

The microscopic origin of the macroscopic dielectric permittivity of crystals

Gabriel STOLTZ

stoltz@cermics.enpc.fr

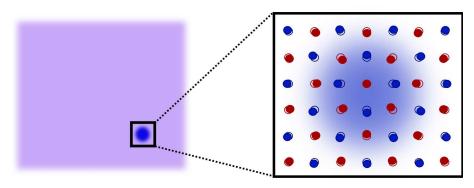
(CERMICS, Ecole des Ponts & MICMAC team, INRIA Rocquencourt)

Work in collaboration with F. Cancès and M. Lewin

Séminaire "Problèmes Spectraux en Physique Mathématique"

Microscopic origin of macroscopic dielectric properties (1)

In a dielectric material, the presence of an electric field causes the nuclear and electronic charges to slightly separate, inducing a local electric dipole



This generates an induced response inside the material (reorganization of the electronic density), screening the applied field

Microscopic origin of macroscopic dielectric properties (2)

• Dielectric material: can polarize in presence of external fields

	density	electric field
external	ν	D , div D = $4\pi\nu$
polarization	δho	${f P}$, div ${f P}=4\pi\delta ho$
total	ρ	E , div E = $4\pi\rho$

$$\mathsf{D} = \mathsf{E} + \mathsf{P}$$

• Constitutive equation: $\varepsilon_{M}=3\times3$ symmetric real matrix with $\varepsilon_{M}\geqslant1$

$$\mathbf{D} = \varepsilon_{\mathsf{M}} \mathbf{E} \iff \mathbf{P} = (\varepsilon_{\mathsf{M}} - 1) \mathbf{E} = (1 - \varepsilon_{\mathsf{M}}^{-1}) \mathbf{D}$$

ullet Time-dependent fields: the response of the material is not instantaneous, but given by a convolution with some response function. With ${\bf E}(t)=-\nabla W(t)$ where W(t) is the macroscopic potential,

$$-\mathsf{div}\left(\varepsilon_{\mathsf{M}}(\omega)\nabla\widehat{W}(\omega)\right) = 4\pi\,\widehat{\nu}(\omega)$$

Another motivation: Opto-electronical properties

- Photovoltaic effet: convert light into electric current/voltage
 - Mechanism: promotion of valence electrons into excited states
 - Compute band gaps in photovoltaic materials
 - Need for methods going beyond standard ground-state approaches
- Reference numerical approach: GW method → horrible equations...
 - $\qquad \qquad \text{Dyson equation } G(12) = G^{(0)}(12) + \int d(34) G^{(0)}(13) \Sigma(34) G(42)$
 - Self-energy $\Sigma(12)=\mathrm{i}\int d(34)W(1^+3)G(14)\Gamma(42;3)$
 - Screened interaction $W(12) = v(12) + \int d(34)W(13)P(34)v(42)$
 - Irreducible polarization $P(12) = -i \int d(34) G(23) G(42) \Gamma(34; 1)$
 - Vertex function $\Gamma(12;3) = \delta(12)\delta(13) + \int d(4567) \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(67;3)$

Outline

Some background material

- Description of perfect crystals
- Crystals with defects: static picture

Time evolution of defects in crystals

- Response to an effective potential
- Well-posedness of the nonlinear Hartree dynamics
- Frequency dependent macroscopic dielectric permittivity

```
[CS12] E. Cancès and G. Stoltz, Ann. I. H. Poincare-An. 29(6) (2012) 887-925
[CLS11] E. Cancès, M. Lewin and G. Stoltz, in Numerical Analysis of Multiscale Computations,
B. Engquist, O. Runborg, Y.-H. R. Tsai. (Eds.), Lect. Notes Comput. Sci. Eng. 82 (2011)
[CL10] E. Cancès and M. Lewin, Arch. Rational Mech. Anal 197(1) 139-177 (2010)
```

Elements of electronic structure theory

Some elements on trace-class operators

- Compact self-adjoint operator $A = \sum_{i=1}^{+\infty} \lambda_i \ket{\phi_i} \bra{\phi_i}$ with $\lambda_i \to 0$
- The operator A is called trace-class $(A \in \mathfrak{S}_1)$ if $\sum_{i=1}^{n-1} |\lambda_i| < \infty$. Its density

$$ho_A(x) = \sum_{i=1}^{+\infty} \lambda_i |\phi_i(x)|^2$$
 belongs to $L^1(\mathbb{R}^3)$ and

$$\operatorname{Tr}(A) := \sum_{i=1}^{+\infty} \lambda_i = \sum_{i=1}^{+\infty} \langle e_i | A | e_i \rangle = \int_{\mathbb{R}^3} \rho_A$$

