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Jarzynski’s equality: a simulated

annealing strategy
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The simulated annealing setting

Family of Hamiltonian functions Hλ, parameter λ ∈ [0, 1] (change of
temperature, ’alchemical transition’)

Irreducible Markovian dynamics t 7→ X
λ(t)
t , X

λ(0)
0 ∼ µ0

Smooth schedule t 7→ λ(t) (λ(1) = 0 and λ(T ) = 1)

Canonical measure dµλ invariant

Examples

Hypo-elliptic Langevin dynamics

Overdamped Langevin dynamics

Hamiltonian case (NVE) can also be considered (non irreducible)
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Jarzynski’s equality

Differentiation of the non-normalized Boltzmann path t 7→ e−βHλ(t)(x) dx

∂tΠλ(t)(f) = Πλ(t)

(

Lλ(t)(f) − β
∂Hλ(t)

∂λ
λ′(t)f

)

.

Free-energy F (λ) = −β−1 lnZλ (partition function Z)

Feynamn-Kac formula (with f = 1):

E(e−βWt) = e−β(F (λ(t))−F (0))

Work defined as Wt =
∫ t

0

∂Hλ(s)

∂λ
(X

λ(s)
s )λ′(s) ds

Jensen’s inequality E(Wt) ≥ F (λ(t)) − F (0) → use the virtual work Wt to
perform a selection between replicas

IPAM Poster session, 09/26/2005 – p.



Re-interpreting the dynamics as a

jump-diffusion process
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Derivation of the jump-diffusion process

Differentiation of the normalized Boltzmann (with Fλ = µλ

(

∂Hλ

∂λ

)

)

∂tµλ(t)(f) = µλ(t)

(

Lλ(t)(f) + β

(

Fλ(t) −
∂Hλ(t)

∂λ

)

λ′(t)f

)

,

Rewritten as a nonlinear Markovian evolution

∂tµλ(t)(f) = µλ(t)

(

Lλ(t)(f) + Jt(f)
)

Jump generator

Jt(f)(x) =

∫

M

(f(y) − f(x))(α−
t (x) + α+

t (y))µλ(t)(dy)

with transition intensities
α−

t = βλ′(t)(Fλ(t) −
∂Hλ(t)

∂λ
)−, α+

t = βλ′(t)(Fλ(t) −
∂Hλ(t)

∂λ
)+
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The jump-diffusion process

Jump-diffusion process

Process 1 Y0 ∼ dµ0(x), (τ b
n, τd

n)n≥1 ∼ E(1), T d
0 = 0, T b

0 = 0.

Between each jump time, t 7→ Yt evolves according to the chosen
dynamics;

At random times T d
n+1 defined by

∫ T d
n+1

T d
n

α−
s (Ys)ds = τd

n+1, the process

jumps to a configuration y, chosen according to the probability
measure dµλ(T d

n+1)
(y) [death];

At random times T b
n+1 defined by

∫ T b
n+1

T b
n

µλ(s)(α
+
s )ds = τ b

n+1, the

process jumps to a configuration y, chosen according to the
probability measure ∼ α+

T b
n+1

(y)dµλ(T b
n+1)

(y) [birth].

For all t ≥ 0, the law of Yt is µλ(t).
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Discretizing the process

using an Interacting Particle System

approach
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Discretizing the process

M replicas of the sytem

Evolution in a mean-field sense: empirical mean force

FM
λ(t) =

1

M

M
∑

k=1

∂Hλ(t)

∂λ
(Xk

t )

and empirical Boltzmann distribution

dµM
λ(t)(x) =

1

M

M
∑

k=1

δXk
t
(dx),

Selection mechanism favors replicas sampling lower virtual works →

’self-organization’ to keep closer to a quasi-static transformation

Convergence properties as M → ∞
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The IPS algorithm
Process 2 Initial distribution (X1

0 , . . . , XM
0 ) ∼ dµ0(x), times τ

k,b
1 , τ

k,d
1 ∼ E(1), initial jump times

T
k,d
0 = 0, T

k,b
0 = 0.

Between each jump time, evolve independently the replicas Xk
t according to the chosen

dynamics;

At random times T
k,d
n+1 defined by

β

Z T
k,d
n+1

T
k,d
n

„

FM
λ(s) −

∂Hλ(s)

∂λ
(Xk

s )

«−

λ′(s) ds = τ
k,d
n+1,

pick at random l ∈ {1, . . . , M}, replace k-th replica by the l-th. New time
τ

k,d
n+2 ∼ E(1) [death];

At random times T
k,b
n+1 defined by

β

Z T
k,b
n+1

T
k,b
n

„

FM
λ(s) −

∂Hλ(s)

∂λ
(Xk

s )

«+

λ′(s) ds = τ
k,b
n+1,

pick at random l ∈ {1, . . . , M}, replace l-th replica by the k-th. New time τ
k,b
n+2 ∼ E(1) [birth].
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Some numerical results
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Computable quantities and estimators

IPS generates canonical distributions for all λ(t), and allows computation
of all free-energy differences in this range

Jarzynski’s estimators (rely on the tails of the work distributions)

∆F̂J = −
1

β
ln

(

1

M

M
∑

k=1

e−βW k
1

)

, ∆F̂ ′
J =

∫ T

0

F
Mind

λ(t) λ′(t) dt,

where F
Mind

λ(t) = µMind

λ(t) (
∂Hλ(t)

∂λ
) with µMind

λ(t) (dx) =

PM
k=1 δ

Xk
t
(dx) e−βW i

t

P

M
k=1 e−βW i

t
.

IPS estimator (e−β∆F̂IPS unbiased estimator of e−β∆F , ∆F̂IPS

asymptotically normal with bias and variance of order M−1)

∆F̂IPS =

∫ T

0

FM
λ(t)λ

′(t) dt.
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Computation of canonical distributions

Empirical probability distribution of the dihedral angles (φ1, φ2) of the pentane molecule, for

T = 300 K (Left) and T ′ = 150 K (Right) [Importance sampling, M = 109 points].

Empirical probability distributions at T = 150 K, generated with simulated annealing (Left), and

IPS (Right), starting from T = 300 K, with sample size M = 10, 000.
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Computing free-energy differences: Widom insertion (Langevin dynamics)

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−5 0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

Left: µIPS = 1.37 (blue), µSA = 1.32 (red), τ = 1. Right: µIPS = 1.35, µSA = 1.29 (τ = 2).

Reference (Zwanzig, 108 points): µex = 1.31.
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Left: µIPS = 1.29, µSA = 1.33 (τ = 5). Right: µIPS = 1.34, µSA = 1.36 (τ = 10).
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