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The metastability problem

e Applications in computational physics and Bayesian statisitics, when some high dimensional probability measure
has to be sampled

e Measure to be sampled p(dg) = Z~1 e PV(a) dg with Z = / e~ PV(a) dq
D
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e For an ergodic dynamics such as dgy = —VV (q¢) dt + \/%th, ensemble averages can be approximated by

trajectorial averages:
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e Although the convergence (1) is theoretically ensured, it can be very slow from a numerical viewpoint

e Metastability arises from free-energy barriers, which can have either energetic or entropic origins

Free-energy biased sampling

e Consider a function & : D — R (m < dim(D)) such that &(q¢) is some slowly evolving degree of freedom (a
notion to be precised...)

e Marginal equilibrium distribution (m = 1 to simplify)
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where X(2) = {¢ €D |§(q) = z } is a submanifold of D
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e Conditional equilibrium distribution Vg(dq | 2) =

V¢ V¢

e When the potential is biased by the free-energy, V(q) = V(q) — F(£(q)), the new marginal distribution is
constant = uniform sampling in & and the metastability is removed in this direction!
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o Mean force  VF(2) = /( >f(q) Vf(dq | z)  with f= VE-VV o 51div< V& >
>z

e Application: entropic barrier
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(1) Potential for which entropic barriers have to be overcome (0 in the region enclosed by the curve, +o0o outside)
and (2) associated free energy profile when &(x,y) = x. Typical trajectories for a simple Metropolis random
walk (3) and a dynamics biased by the free energy (4).

Convergence of the Adaptive Biasing Force method [6]

dgy = =V(V = Fro& =37 (Ve ) (a0) [VE|(ar) dt + /26119~ (@) aWs,
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e Dynamics

e Fixistence and uniqueness of the solution 3]
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e Fixpected longtime limits: Fi(z) — F(2), Yt(q) — Yoo(q) = e~ V() =F(&(q)))
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e Proof using entropy estimates. The relative entropy of pu with respect to v is H(u|v) = / In (diL) dp. Then
%

the total entropy can be decomposed as

E(t) = H(Y(L, ) | hoo) = Epf(t) + Eml(t),

where the macroscopic and microscopic entropies are respectively
Ea(t) = HWS () [0%),  Eml(t) = /M em(t,2)08(t,2)dz  eml(t,2) = H(VA(t,- | 2) | v5(00, - | 2))

e The marginal density satisfies a simple diffusion equation 5’75105 = ﬁ—lazzwf, theretfore Fyy — 0

e Control of the microscopic entropy when assuming some uniform ergodicity for the dynamics at fixed £(q) = 2
(logarithmic Sobolev inequality)

e The overall rate of convergence of the method is limited by the rate of convergence of the projected dynamics,
so that the metastability in the & direction is removed

Adaptive methods: A general framework and consistency results [5]

e Bottom line of adaptive methods: add a biasing term, depending on & only, and adapt it on-the-fly in order to
reach a uniform distribution of &(qy).

e The resulting potential is Vy =V — Fy o £, and rules to update the bias are needed
e Denote by 1(t, q) the law of the process dgy = —V(V — Fr o &)(q) dt + \/%th

e General update formula for Adaptive Biasing Potential method [4, 8] using the observed free energy
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e General update formula for Adaptive Biasing Force method |1, 2] using the observed mean force

dl'(z)
dt

= Gi(Tunlt2) = Tla). Toeltin) = [ W)

Possibly, set T'4(z) = ['g14(t, 2)

e [f some equilibrium is reached and the updating functions F; and Gy are strictly increasing (with G¢(0) = 0),

e [ssues with the case m > 1: ABF is not a gradient dynamics

Application to Statistical Physics: Mulitple replica & Selection

e Model dimer in a solvent (double-well potential), solvent particles interacting through the purely repulsive
potential (truncated Lennard-Jones):
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e T'wo energy minima (compact state r = rg = 21/65 stretched state r = ro + 2w), energy barrier h
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e Reaction coordinate = dimer bond length: £(q) = 4 2612‘ L
w
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e [mplementation with multiple replicas [7] and selection procedure with the fitness function S = ¢ :
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Left: Dynamics with and without bias. Right: Selection procedure with increasing selection strength c.

References

1] E. DARVE AND A. POHORILLE, Calculating free energies using average force, J. Chem. Phys. 115(20)
(2001) 9169 9183

2] J. HENIN AND C. CHIPOT, Overcoming free energy barriers using unconstrained molecular dynamics sim-
ulations, J. Chem. Phys. 121(7) (2004) 2904-2914

3] B. JourDAIN, T. LELIEVRE AND R. ROUX, Existence, uniqueness and convergence of a particle approx-
imation for the adaptive biasing force process, In preparation.

4] A. LA1O AND M. PARINELLO, Escaping free-energy minima, Proc. Natl. Acad. Sci. U.S.A 99 (2002)
12562-12566.

5] T. LELIEVRE, M. ROUSSET AND G. STOLTZ, Computation of free energy profiles with parallel adaptive
dynamics, J. Chem. Phys. 126 (2007) 134111

6] T. LELIEVRE, M. ROUSSET AND G. STOLTZ, Long-time convergence of an adaptive biasing force method,
Nonlinearity 21 (2008) 1155-1181

7] P. RAITERI, A. LA10, F. L. GERVASIO, C. MICHELETTI, AND M. PARRINELLO, Efficient reconstruc-
tion of complex free energy landscapes by multiple walkers metadynamics, J. Phys. Chem. B 110(8) (2006)

3033-3939

8] F. G. WANG AND D. P. LANDAU, Determining the density of states for classical statistical models: A
random walk algorithm to produce a flat histogram, Phys. Rev. E 64(5) (2001) 056101

Application to Bayesian statistics (Monte-Carlo ABF)

e Hidalgo stamp problem: the thickness of Ny, = 485 stamps are measured, and the corresponding histogram

is approximated by a mixture of N Gaussians.
N 3N —1
OParameters L= (Q17°"7QN—17M17"'7:uN7/017"'7/UN) S SN—l X [Uminaﬂmax] X [Umin,—l—OO) C R )

with Sy1 = {<(117--->C]N—1> 0<¢ <1, q1+...qv-1 < 1}
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e The corresponding mixture is f(y|z) = Z Qi A /;—;exp (—%(y - ,LLZ‘)Q) , where gy =1 — Zf\i;l q;
1=1
Ndata
e The likelihood of observing the data {yz-, 1 <1< Ndata} is I(y|x) = H flyg|z) o o~ Vlikelinood
d=1

e Potential V' = V,,1ior + Viikelihood Such that the probability of a given configuration is proportional to exp(—V/)
e A simple Metropolis random-walk is metastable
e Use a Monte-Carlo ABF dynamics where &(x) = ¢y is the reaction coordinate.

e Principle of the method = update the average force experienced in the g; direction and obtain the free-energy
bias by integrating the approximated mean force
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Left: Histogram of the data, and fit with several gaussian modes. Middle: Biasing potential obtained from a
Monte-Carlo ABF dynamics. Right: Evolution of the averages 11, 1o and ps for a biased dynamics