• A is Hilbert-Schmidt $(A \in \mathfrak{S}_2)$ if $A^*A \in \mathfrak{S}_1$, *i.e.* $\sum_{i \geqslant 1} |\lambda_i|^2 < \infty$. If A is self-adjoint, its integral kernel is in $L^2(\mathbb{R}^3 \times \mathbb{R}^3)$

$$A(x,y) = \sum_{i>1} \lambda_i \, \overline{\phi_i(x)} \phi_i(y).$$

Density operators for a finite system of N electrons in \mathbb{R}^3

• Bounded, self-adjoint operator on $L^2(\mathbb{R}^3)$ such that $0 \le \gamma \le 1$ and $\operatorname{Tr}(\gamma) = N$. In some orthonormal basis of $L^2(\mathbb{R}^3)$,

$$\gamma = \sum_{i=1}^{+\infty} n_i |\phi_i\rangle\langle\phi_i|, \qquad 0 \leqslant n_i \leqslant 1, \qquad \sum_{i=1}^{+\infty} n_i = N$$

• For the Slater determinant $\psi(x_1,\ldots,x_N)=(N!)^{-1/2}\det(\phi_i(x_j))_{1\leqslant i,j\leqslant N}$,

$$\gamma_{\psi} = \sum_{i=1}^{N} |\phi_i\rangle\langle\phi_i|$$

- Electronic density $\rho_{\gamma}(x) = \sum_{i=1}^{+\infty} n_i |\phi_i(x)|^2$ with $\rho_{\gamma} \geqslant 0$ and $\int_{\mathbb{R}^3} \rho_{\gamma} = N$.
- Kinetic energy $T(\gamma) = \frac{1}{2} \text{Tr}(|\nabla|\gamma|\nabla|) = \frac{1}{2} \sum_{i=1}^{+\infty} n_i \|\nabla \phi_i\|_{L^2(\mathbb{R}^3)}^2$

The Hartree model for finite systems

• Hartree energy $E_{\rho^{\mathrm{nuc}}}^{\mathrm{Hartree}}(\gamma) = \mathrm{Tr}\left(-\frac{1}{2}\Delta\gamma\right) + \frac{1}{2}D(\rho_{\gamma} - \rho^{\mathrm{nuc}}, \rho_{\gamma} - \rho^{\mathrm{nuc}})$ where

$$D(f,g) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{f(x) g(x')}{|x - x'|} dx dx' = 4\pi \int_{\mathbb{R}^3} \frac{\hat{f}(k) \hat{g}(k)}{|k|^2} dk$$

is the classical Coulomb interaction, defined for $f,g\in L^{6/5}(\mathbb{R}^3)$, but which can be extended to

$$\mathcal{C} = \left\{ f \in \mathscr{S}'(\mathbb{R}^3) \ \middle| \ \widehat{f} \in L^1_{\mathrm{loc}}(\mathbb{R}^3), \ |\cdot|^{-1} \widehat{f}(\cdot) \in L^2(\mathbb{R}^3) \right\}$$

Variational formulation

$$\inf \left\{ E_{\rho^{\mathrm{nuc}}}^{\mathrm{Hartree}}(\gamma), \; \gamma \in \mathcal{S}(L^2(\mathbb{R}^3)), \; 0 \leqslant \gamma \leqslant 1, \; \mathrm{Tr}(\gamma) = N, \; \mathrm{Tr}(-\Delta \gamma) < \infty \right\}$$

 \bullet More general models of density functional theory: correction term $\textit{E}_{xc}(\gamma)$

