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Outline of the talk

o Computation of static properties
s The sampling problem
s Presentation of some mixed stochastic/molecular dynamics methods

o Computation of free energy differences
s Static methods (thermodynamic integration)
s Out of equilibrium dynamics (Jarzynski)
s Equilibration of the out of equilibrium dynamics
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Sampling the canonical ensemble




Description of a classical system

K

© o o o @

Microscopic description of a classical system (/N particles):

(Q7p) — (q17'°'7QN7 pla"'apN) ET*M

Usually, T* M = R3Y x R3N or T3V x R3V

More complicated situations can be considered... (submanifolds)
Positions ¢ (configuration)

Momenta p = M ¢ (M mass matrix)

Energy
N

qu

..,qN)

All the physics is contained in V
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Computation of observables (static)

o Equilibrium thermodynamic properties:

(4) = /M on A(q, p) du(q, p)

# Choice of a thermodynamic ensemble = choice of a measure d:
s microcanonical (NVE, constant energy) ;
s canonical (NVT, “constant temperature”) : Boltzmann measure

1

ZNVT

dunyr = exp(—BH(q,p))dqdp, B =1/(ksT)

s Other choices are possible (grand-canonical, constant pressure,...)

s Certain properties can not be computed this way (free energy,
entropy)!
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Problem and methods

® A(q,p) and du(q, p) are given by physics
# Question: how to compute (A) = /A(q,p) du(q,p) ?

» Difficulty: large dimension: (¢,p) € M x R3YN c R with N > 10°

» Different methods:

s purely stochastic methods: generate random points (q,,, p,,) 1.1.d.
according to du and resort to the Law of Large Numbers:

irA(qn,p”) = (4)

n=1

1
lim
Niter—00 IVijter

s Markov chain based techniques: consider one or several realizations
(qn, pn) Of a Markov chain letting du invariant + "LLN".

» (extended) molecular dynamics methods (Nosé-Hoover and beyond).
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The Brownian motion

® The process (W;),>¢ Is a standard brownian motion if for
0=ty <ty <---<ty, the random variables W;, , — W;, are independent
and distributed according to

1 w?
We = Wi ~N(0,ti01 —t;) ~ eX (_ )
tita t; ( +1 ) \/27T(ti—l—1 _ tz) p 2(ti—|—1 — tz)

# Euler-Maruyama discretization of the SDE dX; = odW;:

e = 2" + oV ALU™,

where (U™"),>¢ are i.i.d. standard gaussian random variables.

» Notice that this implies =™ ~ N (0, nAt) (diffusive behaviour)
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Overdamped Langevin dynamics

o Limit M — 0 of the Langevin dynamics (see next slide!)

o SDE on the configurational part only
dqt — —VV(qt)dt + O'th,

where (W;):>0 is a standard Wiener process of dimension dN

» Canonical measure dr(q) ~ Z~te=?V(9) s invariant (steady solution of
the associated Fokker-Planck equation)

» Fluctuation/dissipation relation o = (2/3)1/?

# Euler-Maruyama discretization
" =q¢" = VV(¢") At + oVALU"

# Ergodicity at the continuous/numerical levels
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Langevin dynamics

o Hypo-elliptic SDE (noise on p only)

dgy = M~ 'p,dt
dp; = —VV(q)dt — EM p,dt + o dW,
where (W;);>o standard Wiener process of dimension dN and

fluctuation/dissipation relation o = (2¢/3)1/2.

» In this case, du(q, p) = - exp (—8H (g, p)) dqdp is an invariant measure (cf.
Fokker-Planck equation)

o Ergocity along one trajectory garanteed through irreducibility (hypoelliptic
process) + existence of an invariant measure

R Y
TlgnooT/O A(qt)dt—/MA(q)dﬂ a.s.

o Various discretizations have been proposed (BBK, Allen-Tildesley,...)
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Computation of free energy
differences




Free energy

» Free energy (not an average !) = "available phase space”

1
_ _p—-1 —BV(q)
F=-p ln( !/Me dq)

# Can be computed directly only in certain cases (ideal gas, solids at low
temperature,. . .)

» Free energy differences are easier to compute
s ’'Alchemical’ transition (external parameter in the Hamiltonian)

s Reaction coordinate (internal)
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“Alchemical” transitions

» Potential energy Vi (q1, - -.,qnN): external parameter A (temperature,
intensity of a magnetic field, Widom insertion,. . .)

