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The metastability problem

• Applications in computational physics and Bayesian statisitics, when some high dimensional probability measure
has to be sampled

• Measure to be sampled µ(dq) = Z−1 e−βV (q) dq with Z =

∫

D
e−βV (q) dq

• For an ergodic dynamics such as dqt = −∇V (qt) dt +

√

2

β
dWt, ensemble averages can be approximated by

trajectorial averages:

〈A〉 =

∫

D
A(q)µ(dq) = lim

T→+∞

1

T

∫ T

0
A(qt) dt (1)

• Although the convergence (1) is theoretically ensured, it can be very slow from a numerical viewpoint

• Metastability arises from free-energy barriers, which can have either energetic or entropic origins

Free-energy biased sampling

• Consider a function ξ : D → R
m (m≪ dim(D)) such that ξ(qt) is some slowly evolving degree of freedom (a

notion to be precised...)

• Marginal equilibrium distribution (m = 1 to simplify)

µξ(dz) = Z−1
∫

Σ(z)
e−βV (q) δξ(q)−z(dq) dz = Z−1

∫

Σ(z)
e−βV (q)

dσΣ(z)(dq)

|∇ξ(q)|
dz = e−βF (z) dz,

where Σ(z) =
{

q ∈ D
∣

∣ξ(q) = z
}

is a submanifold of D

• Conditional equilibrium distribution νξ(dq | z) =
e−βV (q) |∇ξ(q)|−1 σΣ(z)(dq)
∫

Σ(z)
e−βV |∇ξ|−1 dσΣ(z)

• Mean force ∇F (z) =

∫

Σ(z)
f (q) νξ(dq | z) with f =

∇ξ · ∇V

|∇ξ|2
− β−1div

(

∇ξ

|∇ξ|2

)

• When the potential is biased by the free-energy, V(q) = V (q) − F (ξ(q)), the new marginal distribution is
constant = uniform sampling in ξ and the metastability is removed in this direction!

• Application: entropic barrier
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(1) Potential for which entropic barriers have to be overcome (0 in the region enclosed by the curve, +∞ outside)
and (2) associated free energy profile when ξ(x, y) = x. Typical trajectories for a simple Metropolis random
walk (3) and a dynamics biased by the free energy (4).

Adaptive methods: A general framework and consistency results [5]

• Bottom line of adaptive methods: add a biasing term, depending on ξ only, and adapt it on-the-fly in order to
reach a uniform distribution of ξ(qt).

• The resulting potential is Vt = V − Ft ◦ ξ, and rules to update the bias are needed

• Denote by ψ(t, q) the law of the process dqt = −∇(V − Ft ◦ ξ)(qt) dt +
√

2
β dWt

• General update formula for Adaptive Biasing Potential method [4, 8] using the observed free energy

dFt(z)

dt
= Ft

(

Fobs(t, z)
)

, Fobs(t, z) = −β−1 ln

(

∫

Σ(z)
ψ(t, ·)

dσΣ(z)

|∇ξ|

)

• General update formula for Adaptive Biasing Force method [1, 2] using the observed mean force

dΓt(z)

dt
= Gt

(

Γobs(t, z) − Γt(z)
)

, Γobs(t, z) =

∫

Σ(z)
f dψξ(t, ·|z)

Possibly, set Γt(z) = Γobs(t, z)

• If some equilibrium is reached and the updating functions Ft and Gt are strictly increasing (with Gt(0) = 0),
then F∞ = F + c and Γ∞ = ∇F∞

• Issues with the case m > 1: ABF is not a gradient dynamics

References

[1] E. Darve and A. Pohorille, Calculating free energies using average force, J. Chem. Phys. 115(20)
(2001) 9169–9183

[2] J. Hénin and C. Chipot, Overcoming free energy barriers using unconstrained molecular dynamics sim-
ulations, J. Chem. Phys. 121(7) (2004) 2904–2914
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Convergence of the Adaptive Biasing Force method [6]

• Dynamics















dqt = −∇
(

V − Ft ◦ ξ − β−1 ln(|∇ξ|−2)
)

(qt) |∇ξ|
−2(qt) dt +

√

2β−1|∇ξ|−1(qt) dWt,

F ′
t(z) = E

(

f (Xt)
∣

∣

∣
ξ(Xt) = z

)

=

∫

Σ(z)
f (q) dψξ(t, z)

• Existence and uniqueness of the solution [3]

• Nonlinear PDE on the law of qt:







































∂tψ = div

(

∇
(

V − Ft ◦ ξ
)

ψ + β−1∇ψ

|∇ξ|−2

)

,

F ′
t(z) =

∫

Σ(z)
f |∇ξ|−1ψ(t, ·)dσΣ(z)

∫

Σ(z)
|∇ξ|−1ψ(t, ·)dσΣ(z)

.