[Sol91] J.-P. Solovej, Invent. Math., 1991

Euler-Lagrange equations for the Hartree model

Nonlinear eigenvalue problem, $\varepsilon_{\rm F}$ Lagrange multiplier of ${\rm Tr}(\gamma)=N$

$$\begin{cases} \gamma^{0} = \sum_{i=1}^{+\infty} n_{i} |\phi_{i}\rangle\langle\phi_{i}|, & \rho^{0}(x) = \sum_{i=1}^{+\infty} n_{i} |\phi_{i}(x)|^{2}, \\ H^{0}\phi_{i} = \varepsilon_{i}\phi_{i}, & \langle\phi_{i},\phi_{j}\rangle = \delta_{ij}, \end{cases}$$

$$\begin{cases} n_{i} = \begin{cases} 1 & \text{if } \varepsilon_{i} < \varepsilon_{F} \\ \in [0,1] & \text{if } \varepsilon_{i} = \varepsilon_{F} \\ 0 & \text{if } \varepsilon_{i} > \varepsilon_{F} \end{cases} \sum_{i=1}^{+\infty} n_{i} = N,$$

$$H^{0} = -\frac{1}{2}\Delta + V^{0},$$

$$-\Delta V^{0} = 4\pi(\rho^{0} - \rho^{\text{nuc}}).$$

$$N=6$$

$$\text{When } \varepsilon_{\textit{N}} < \varepsilon_{\textit{N}+1} \text{ (gap): } \left\{ \begin{array}{l} \gamma^0 = \mathbf{1}_{(-\infty,\varepsilon_{\mathrm{F}}]}(\textit{H}^0), \\ H^0 = -\frac{1}{2}\Delta + V^0, \\ -\Delta V^0 = 4\pi(\rho^0 - \rho^{\mathrm{nuc}}), \end{array} \right.$$

The Hartree model for crystals (1)

- Thermodynamic limit, periodic nuclear density $\rho_{\rm per}^{\rm nuc}$, lattice $\mathcal{R}\simeq (a\mathbb{Z})^3$ with unit cell Γ , reciprocal lattice $\mathcal{R}^*\simeq \left(\frac{2\pi}{a}\mathbb{Z}\right)^3$ with unit cell Γ^*
- Bloch-Floquet transform: unitary $L^2(\mathbb{R}^3) \to \int_{\Gamma^*}^{\oplus} L_{\mathrm{per}}^2(\Gamma) dq$ $f_q(x) = \sum_{R \in \mathcal{R}} f(x+R) e^{-\mathrm{i}q \cdot (x+R)} = \frac{(2\pi)^{3/2}}{|\Gamma|} \sum_{K \in \mathcal{R}^*} \widehat{f}(q+K) e^{\mathrm{i}K \cdot x}$
 - Any operator commuting with the spatial translations τ_R $(R \in \mathcal{R})$ can be decomposed as $(Af)_q = A_q f_q$, and $\sigma(A) = \bigcup_{q \in \Gamma^*} \sigma(A_q)$
 - Bloch matrices: $A_{K,K'}(q) = \langle e_K, A_q e_{K'} \rangle_{L^2_{\mathrm{per}}(\Gamma)}, \ e_K(x) = |\Gamma|^{-1/2} \mathrm{e}^{\mathrm{i}K \cdot x}$

$$\mathcal{F}(Av)(q+K) = \sum_{K' \in \mathcal{R}^*} A_{K,K'}(q) \mathcal{F}v(q+K')$$

11 / 31

[CLL01] I. Catto, C. Le Bris, and P.-L. Lions, Ann. I. H. Poincaré-An, 2001
 [CDL08] E. Cancès, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
 Gabriel Stoltz (ENPC/INRIA)

The Hartree model for crystals (2)

Nonlinear eigenvalue problem

$$\begin{cases} \begin{array}{l} \gamma_{\mathrm{per}}^{0} = 1_{(-\infty,\varepsilon_{\mathrm{F}}]}(H_{\mathrm{per}}^{0}), & \rho_{\mathrm{per}}^{0} = \rho_{\gamma_{\mathrm{per}}^{0}}, \\ H_{\mathrm{per}}^{0} = -\frac{1}{2}\Delta + V_{\mathrm{per}}^{0}, \\ -\Delta V_{\mathrm{per}}^{0} = 4\pi(\rho_{\mathrm{per}}^{0} - \rho_{\mathrm{per}}^{\mathrm{nuc}}), & \int_{\Gamma} \rho_{\mathrm{per}}^{0} = \int_{\Gamma} \rho_{\mathrm{per}}^{\mathrm{nuc}} = N \end{array} \end{cases}$$

