

Adaptive Importance Sampling Strategies

Tony Lelievre, Mathias Rousset, <u>Gabriel Stoltz</u>

The metastability problem

- Applications in computational physics and Bayesian statisitics, when some high dimensional probability measure has to be sampled
- Measure to be sampled $\mu(dq) = Z^{-1} e^{-\beta V(q)} dq$ with $Z = \int_{\mathcal{D}} e^{-\beta V(q)} dq$
- For an ergodic dynamics such as $dq_t = -\nabla V(q_t) dt + \sqrt{\frac{2}{\beta}} dW_t$, ensemble averages can be approximated by trajectorial averages:

$$\langle A \rangle = \int_{\mathcal{D}} A(q) \,\mu(dq) = \lim_{T \to +\infty} \frac{1}{T} \int_0^T A(q_t) \,dt$$
 (1)

- Although the convergence (1) is theoretically ensured, it can be very slow from a numerical viewpoint
- Metastability arises from free-energy barriers, which can have either energetic or entropic origins

Free-energy biased sampling

- Consider a function $\xi: \mathcal{D} \to \mathbb{R}^m \ (m \ll \dim(\mathcal{D}))$ such that $\xi(q_t)$ is some slowly evolving degree of freedom (a notion to be precised...)
- Marginal equilibrium distribution (m = 1 to simplify)

$$\mu^{\xi}(dz) = Z^{-1} \int_{\Sigma(z)} e^{-\beta V(q)} \, \delta_{\xi(q)-z}(dq) \, dz = Z^{-1} \int_{\Sigma(z)} e^{-\beta V(q)} \, \frac{d\sigma_{\Sigma(z)}(dq)}{|\nabla \xi(q)|} \, dz = e^{-\beta F(z)} \, dz,$$

where $\Sigma(z) = \{q \in \mathcal{D} | \xi(q) = z \}$ is a submanifold of \mathcal{D}

- Conditional equilibrium distribution $\nu^{\xi}(dq \mid z) = \frac{e^{-\beta V(q)} |\nabla \xi(q)|^{-1} \sigma_{\Sigma(z)}(dq)}{\int_{\Sigma(z)} e^{-\beta V} |\nabla \xi|^{-1} d\sigma_{\Sigma(z)}}$
- Mean force $\nabla F(z) = \int_{\Sigma(z)} f(q) \, \nu^{\xi}(dq \mid z)$ with $f = \frac{\nabla \xi \cdot \nabla V}{|\nabla \xi|^2} \beta^{-1} \text{div} \left(\frac{\nabla \xi}{|\nabla \xi|^2}\right)$
- When the potential is biased by the free-energy, $\mathcal{V}(q) = V(q) F(\xi(q))$, the new marginal distribution is constant = uniform sampling in ξ and the metastability is removed in this direction!
- Application: entropic barrier

(1) Potential for which entropic barriers have to be overcome (0 in the region enclosed by the curve, $+\infty$ outside) and (2) associated free energy profile when $\xi(x,y) = x$. Typical trajectories for a simple Metropolis random walk (3) and a dynamics biased by the free energy (4).

Adaptive methods: A general framework and consistency results [5]

- Bottom line of adaptive methods: add a biasing term, depending on ξ only, and adapt it on-the-fly in order to reach a uniform distribution of $\xi(q_t)$.
- The resulting potential is $\mathcal{V}_t = V F_t \circ \xi$, and rules to update the bias are needed
- Denote by $\psi(t,q)$ the law of the process $dq_t = -\nabla(V F_t \circ \xi)(q_t) dt + \sqrt{\frac{2}{\beta}} dW_t$
- General update formula for Adaptive Biasing Potential method [4, 8] using the observed free energy

$$\frac{dF_t(z)}{dt} = \mathcal{F}_t\Big(F_{\text{obs}}(t,z)\Big), \qquad F_{\text{obs}}(t,z) = -\beta^{-1} \ln\left(\int_{\Sigma(z)} \psi(t,\cdot) \frac{d\sigma_{\Sigma(z)}}{|\nabla \xi|}\right)$$

• General update formula for Adaptive Biasing Force method [1, 2] using the observed mean force

$$\frac{d\Gamma_t(z)}{dt} = \mathcal{G}_t\Big(\Gamma_{\text{obs}}(t,z) - \Gamma_t(z)\Big), \qquad \Gamma_{\text{obs}}(t,z) = \int_{\Sigma(z)} f \,d\psi^{\xi}(t,\cdot|z)$$

Possibly, set $\Gamma_t(z) = \Gamma_{\rm obs}(t,z)$

- If some equilibrium is reached and the updating functions \mathcal{F}_t and \mathcal{G}_t are strictly increasing (with $\mathcal{G}_t(0) = 0$), then $F_{\infty} = F + c$ and $\Gamma_{\infty} = \nabla F_{\infty}$
- Issues with the case m > 1: ABF is not a gradient dynamics

References

- [1] E. Darve and A. Pohorille, Calculating free energies using average force, J. Chem. Phys. 115(20) (2001) 9169–9183
- [2] J. HÉNIN AND C. CHIPOT, Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys. **121**(7) (2004) 2904–2914
- [3] B. Jourdain, T. Lelièvre and R. Roux, Existence, uniqueness and convergence of a particle approximation for the adaptive biasing force process, In preparation.
- [4] A. LAIO AND M. PARINELLO, Escaping free-energy minima, *Proc. Natl. Acad. Sci. U.S.A* **99** (2002) 12562-12566.
- [5] T. Lelièvre, M. Rousset and G. Stoltz, Computation of free energy profiles with parallel adaptive dynamics, J. Chem. Phys. 126 (2007) 134111
- [6] T. Lelièvre, M. Rousset and G. Stoltz, Long-time convergence of an adaptive biasing force method, Nonlinearity 21 (2008) 1155-1181
- [7] P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics, *J. Phys. Chem. B* **110**(8) (2006) 3533–3539
- [8] F. G. Wang and D. P. Landau, Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, *Phys. Rev. E* **64**(5) (2001) 056101