• Expected longtime limits: Ft(z) → F (z), ψt(q) → ψ∞(q) = e−β(V (q)−F (ξ(q)))

• Proof using entropy estimates. The relative entropy of µ with respect to ν is H(µ|ν) =

∫

ln

(

dµ

dν

)

dµ. Then

the total entropy can be decomposed as

E(t) = H(ψ(t, ·) |ψ∞) = EM (t) + Em(t),

where the macroscopic and microscopic entropies are respectively

EM (t) = H
(

ψξ(t, ·)
∣

∣ψ
ξ
∞
)

, Em(t) =

∫

M
em(t, z)ψξ(t, z) dz em(t, z) = H

(

νξ(t, · | z)
∣

∣ νξ(∞, · | z)
)

• The marginal density satisfies a simple diffusion equation ∂tψ
ξ = β−1∂zzψ

ξ, therefore EM → 0

• Control of the microscopic entropy when assuming some uniform ergodicity for the dynamics at fixed ξ(q) = z
(logarithmic Sobolev inequality)

• The overall rate of convergence of the method is limited by the rate of convergence of the projected dynamics,
so that the metastability in the ξ direction is removed

Application to Statistical Physics: Mulitple replica & Selection

• Model dimer in a solvent (double-well potential), solvent particles interacting through the purely repulsive
potential (truncated Lennard-Jones):

VWCA(r) =







4ε

[

(σ

r

)12
−
(σ

r

)6
]

+ ǫ if r ≤ σ,

0 if r > σ,
Vdimer(r) = h

[

1 −
(r − σ − w)2

w2

]2

• Two energy minima (compact state r = r0 = 21/6σ, stretched state r = r0 + 2w), energy barrier h

• Reaction coordinate = dimer bond length: ξ(q) =
|q1 − q2| − r0

2w

• Implementation with multiple replicas [7] and selection procedure with the fitness function S = c
∂zzψ

ξ
t

ψ
ξ
t
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Left: Dynamics with and without bias. Right: Selection procedure with increasing selection strength c.

Application to Bayesian statistics (Monte-Carlo ABF)

• Hidalgo stamp problem: the thickness of Ndata = 485 stamps are measured, and the corresponding histogram
is approximated by a mixture of N Gaussians.

• Parameters x = (q1, . . . , qN−1, µ1, . . . , µN , v1, . . . , vN ) ∈ SN−1 × [µmin, µmax]
N × [vmin,+∞) ⊂ R

3N−1,

with SN−1 =
{

(q1, . . . , qN−1)
∣

∣

∣
0 ≤ qi ≤ 1, q1 + . . . qN−1 ≤ 1

}

• The corresponding mixture is f (y |x) =

N
∑

i=1

qi

√

vi
2π

exp
(

−
vi
2

(y − µi)
2
)

, where qN = 1 −
∑N−1
i=1 qi

• The likelihood of observing the data
{

yi, 1 ≤ i ≤ Ndata

}

is Π(y |x) =

Ndata
∏

d=1

f (yd |x) ∝ e−βVlikelihood

• Potential V = Vprior + Vlikelihood such that the probability of a given configuration is proportional to exp(−V )

• A simple Metropolis random-walk is metastable

• Use a Monte-Carlo ABF dynamics where ξ(x) = q1 is the reaction coordinate.

• Principle of the method = update the average force experienced in the q1 direction and obtain the free-energy
bias by integrating the approximated mean force
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Left: Histogram of the data, and fit with several gaussian modes. Middle: Biasing potential obtained from a
Monte-Carlo ABF dynamics. Right: Evolution of the averages µ1, µ2 and µ3 for a biased dynamics