More explicit expressions using the Bloch decomposition

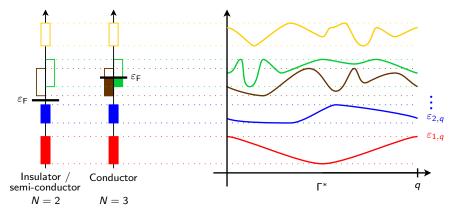
$$\begin{split} \left(\mathcal{H}_{\mathrm{per}}^{0}\right)_{q} &= -\frac{1}{2}\Delta - \mathrm{i}q \cdot \nabla + \frac{|q|^{2}}{2} + V_{\mathrm{per}}^{0} = \sum_{n=1}^{+\infty} \varepsilon_{n,q} |u_{n,q}\rangle \langle u_{n,q}| \\ \left(\gamma_{\mathrm{per}}^{0}\right)_{q} &= \sum_{n=1}^{+\infty} \mathbf{1}_{\{\varepsilon_{n,q} \leqslant \varepsilon_{\mathrm{F}}\}} |u_{n,q}\rangle \langle u_{n,q}| \\ \end{split}$$
 Fermi level obtained from $N = \frac{1}{|\Gamma^{*}|} \sum_{n=1}^{+\infty} |\{q \in \Gamma^{*} \mid \varepsilon_{n,q} \leqslant \varepsilon_{\mathrm{F}}\}| \end{split}$

The Hartree model for crystals (3)

The spectrum of the periodic Hamiltonian is composed of bands

$$\sigma(H) = \bigcup_{n \ge 1} \left[\Sigma_n^-, \Sigma_n^+ \right], \qquad \Sigma_n^- = \min_{q \in \overline{\Gamma^*}} \varepsilon_{n,q}, \quad \Sigma_n^+ = \max_{q \in \overline{\Gamma^*}} \varepsilon_{n,q}$$

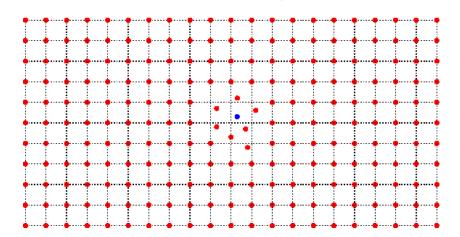
Assume in the sequel that $g=\Sigma_{N+1}^--\Sigma_N^+>0$ (insulator)



Defects in crystals

Local defects (1)

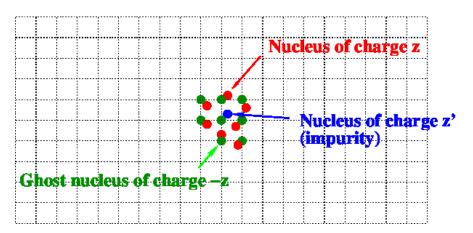
ullet Local perturbation: nuclear charge defect $ho_{
m per}^{
m nuc} +
u$



ullet Expected ground state $\gamma=\gamma_{
m per}^0+Q_
u$ with $Q_
u$ "local"

Local defects (2)

ullet Local perturbation: nuclear charge defect $ho_{
m per}^{
m nuc} +
u$



• Expected ground state $\gamma = \gamma_{\rm per}^0 + Q_{\nu}$ with Q_{ν} "local"

Defects in crystals (1)

ullet A thermodynamic limit shows that $Q_{
u}$ can be thought of as some defect state embedded in the periodic medium

$$\begin{aligned} Q_{\nu} &= \mathop{\mathrm{argmin}}_{\substack{Q \in \mathcal{Q} \\ -\gamma_{\mathrm{per}}^{0} \leqslant Q \leqslant 1 - \gamma_{\mathrm{per}}^{0}}} \left\{ \mathrm{Tr}_{0} \left(H_{\mathrm{per}}^{0} Q \right) - \int_{\mathbb{R}^{3}} \rho_{Q} (\nu \star |\cdot|^{-1}) + \frac{1}{2} D(\rho_{Q}, \rho_{Q}) \right\} \end{aligned}$$

where, defining
$$Q^{--}=\gamma_{
m per}^0Q\gamma_{
m per}^0$$
 and $Q^{++}=(1-\gamma_{
m per}^0)Q(1-\gamma_{
m per}^0)$,

$$\mathcal{Q} = \left\{ Q^* = Q, \ (1-\Delta)^{1/2}Q \in \mathfrak{S}_2, \ (1-\Delta)^{1/2}Q^{\pm\pm}(1-\Delta)^{1/2} \in \mathfrak{S}_1 \right\}$$