# [Initial state: A = 0 — final state: A\ =1

# Free energy differences

/e—ﬁvx(Q)dq
AF(\) = - 1In | 24

/ e—BVo(a) dq
M

# Alchemical transition = particular reaction coordinate (QQ = (), q))
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The reaction coordinate case

# reaction coordinate £(q) ~ reduced description of the system in terms of a
few relevant degrees of freedom

# Potential of mean force: different definitions... Most general form

P = (77 [ VO f(q) dos. )

where the manifold ¥, = {q € M |£(q) = 2z} and Z = [ e AV (@) dq.
# |Intrinsic version f =1

» Non-intrinsic choice: f = |V&(q)| ™!

F(z)=-8"1'In (2_1/ e AV(9) 0¢(q)—= dQ)
>,

The free energy also depends on the local values of the gradient of the
reaction coordinate...
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Usual techniques to compute free-energy differences

# Thermodynamic integration®

o Free-energy perturbations®

AF(\) = -8 In <e—5(VA(Q)—Vo(CI))>O

where (-)o denotes a canonical average w.r.t. dug(q) = Z e "9 dq
— usual sampling techniques

#» Many extensions and refinements (e.g. Umbrella sampling®)

o Recent alternative: nonequilibrium dynamics®

2J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)

R. Zwanzig, J. Chem. Phys. 22, 1420 (1954)
°G.M. Torrie and J.P. Valleau, J. Comp. Phys. 23, 187 (1977)

dc. Jarzynski, Phys. Rev. E 56(5) 5018 (1997)
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Thermodynamic integration

» Free energy = integral

AF = /1 F'(N) dA =) (A — Aim1)

where the mean force iIs

—BVa(q) n
, B fJ\/l Vi(q)e dq N l oV, .
F ()\) - fj\/[ e—BVA(Q) dq o n : : O\ (Q)\)

if (¢%) is sampled according to the Boltzmann measure associated with V)

# Ergodic stochastic dynamics for a fixed value )\;, and consider a
sequence \; € [0, 1]

# Alternative: average over a single long trajectory with A varying "infinitely"
slowly (quasi-static transformation)
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Thermodynamic integration (2)

# Reaction coordinate £(q)

# Associated free energy

P = (7 [ VO f(q) dos. )

» Free energy difference
1
AF; = / Fi(2)dz
0

#» Mean force = canonical average on a submanifold

# Analytical expression not practical...

/) — VVi(g)-VE(g) 1 [ Vé(a)
Ff“‘/zz[ Ve BIVE@)] (\vaq)\)] Wse.s

with Vy =V — g~ In f and us, ¢ = ZZ_} f(q) e BV dq
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Thermodynamic integration (3)
# Projected SDE using a Lagrange multiplier formulation

2
dq.s = —VVI(q.s)ds+ \/%dWS +dr, s

where r,  is directed along V£(q. ) and is such that £(q. s) = =.

# In practice, for a fixed value z, discretization (algorithmic time step As)

2N\
Q2 =gl = VVi(gl) As + 4 55 U™ + 7 VE(qrtHD)

with 21 such that the constraint £(¢"™!) = z is satisfied.

#» Mean force = average over Lagrange multipliers

nllffoo nAs Z B +o(As)
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Nonequilibrium dynamics (alchemical case)

Why not switch X\ at an arbitrary rate?
Schedule A(t) suchthat A(0) =0, A(T)=1,0< T < +

Start from canonical initial conditions qg ~ duo(q)

Time inhomogeneous Markovian evolution (the potential energy
changes!)

