Local Exchange Potentials: A Mathematical Viewpoint
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Hartree-Fock exchange operator

e Density matrix y¢(r, r Z ¢;(r)p;(r"), electronic density pg(r) = yo(r,r);

e Hatree-Fock mmlmlzatlon problem
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L €1 < €9 < - < ey are the lowest N eigenvalues of F;

e Hartree-Fock equations <
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e Hartree-Fock exchange operator (Kg¢)(r) = —/ Tbm rl‘) o(r') dr’.
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Approximate exchange potentials as results of minimization problems

Consider ® = (¢;)1<ij<n € Xn. How to approximate K¢?

Slater exchange potential [10]

1 |2
e Definition. Introduced by Slater as some average potential vg) g(r) = — / Po(r,x />’ dr’.
’ po(r) Jrs [r—r

e Variational definition. If pg > 0 almost everywhere, the Slater potential ,U;I; g 18 the unique minimizer of
the variational problem
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e Asymptotic behavior. Since —/ "0CD( 2‘ dr’ < U;I;S(r) < 0, the potential U;DS — 0 when |r| — +o0.
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If the orbitals ¢; are radial or there exists 1 < p < 3/2 < ¢ < 2 such that |r|pp € LP(R?) N LY(R?3), the
1 1
asymptotic behavior of the Slater potential is fvg) g(r) = _W + 0 (‘ )
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for radial orbitals for a single nucleus of charge Z > N (fixed point strategy inspired by [6]).

Effective Local Potential (ELP) [11, 4]
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e Definition. Definition through the minimization of v — Sg (v S‘ Y
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(v — Ko)| ¢a)|” (see [11]),

which can be reformulated in a more intrinsic way as
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where |[A, B = AB — BA denotes the commutator of the operators A and B.
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e Analytical expression. Any solution v - g p to the ELP minization problem satisfies
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and the symmetric matrix M = [<¢i‘vg},ELP‘¢j>} is solution to the linear system
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Besides, if the orbitals ¢; are continuous and if the open set R? \ ,0_1( 0) is connected, then v . ELP is uniquely

defined, up to an additive constant, on the set where pg > 0, and can be given arbitrary values on pg 1(O).

Optimized Effective Potential

Original formulation of the OEP problem

e Formal definition of the OEP potential [9, 12]. Consider the Slater determinant based on ®" =
(qﬁw, L @‘Qf/), which are the first IV eigenfunctions of Hyy, and minimize the Hartree-Fock energy EHF(CDW):
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e [ixchange part of a potential W defined as vg/ =W — Ve — pyy * 75, Where vy = yow;
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e Well-posed reformulation of the OEP problem [1]: eliminate W from the formulation of the problem

Rigorous formulation of the integral OEP equation

Assumption 1 Potential W & LQ(R3)+LOO(]R3) Hamziltonian operator Hyy bounded from below, defined on
the domain D(Hyy) = HX(R?Y), self-adjoint on L*(R3) with at least N eigenvalues (including multiplicities)

below 1ts essential spectrum, gap
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between €N (the N-th eigenvalue of Hyy ) and GN_H (the (N +1)-th eigenvalue of Hyy, or the bottom of the
essential spectrum if Hyy has only N eigenvalues below its essential spectrum,).
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Theorem 2 (Integral OEP equation) Let W be a local potential such that Assumption 1 holds true.
Then, forw € B,y = {we LYR3) N L®R3), ||lw|lj1q70 < n/2}

TW+w = arginf {TI‘ (HW+2U7)7 S PN} — X(—oo,eF](HW—I—’w)v

with ep = (6% + GJV\I[/H)/Q. There exists a unique function 0"V € L*(R3) + L®(R3) such that
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In particular, the function w EHF(VWHU) 1s Fréchet differentiable on B, . Denoting by RV(z) =

FY vy ) = B (1)

(2 — HW)_1 the resolvent of Hyy and by C a regqular closed contour enclosing the lowest N eigenvalues of
Hyy, the function o' is the unique fonction of L*(R3) + L>®(R3) such that for all w € LYR3) N L®(R3),
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A necessary condition for a local potential W satisfying Assumption 1 to be an OEP 1is QW =0 a.e.