- Generalized trace $\operatorname{Tr}_0(Q) = \operatorname{Tr}(Q^{++}) + \operatorname{Tr}(Q^{--})$
- ullet Density $ho_Q\in L^2(\mathbb{R}^3)\cap \mathcal{C}$

[HLS05] C. Hainzl, M. Lewin, and E. Séré, Commun. Math. Phys., 2005 (and subsequent works)
 [CDL08] E. Cancès, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
 [CL10] E. Cancès and M. Lewin, Arch. Rational Mech. Anal., 2010

celoj E. Cances and W. Lewin, Arch. National Meen. Amai., 2010

Defects in crystals (2)

Definition of the embedding energy

$$\operatorname{Tr}_0((H^0_{\operatorname{per}}-\varepsilon_{\operatorname{F}})Q):=\operatorname{Tr}(|H^0_{\operatorname{per}}-\varepsilon_{\operatorname{F}}|^{1/2}(Q^{++}-Q^{--})|H^0_{\operatorname{per}}-\varepsilon_{\operatorname{F}}|^{1/2})$$

[CL, Theorem 1]

Let ν such that $(\nu\star|\cdot|^{-1})\in L^2(\mathbb{R}^3)+\mathcal{C}'$. Then, there exists at least one minimizer $Q_{\nu,\varepsilon_{\mathrm{F}}}$, and all the minimizers share the same density $\rho_{\nu,\varepsilon_{\mathrm{F}}}$. In addition, $Q_{\nu,\varepsilon_{\mathrm{F}}}$ is solution to the self-consistent equation

$$Q_{\nu,\varepsilon_{\mathrm{F}}} = \mathbb{1}_{\left(-\infty,\varepsilon_{\mathrm{F}}\right)} \left(H_{\mathrm{per}}^{0} + \left(\rho_{\nu,\varepsilon_{\mathrm{F}}} - \nu\right) \star |\cdot|^{-1}\right) - \mathbb{1}_{\left(-\infty,\varepsilon_{\mathrm{F}}\right]} \left(H_{\mathrm{per}}^{0}\right) + \delta,$$

where δ is a finite-rank self-adjoint operator on $L^2(\mathbb{R}^3)$ such that $0 \le \delta \le 1$ and $\mathsf{Ran}(\delta) \subset \mathsf{Ker}\left(H^0_{\mathrm{per}} + (\rho_{\nu,\varepsilon_{\mathrm{F}}} - \nu) \star |\cdot|^{-1} - \varepsilon_{\mathrm{F}}\right)$.

When ν is sufficiently small, $\delta=0$ and the minimizer is unique.

Time evolution of defects in crystals: effective perturbations

The time-dependent Hartree dynamics

ullet Finite system described by the density matrix $\gamma(t)$, von Neumann equation

$$\mathrm{i}rac{d\gamma(t)}{dt} = \left[H_{\gamma(t)}^0, \gamma(t)
ight], \qquad H_{\gamma}^0 = -rac{1}{2}\Delta + V_{\mathrm{nuc}} + v_{\mathrm{c}}(
ho_{\gamma})$$

• When a perturbation v(t) is added, the dynamics is modified as

$$i\frac{d\gamma(t)}{dt} = \left[H_{\gamma(t)}^0 + v(t), \gamma(t)\right],$$

ullet Formal thermodynamic limit: state $\gamma(t)=\gamma_{
m per}^0+Q(t)$ and dynamics

$$\mathrm{i}rac{d\gamma}{dt} = \left[H_{\gamma}^{\mathsf{v}},\gamma
ight], \qquad H_{\gamma}^{\mathsf{v}}(t) = H_{\mathrm{per}}^{0} + v_{\mathrm{c}}(
ho_{Q}(t) -
u(t))$$

[Chadam76] J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, *Commun. Math. Phys.* **46** (1976) 99–104 [Arnold96] A. Arnold, Self-consistent relaxation-time models in quantum mechanics, *Commun. Part. Diff. Eq.* **21**(3-4) (1996) 473–506

Defects in a time-dependent setting: the dynamics

Classical formulation: nonlinear dynamics

$$\mathrm{i}rac{dQ(t)}{dt} = \left[H_\mathrm{per}^0 + v_\mathrm{c}(
ho_{Q(t)} -
u(t)), \gamma_\mathrm{per}^0 + Q(t)
ight]$$

Denote $U_0(t) = e^{-itH_{per}^0}$ the free evolution.