2
daa,: = —VVaw)(qa,:) dt + \/%th

In particular, the law of g, ; IS not ZX(lt) e PVaw .. (distribution lags

behind...) — correction through reweighting
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Nonequilibrium dynamics (2)

» Definition: virtual work exerted on a trajectory

UG,
W _—/ ga) N'(t) dt
T 0 OA ( t) ( )

#» Feynman-Kac formula?, usually known as the "Jarzynski equality"
E(e W) — o= AF(AW®)~F(0)
# Consequence ("second law of thermodynamics"):
AF(A(t) =2 E(WVy)

o Remark: NVE dynamics also possible

#» Remark: there are experimental validations

2G. Hummer and A. Szabo, PNAS 98(7) (2001) 3658-3661.
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Nonequilibrium dynamics (3)

» Practical implementation (\° = 0, \Y =1, N =T/At)for0 <i < M
systems
s update the parameter (for example A\ = \"~! + 1/N)

s one-step unconstrained diffusion (overdamped Langevin)

. . : [2At .
qz,n—l—l _ qz,n — At VV)\n—e—l (qz,n) i 7 Rv™

s Uupdate the work

OVn
O\

8V>\n—|—1
O\

. . 1 .
VWMJ:WW+5< (¢"") +

» (Biased) free-energy estimator

1 Y
_ —1 i, N
AF = 0 m(-EjW )

1=1

(qi,n—|—1)> ()\n—l—l . )\n)
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Before going on...

>
>

configuration space
configuration space

Oé]_ 1 al 1

Parameter Parameter

Left: Thermodynamic integration (adiabatic).
Right: Jarzynski nonequilibrium dynamics (canonical initial conditions,
reweighting).
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Nonequilibrium dynamics: The reaction coordinate case

o Geometric extension: reaction coordinate &(q)
o Variation of the constraint z(¢) such that z(0) = 0, 2(7) =1

# The "right" dynamics to consider is

Xo o~ ps,
dXt = —VV(Xt)dt + Qﬁ_lth + Vf(Xt) dAt

with dA, such that d[¢(X,)] = 2/(t)dt.
» Decomposition of the Lagrange multiplier as A, = A¢ + A™ + Al with
s martingale part V&(X,) dA® = —/28-1P+(X,) dW,,
s local force part V&(X;) dAL = £(X,) dt,
s forcing term (bias allowing a finite time switch)

VE(Xy)
[VE(X)[?

VE(X)dAY = 2 (t)dt = PH(X,)dX,.

Amsterdam. June 9th



Nonequilibrium dynamics: The reaction coordinate case (2)

» Definition of the work
t t
Wt:/ f(Xs) 2'(s) ds:/ Z'(s)dA!
0 0

o Feynman-Kac formula

e AFGEW)-FEO)) — | (¢~

o For example, discretization of the dynamics and computation of the work

according to
(tn) — 2(tn—1)
tn — tn—l

<
Wn — Wn—l + )‘24—17

with
2(tna1) — 2(tn) 2At  VE(qn)

A =g — :
ntl T A T TG\ T Ve P
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Equilibrating the nonequilibrium dynamics

# Problems with the usual approach: exponential weights = only the lower
tail of the work distribution counts (statistical confidence?)

# Source term in Fokker-Planck equation is reinterpreted in a probabilistic
way through a birth/death process (~ elegant continuous resampling)

o Jump/diffusion process g, ; enhancing works lower than the average (and
penalizing works larger than the average) in order to maintain equilibrium
at all times

s "Interacting Particle System" (genetic algorithm: mutation = diffusion)
s the law of gy ; Is the canonical measure at all times
s EOWr)=AF

o "Simulated annealing" strategy (comparison with parallel tempering)
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Equilibrating the nonequilibrium dynamics (2)

» M replicas of the sytem

# Evolution in a mean-field sense: empirical mean force

FA(t) M OA (QA,t)

and empirical Boltzmann distribution

1 M
dpr(y () = Z%

=1

» Excess (penalized) / deficit (enhanced) works

t /v, /-
k.ex/de A(s) / K M /
Wit [Tk - A, ) N
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Equilibrating the nonequilibrium dynamics (3)

Algorithm Initial distribution (q3, . .., ¢}?) ~ dmg(q), initial jump times
5t =0, = 0.