Convergence of the Adaptive Biasing Force method [6]

• Dynamics
$$\begin{cases} dq_t = -\nabla \left(V - F_t \circ \xi - \beta^{-1} \ln(|\nabla \xi|^{-2})\right) (q_t) |\nabla \xi|^{-2} (q_t) dt + \sqrt{2\beta^{-1}} |\nabla \xi|^{-1} (q_t) dW_t, \\ F'_t(z) = \mathbb{E}\left(f(X_t) \mid \xi(X_t) = z\right) = \int_{\Sigma(z)} f(q) d\psi^{\xi}(t, z) \end{cases}$$

• Existence and uniqueness of the solution [3]

- Expected longtime limits: $F_t(z) \to F(z), \ \psi_t(q) \to \psi_\infty(q) = e^{-\beta(V(q) F(\xi(q)))}$
- Proof using entropy estimates. The relative entropy of μ with respect to ν is $H(\mu|\nu) = \int \ln\left(\frac{d\mu}{d\nu}\right) d\mu$. Then the total entropy can be decomposed as

$$E(t) = H(\psi(t, \cdot) \mid \psi_{\infty}) = E_M(t) + E_m(t),$$

where the macroscopic and microscopic entropies are respectively

$$E_M(t) = H\left(\psi^{\xi}(t,\cdot) \mid \psi^{\xi}_{\infty}\right), \qquad E_m(t) = \int_{\mathcal{M}} e_m(t,z) \, \psi^{\xi}(t,z) \, dz \qquad e_m(t,z) = H\left(\nu^{\xi}(t,\cdot \mid z) \mid \nu^{\xi}(\infty,\cdot \mid z)\right)$$

- The marginal density satisfies a simple diffusion equation $\partial_t \psi^{\xi} = \beta^{-1} \partial_{zz} \psi^{\xi}$, therefore $E_M \to 0$
- Control of the microscopic entropy when assuming some uniform ergodicity for the dynamics at fixed $\xi(q) = z$ (logarithmic Sobolev inequality)
- The overall rate of convergence of the method is limited by the rate of convergence of the projected dynamics, so that the metastability in the ξ direction is removed

Application to Statistical Physics: Mulitple replica & Selection

• Model dimer in a solvent (double-well potential), solvent particles interacting through the purely repulsive potential (truncated Lennard-Jones):

$$V_{\text{WCA}}(r) = \begin{cases} 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] + \epsilon & \text{if } r \leq \sigma, \\ 0 & \text{if } r > \sigma, \end{cases} \qquad V_{\text{dimer}}(r) = h \left[1 - \frac{(r - \sigma - w)^{2}}{w^{2}} \right]^{2}$$

- Two energy minima (compact state $r = r_0 = 2^{1/6}\sigma$, stretched state $r = r_0 + 2w$), energy barrier h
- Reaction coordinate = dimer bond length: $\xi(q) = \frac{|q_1 q_2| r_0}{2}$
- Implementation with multiple replicas [7] and selection procedure with the fitness function $S = c \frac{\partial_{zz} \psi_t^{\xi}}{\psi_t^{\xi}}$

Left: Dynamics with and without bias. Right: Selection procedure with increasing selection strength c.

Application to Bayesian statistics (Monte-Carlo ABF)

- ullet Hidalgo stamp problem: the thickness of $N_{\mathrm{data}}=485$ stamps are measured, and the corresponding histogram is approximated by a mixture of N Gaussians.
- Parameters $x = (q_1, \dots, q_{N-1}, \mu_1, \dots, \mu_N, v_1, \dots, v_N) \in \mathcal{S}_{N-1} \times [\mu_{\min}, \mu_{\max}]^N \times [v_{\min}, +\infty) \subset \mathbb{R}^{3N-1}$, with $\mathcal{S}_{N-1} = \{(q_1, \dots, q_{N-1}) \mid 0 \le q_i \le 1, \ q_1 + \dots + q_{N-1} \le 1\}$
- The corresponding mixture is $f(y \mid x) = \sum_{i=1}^{N} q_i \sqrt{\frac{v_i}{2\pi}} \exp\left(-\frac{v_i}{2}(y \mu_i)^2\right)$, where $q_N = 1 \sum_{i=1}^{N-1} q_i$
- The likelihood of observing the data $\{y_i, 1 \le i \le N_{\text{data}}\}$ is $\Pi(y \mid x) = \prod_{J=1}^{N_{\text{data}}} f(y_d \mid x) \propto e^{-\beta V_{\text{likelihood}}}$
- Potential $V = V_{\text{prior}} + V_{\text{likelihood}}$ such that the probability of a given configuration is proportional to $\exp(-V)$
- A simple Metropolis random-walk is metastable
- Use a Monte-Carlo ABF dynamics where $\xi(x) = q_1$ is the reaction coordinate.
- Principle of the method = update the average force experienced in the q_1 direction and obtain the free-energy bias by integrating the approximated mean force

Left: Histogram of the data, and fit with several gaussian modes. Middle: Biasing potential obtained from a Monte-Carlo ABF dynamics. Right: Evolution of the averages μ_1 , μ_2 and μ_3 for a biased dynamics