Mild formulation for an effective potential v(t)

$$Q(t) = U_0(t)Q^0U_0(t)^* - \mathrm{i}\int_0^t U_0(t-s)[v(s),\gamma_{\mathrm{per}}^0 + Q(s)]U_0(t-s)^*\,ds$$

Mild formulation for the nonlinear dynamics

Replace v(s) by $v_{\rm c}(
ho_{Q(s)}u(s))$ in the above formula

Well-posedness of the mild formulation

If initially $Q(0) \in \mathcal{Q}$, the Banach space allowing to describe local defects in crystals, does $Q(t) \in \mathcal{Q}$?

[CS12, Proposition 1]

The integral equation has a unique solution in $C^0(\mathbb{R}_+, \mathcal{Q})$ for $Q^0 \in \mathcal{Q}$ and $v = v_c(\rho)$ with $\rho \in L^1_{loc}(\mathbb{R}_+, L^2(\mathbb{R}^3) \cap \mathcal{C})$.

In addition,
$$\operatorname{Tr}_0(Q(t)) = \operatorname{Tr}_0(Q^0)$$
, and, if $-\gamma_{\rm per}^0 \leqslant Q^0 \leqslant 1 - \gamma_{\rm per}^0$, then $-\gamma_{\rm per}^0 \leqslant Q(t) \leqslant 1 - \gamma_{\rm per}^0$.

This result is based on a series of technical results

- boundedness of the potential: $v \in L^1_{loc}(\mathbb{R}_+, L^{\infty}(\mathbb{R}^3))$
- stability of time evolution: $\frac{1}{\beta}\|Q\|_{\mathcal{Q}} \leqslant \|U_0(t)QU_0(t)^*\|_{\mathcal{Q}} \leqslant \beta\|Q\|_{\mathcal{Q}}$
- commutator estimates with γ_{per}^0 : $\|\mathbf{i}[v,\gamma_{\mathrm{per}}^0]\|_{\mathcal{O}} \leqslant C_{\mathrm{com}}\|v\|_{\mathcal{C}'}$
- commutator estimates in \mathcal{Q} : $\|\mathrm{i}[\nu_{\mathrm{c}}(\varrho),Q]\|_{\mathcal{Q}}\leqslant C_{\mathrm{com},\mathcal{Q}}\|\varrho\|_{L^{2}\cap\mathcal{C}}\|Q\|_{\mathcal{Q}}$

Dyson expansion and linear response

Response at all orders (formally):
$$Q(t) = U_0(t)Q^0U_0(t)^* + \sum_{n=1}^{+\infty} Q_{n,\nu}(t)$$

$$Q_{1,\nu}(t) = -\mathrm{i} \int_0^t U_0(t-s) \left[v(s), \gamma_{\mathrm{per}}^0 + U_0(s)Q^0U_0(s)^* \right] U_0(t-s)^* ds,$$

$$Q_{n,\nu}(t) = -\mathrm{i} \int_0^t U_0(t-s) \left[v(s), Q_{n-1,\nu}(s) \right] U_0(t-s)^* ds \quad \text{for } n \geqslant 2$$

Obtained by plugging the formal decomposition into the integral equation

[CS12, Proposition 5]

Under the previous assumptions, $Q_{n,\nu}\in C^0(\mathbb{R}_+,\mathcal{Q})$ with $\mathrm{Tr}_0(Q_{n,\nu}(t))=0$,

$$\|Q_{n,\nu}(t)\|_{\mathcal{Q}} \leqslant \beta \frac{1 + \|Q^0\|_{\mathcal{Q}}}{n!} \left(C \int_0^t \|\rho(s)\|_{L^2 \cap \mathcal{C}} ds\right)^n.$$

The formal expansion therefore converges in \mathcal{Q} , uniformly on any compact subset of \mathbb{R}_+ , to the unique solution in $C^0(\mathbb{R}_+,\mathcal{Q})$ of the integral equation.