» Between each jump time, evolve independently the replicas q/”i’t according
to the chosen dynamics;

#® [Death] At random times 7)%** such that

k, k, k, —1
Wk, = Wrher =7 ~ €67

the k-th configuration is replaced by a configuration [ € {1,..., M}
chosen at random;

» [Birth] At random times 7*:9¢ such that

Wk,de _Wk,de _ Tk,de N g(ﬁ—l)

k,de k,de n
Tn—I—l Tn

a configuration [ € {1,..., M} chosen at random is replaced by the k-th
configuration.
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Final cartoon comparison...

>
>
>

configuration space
configuration space
configuration space

Parameter Parameter Parameter

Left: Thermodynamic integration (adiabatic).

Middle: Jarzynski nonequilibrium dynamics (canonical initial conditions,
reweighting).

Right: Interacting Particle Strategy (canonical initial conditions, birth/death
process).
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A 2D toy model

AN
0:&\& 1

2D potential® V (z,y) = cos(2mx)(1 + dyy) + 2dam?y?.
Plot of the probability density (3 = 1,d> = 1). Left: d; = 0. Right: d; = 10.
Free energy difference profiles between zo = —i and z; = 0.

A (e x;())” -1 >,

Reaction coordinate: &(x,y) =

%A. Voter (1997)
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Free energy difference profiles (toy 2D case)

16 16

14 14 B S

7 7T = ~
Y/ N
Vi

= 12 N 2r .
N N
L L 7
< < \ N
o 1oL L
8 10 8 10 N
c c .
] (] N\
5 3 AN
s g £ g N
° o A
>\ >\ ~N
<) =) NN
o 5 R
c 6 c 6 AN T -
) 1) RN ~ - - -
() ) N
) 9] ~
—_ — ~
L 4 WL gt T~ I ———

2+ 2+

0 | | | | | | | | | O | | | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Reaction parameter z Reaction parameter z

Free energy difference profile for d; = 30,d, =1 and 3 = 1.

Dotted line: analytical reference. Solid lines: 95 % confidence interval
(variance estimated over K = 100 simulations) for a nonequilibrium dynamics
with 7 = 1 and M = 10*. Dashed lines: id with M = 103. Left: n=1. Right: n=5.
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A simplified model for solvatation effects on conformational changes

# N particles interacting through the purely repulsive WCA potential

4e {(%)12 — (%)6} +e ifr <o,

0 itr > o.

Vivea (r) =

# Two solute particles interact via the double-well potential

w2

S

» Two energy minima (compact state » = ro = 2!/, stretched state
r = rg + 2w), energy barrier h

# Reaction coordinate

o |C_I1 — CI2| —To
(q) = "

Amsterdam. June 9th



Influence of solvent density on free energy profiles

12

Free energy difference A F(z)

| | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Value of the parameter z

Density p = a~2. Left: a = 3. Right: a = 1.3.

Free energy difference A F(2)

18

-0.2
0

! ! ! ! ! ! ! ! !
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of the parameter z

Solid line: Free-energy profiles computed using a nonequilibrium method (7" = 10, M = 100,

averaged over 50 realizations).

Dotted line: reference Tl computation (101 points for z € [0, 1], averages taken over time

T = 2500).

Dashed line: Energy difference for the bond (double well potential).
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Computation of chemical potentiel (Widom insertion)

Work distribution for a widom insertion (blue = IPS, red = Jarzynski) for
Increasing switching times (1" = 1, 2, 5, 10).
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