e Note that the (deterministic) dynamics T7(t) = —~ (A)7(p) is such that T'(¢) — T, and that the dynamics (1)
is ergodic for the canonical measure at temperature 1’

e Approximate the equilibrium canonical expectation by the current one:

dgt = —VV(q)dt + \/2kgT(t) dWr,
T'(t) = —yE(A(qr)),

e Note that (T, pp+) is invariant

Numerical results

e Multiple replica implementation (interacting only through the update of their common temperature)

e In many codes, ergodic limits for a single replica are easier to implement. The temperature is now random:

[ dg = —VV(q) dt + \/2kgT; dW;,
t
4 (/O A(QS> 5Tt—T3 dS\

d1y = —7 /
\ /0 5Tt—Ts ds )

dt,

\

. . . . . . 1 A (T,
e Obtain orders of magnitude for v using non-dimensional evolution: d (—t> = — (1) v dt
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Left: Temperature as a function of time (in reduced units) for different values of the frequency v (in s~1), for a
system of size N = 4,000, and a fixed compression ¢ = 0.62. Pole: T = 10 K, pg = 1.806 X 10° kg/m3 (so that
Py ~ 0). Right: Hugoniot curve.
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Convergence of the nonlinear dynamics (2)

e Nonlinear PDE on the law 9 of the process g4

O = kpT(t)V - |pppV <L> = kpT'(t) Ay + V- (VV),
\ ) HT(t) )

T'(t) = — / Alq)¥(t, q) dg

(3)

o Assule that the family of measures {7} e, satisfies a logarithmic Sobolev inequality (LSI) with a uniform

constant 1/p, namely
1 [IVfI
[ (g =se)ur < [FE .
p /

Theorem 1 (Short-time existence/uniqueness) Assume that the observable A € C3 and V € C?. For
a given initial condition (TV,¢V), with T > 0 and W e B2, ¢l >0, /wo = 1, there exists a time

70
T > A > 0 such that (3) has a unique solution (T,1)) € CL([0,7],R) x C([0, 7], H?). In particular,
gl 00
the temperature remains positive.

Theorem 2 Consider an wnitial data (To,wo) with wo S HQ, w() > 0, /wo = 1, and associated entropy

E(0) < E*, where

(1 1
£* = inf {§<Tmm —T%)?, 5(Tmax _ T*)2} |

Then, there exists g > 0 such that, for all 0 < v < 9, (3) has a unique solution (T,v) € CH[0,7],R) x
CY([0,7],H%) for all 7 > 0, and the entropy converges exponentially fast to zero: There exists k > 0

(depending on ) such that
E(t) < E(0) exp(—rt).

In particular, the temperature remains positive at all times: T'(t) > T > 0, and it converges exponentially
fast to T,

e Proof of Theorem 1: Schauder fixed-point theorem using a mapping 1" — 1 +— ¢g(T)

1
e Proof of Theorem 2: entropy estimates using the total entropy E(t) = E(t) +§(T (t)—T™*)?, where the reference

measure in the spatial entropy is time-dependent: F(t) = / (fInf—f+ 1)MT(t) with f = M;b(t)

e The proof relies on the estimates |77(t)] < v (a T(t) — T + HAHOO\/QE(t)) and

5 o - ) 2T

so that a Gronwall inequality can be shown to hold for £ upon choosing v small enough (since T” oc )