Definition of the polarization (1)

- Aim: Justify the Adler-Wiser formula for the polarization matrix
- ullet Damped linear response: standard linear response as $\eta o 0$

$$Q_{1,v}^{\eta}(t) = -\mathrm{i} \int_{-\infty}^{t} U_0(t-s) \left[v(s), \gamma_{\mathrm{per}}^0 \right] U_0(t-s)^* \mathrm{e}^{-\eta(t-s)} \, ds$$

- polarization operator $\chi_0^{\eta}: \left\{ \begin{array}{ccc} L^1(\mathbb{R},\mathcal{C}') & \to & C_{\mathrm{b}}^0(\mathbb{R},L^2(\mathbb{R}^3)\cap\mathcal{C}) \\ \mathsf{v} & \mapsto & \rho_{Q_{1,\mathsf{v}}^{\eta}} \end{array} \right.$
- linear response operator $\mathscr{E}^{\eta}=v_{\mathrm{c}}^{1/2}\chi_{0}v_{\mathrm{c}}^{1/2}$ acting on $L^{1}(\mathbb{R},L^{2}(\mathbb{R}^{3}))$

$$\langle f_2, \mathscr{E}^{\eta} f_1 \rangle_{L^2(L^2)} = \int_{\mathbb{R}} \langle \mathcal{F}_t f_2(\omega), \mathscr{E}^{\eta}(\omega) \mathcal{F}_t f_1(\omega) \rangle_{L^2(\mathbb{R}^3)} d\omega$$

• Bloch decomposition: for a.e. $(\omega, q) \in \mathbb{R} \times \Gamma^*$ and any $K \in \mathcal{R}^*$,

$$\mathcal{F}_{t,x}(\mathscr{E}^{\eta}f)(\omega,q+K) = \sum_{K'\in\mathcal{D}^*} \mathscr{E}_{K,K'}^{\eta}(\omega,q) \, \mathcal{F}_{t,x}f(\omega,q+K')$$

[Adler62] S. L. Adler, Phys. Rev., 1962[Wiser63] N. Wiser, Phys. Rev., 1963Gabriel Stoltz (ENPC/INRIA)

Definition of the polarization (2)

[CS12, Proposition 7]

The Bloch matrices of the damped linear response operator \mathscr{E}^η read

$$\mathscr{E}^{\eta}_{K,K'}(\omega,q) = rac{\mathbf{1}_{\Gamma^*}(q)}{|\Gamma|} rac{|q+K'|}{|q+K|} \, T^{\eta}_{K,K'}(\omega,q),$$

where the continuous functions $T^{\eta}_{K,K'}$ are uniformly bounded:

$$T_{K,K'}^{\eta}(\omega,q) = \sum \int_{\Gamma^*} \frac{\langle u_{m,q'}, \mathrm{e}^{-\mathrm{i}K\cdot x}\, u_{n,q+q'} \rangle_{L^2_{\mathrm{per}}} \langle u_{n,q+q'}, \mathrm{e}^{\mathrm{i}K'\cdot x} u_{m,q'} \rangle_{L^2_{\mathrm{per}}}}{\varepsilon_{n,q+q'} - \varepsilon_{m,q'} - \omega - \mathrm{i}\eta} \, dq'$$

(the sum is over $1 \leqslant n \leqslant N < m$ and $1 \leqslant m \leqslant N < n$)

- The Bloch matrices of the standard linear response are recovered as $\eta \to 0$, the convergence being in $\mathscr{S}'(\mathbb{R} \times \mathbb{R}^3)$
- Static polarizability recovered in some adiabatic limit

Time evolution of defects in crystals: nonlinear dynamics

Time-dependent Hartree dynamics for defects

Well-posedness of the mild formulation

For $\nu \in L^1_{\mathrm{loc}}(\mathbb{R}_+, L^2(\mathbb{R}^3)) \cap W^{1,1}_{\mathrm{loc}}(\mathbb{R}_+, \mathcal{C})$, and $-\gamma^0_{\mathrm{per}} \leqslant Q^0 \leqslant 1 - \gamma^0_{\mathrm{per}}$ with $Q^0 \in \mathcal{Q}$, the dynamics

$$Q(t) = U_0(t)Q^0U_0(t)^* - i\int_0^t U_0(t-s) \Big[v_c(\rho_{Q(s)} - \nu(s)), \gamma_{per}^0 + Q(s)\Big]U_0(t-s)^*ds$$

has a unique solution in $C^0(\mathbb{R}_+,\mathcal{Q})$. For all $t\geq 0$, $\mathrm{Tr}_0(Q(t))=\mathrm{Tr}_0(Q^0)$ and $-\gamma_{\mathrm{per}}^0\leqslant Q(t)\leqslant 1-\gamma_{\mathrm{per}}^0$.