Approximations of the integral OEP equation

e Discrete spectrum. When the spectrum of Hyy is purely discrete: RO
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Usual (formal) OEP optimality condition recovered S: S: AT gb?/ (r) o7 (r) =0
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Nothing known on existence/uniqueness of solutions.
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e KLI potential [5]. Approximation Z Z (gbZW | Kpw — ’U;I;VIV(LI | gb}/v> gbZW(r) gbyv(r) = (.
i=1 jEN*, j#i
The KLI potential is the unique solution, up to an additive constant, to the minimization problem
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e CEDA potential [2]. Approximation R(z) = (z — Hyy) ' ~ R%EDA(Z) = (2 — IL[%/EDA)_1 with

HGFPA = eygw + (1 — ygw)

where € and € lay respectively inside and outside C. Coincides with local Hartree-Fock (LHF') exchange poten-
tial [8] and with the self-consistent effective local potential |4].

References

A. BEN-HAJ-YEDDER, E. CANCES, AND C. LE BRis, Diff. Int. Eq. 17 (2004) 331-368.
O. V. GRITSENKO AND E. J. BAERENDS, Phys. Rev. A 64 (2001) 042506.
S. IvANOvV AND M. LEVY, J. Chem. Phys. 119(14) (2003) 7087-7093.

A. F. IzmAvyLov, V. N. STAROVEROV, G. SCUSERIA, E. R. DAVIDSON, (. STOLTZ, AND
E. CANCES, J. Chem. Phys. 126 (2007) 084107.

J. B. KRIEGER, Y. L1, AND G. J. IAFRATE, Phys. Rev. A 45(1) (1992) 101-126.
P.-L. Lions, Commun. Math. Phys. 109 (1987) 33-97.

M. REED AND B. SIMON, Methods of Modern Mathematical Physics (Academic Press).
F. DELLA SALA AND A. GORLING, J. Chem. Phys. 115(13) (2001) 5718-5731.

R. T. SHARP AND G. K. HORTON, Phys. Rev. 90 (1953) 317.

10] J. C. SLATER, Phys. Rev. 81 (1951) 385-390.

11] V. N. STAROVEROV, G. SCUSERIA, AND E.R. DAVIDSON, J. Chem. Phys. (2006).
12| J. D. TALMAN AND W. F. SHADWICK, Phys. Rev. A 14(1) (1976) 36-40.

oo o

S RS EI)

Some important mathematical definitions
e Hilbert-Schmidt operator. T € L£(L*(R3)) is Hilbert-Schmidt if and only if there exists a function of
1/2
L?(R? x R3) such that (Tu)(r) = / T(r,r’)u(r')dr'. In this case, [|T]|g, = (/ T (r,r")|? dr dr’) .
R3 R3xR3

e Self-adjoint operator. The adjoint of T' is the unique linear operator on LQ(Rg) defined by

D(T™) = {u e LA(R?) | Ju, € LAR?) such that (v, w) = (u, Tw) Yw € D(T)}
T*u = vy, (v is uniquely defined since D(T') is dense in L(R3)).

The operator T is called self-adjoint if T* =T (i.e. if D(T*) = D(T) and Yu € D(T') = D(T™*), T"u = Tu).

e Resolvent set and spectrum. If z — T is an invertible operator from D(T) to L*(R3), it can be proved
that R(z) = (z — T) ! defines a continuous linear operator on L?(R?) (with range D(T)). The set p(T) =
{z € C|z—T is an invertible operator from D(T) to LQ(RB)} is called the resolvent set of T'. The spectrum
of T is the set o(T') = C\ p(T).

The spectrum o(T') of a self-adjoint operator can be partitioned as o(T) = oq(T") U 0ess(T'), where o4(T) is
the set of all the isolated eigenvalues of T' of finite multiplicity, and where cegs(T') = o(T) \ oq(T').

Example: 0ess ( 1A Zk 17 ZRH) 0, 4+00), 04 (—%A — Zéil ﬁ) ={ep,...,€n,...}, €n — 0.