• Idea of the proof: (i) short time existence and uniqueness by a fixed-point argument; (ii) extension to all times by controlling the energy

$$\mathcal{E}(t,Q) = \operatorname{Tr}_0(H^0_{\operatorname{per}}Q) - D(\rho_Q,\nu(t)) + \frac{1}{2}D(\rho_Q,\rho_Q)$$

• Classical solution well posed under stronger assumptions on Q^0, ν

Macroscopic dielectric permittivity (1)

Starting from $Q^0 = 0$, the nonlinear dynamics can be rewritten as

$$Q(t) = Q_{1, v_{\mathrm{c}}(
ho_{Q} -
u)}(t) + \widetilde{Q}_{2, v_{\mathrm{c}}(
ho_{Q} -
u)}(t)$$

In terms of electronic densities: $[(1+\mathcal{L})(\nu-\rho_Q)](t)=\nu(t)-r_2(t)$

Properties of the operator $\mathcal L$

For any $0 < \Omega < g$, the operator $\mathcal L$ is a non-negative, bounded, self-adjoint operator on the Hilbert space

$$\mathscr{H}_{\Omega} = \Big\{ \varrho \in L^2(\mathbb{R}, \mathcal{C}) \, \Big| \, \mathrm{supp}(\mathcal{F}_{t,x}\varrho) \subset [-\Omega, \Omega] \times \mathbb{R}^3 \Big\},$$

endowed with the scalar product

$$\langle \varrho_2, \varrho_1 \rangle_{L^2(\mathcal{C})} = 4\pi \int_{-\Omega}^{\Omega} \int_{\mathbb{R}^3} \frac{\overline{\mathcal{F}_{t,x}\varrho_2(\omega,k)} \mathcal{F}_{t,x}\varrho_1(\omega,k)}{|k|^2} d\omega dk.$$

Hence, $1 + \mathcal{L}$, considered as an operator on \mathcal{H}_{Ω} , is invertible.

Macroscopic dielectric permittivity (2)

- Linearization: given $\nu \in \mathscr{H}_{\Omega}$, find ρ_{ν} such that $(1+\mathcal{L})(\nu-\rho_{\nu})=\nu$
- Homogenization limit: spread the charge as $\nu_{\eta}(t,x)=\eta^{3}\nu(t,\eta x)$ and consider the rescaled potential

$$W^{\eta}_{
u}(t,x) = \eta^{-1} v_{\mathrm{c}}(
u_{\eta} -
ho_{
u_{\eta}}) \left(t, \eta^{-1} x\right)$$

When $\mathcal{L}=$ 0, the potential is $W_{
u}^{\eta}=v_{\mathrm{c}}(
u)$

[CS12, Proposition 14]

The rescaled potential W^η_ν converges weakly in \mathcal{H}_Ω to the unique solution W_ν in \mathcal{H}_Ω to the equation

$$-\mathrm{div}\Big(\varepsilon_{\mathrm{M}}(\omega)\nabla\left[\mathcal{F}_{t}W_{\nu}\right](\omega,\cdot)\Big)=4\pi\left[\mathcal{F}_{t}\nu\right](\omega,\cdot)$$

where $\varepsilon_{\mathrm{M}}(\omega)$ (for $\omega \in (-g,g)$) is a smooth mapping with values in the space of symmetric 3×3 matrices, and satisfying $\varepsilon_{\mathrm{M}}(\omega) \geqslant 1$.

ullet The matrix $arepsilon_{\mathrm{M}}(\omega)$ can be expressed using the Bloch decomposition

Perspectives

Perspectives and open issues

- Metallic systems (no gap: many estimates break down)
- Longtime behavior of the defect
- Influence of electric and magnetic fields (rather than a local perturbation as was the case here)
- Interaction of electronic defects with phonons (lattice vibrations)
- GW methods (the polarization matrix enters the definition of the self-energy)