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Why looking for a simplified model?

Shock/detonation waves are multiscale phenomena

Different descriptions (fluid dynamics, molecular dynamics)

Usually, MD is used to calibrate parameters

A direct micro/macro limit (at least in some asymptotic regime) would be
very interesting

Hence simplified 1D model since mathematical results on 1D chains
exist?
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Outline of the talk

Shock waves in one dimensional chains

Introducing some mean higher dimensional perturbations

some heuristical forcing term

a bath of linear oscillators and its stochastic limit

a nonlinear model

Extension to detonation waves

a simplified model of detonation in 1D chains

some numerical results
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I. Shock waves in one-dimensional

atom chains
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The model

x
n−1 xn

Consider the Hamiltonian (nearest-neighbor interactions):

HS({qn, pn}) =
∞
∑

n=−∞

V (qn+1 − qn) +
1

2
ṗ2

n, (1)

with (qn, pn) = (xn, ẋn) (xn = displacement, not position!).

Newton’s equations of motion:

ẍn = V ′(xn+1 − xn) − V ′(xn − xn−1). (2)

Usually, Lennard-Jones like potential (possibly Morse or Toda)

Normalization conditions V (0) = 0, V ′(0) = 0, V ′′(0) = 1

b = −V ′′′(0) measures at the first order the anharmonicity of the system
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Shocks in the 1D chain

Shock obtained by compression by an infinitely massive piston (velocity
up)a

Classification of the shock regimes according to a = b up:

a < 2 = harmonic like behavior

a > 2 = hard rod like behavior

Rigorous mathematical proof in the Toda caseb

Robustness of the profiles with respect to thermal inital conditions /
averaging over several realizations

aDuvall et al. (1969); Holian et al. (1978, 1979, 1981)
bVenakides et al. (1991)
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Weak shock profiles (a < 2)
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Weak shock profiles (a = 0.45) for a Lennard-Jones like potential for particles
initially at rest. Left: Relative displacement profile (xn+1 − xn). Right: Particle
velocity. The sizes of the different regions grow linearly in time.
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Strong shock profiles (a > 2)
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Strong shock profiles (a = 9) for a Lennard-Jones like potential for particles
initially at rest. Left: Relative displacement profile (xn+1 − xn). Right: Particle
velocity. The sizes of the different regions grow linearly in time. Relaxation
waves are problematic (soliton train not damped out).
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Thermalized strong shock profiles (a > 2)
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Strong shock profiles (a = 9) for a Lennard-Jones like potential for particles
initially at rest. Left: Relative displacement profile (xn+1 − xn). Right: Particle
velocity. The initial temperature is β−1 = 0.01.
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II. Introducing some mean higher

dimensional perturbations
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3D is not 1D

1D shocks behave badly because there is no room for relaxation
(formation of the most energetic waves = binary waves)

3D shocks are 1D like only at T = 0 and when the compression is done
along a principal axisa

Otherwise, local equilibrium is quickly restored after the shock front has
passed

Idea: the transverse degrees of freedom are necessary for this relaxation
= thermostat like degrees of freedom!

aHolian, Shock waves (1995)
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The form of the transverse perturbations

θ

x

x
n+1

dn
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dn

xn

y

Assumption: constrained d.o.f in the tranverse and longitudinal directions
For harmonic potentials (FCC <100> structure):

ẍn =
9

8
(xn+1 − 2xn + xn−1) +

√
3

4
(yn − yn−1), ÿn = −3

2
yn −

√
3

2
(xn+1 − xn)

General case: sum of potentials with different spring constants
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The augmented 1D model

System (S) and a heat bath (B) described by bath variables {yj
n}

(n ∈ Z, j = 1, . . . , N ).

The full Hamiltonian reads:

H({qn, pn, q̃j
n, p̃j

n}) = HS({qn, pn}) + HSB({qn, pn, q̃j
n, p̃j

n}), (3)

where (qn, pn, q̃j
n, p̃j

n) = (xn, ẋn, yj
n, mj ẏ

j
n), HS is given by (1), and

HSB =
∞
∑

n=−∞

N
∑

j=1

1

2mj

(p̃j
n)2 +

1

2
kj

[

γj(xn+1 − xn) + yj
n

]2
. (4)

Interpretation: each longitudinal spring length is thermostated

Spectrum ω2
j = kj , coupling constants γj
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Choice of the spectrum parameters

Compute the solutions for y, and insert it into the equations for x:

ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+

∫ t

0

KN (t − s)(ẋn+1 − 2ẋn + ẋn−1)(s) ds + σN
n (t)

σ random forcing term

memory kernel KN (t) =
∑N

j=1
γ2

j ω2
j cos(ωjt) ("generalized Langevin

equation")

Exponentially decreasing in time (e−αt) in the limit N → +∞ for the choice

ωj = Ω

(

j

N

)k

, γ2
j ω2

j = λ2f2(ωj) (∆ω)j ,

with f2(ω) = 2α
π

1

α2+ω2 , (∆ω)j = ωj+1 − ωj , α, λ > 0 and k > 0
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Some numerical results
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Strong shock (a = 3) with N = 200, k = 1, Ω = 5, α = 2 and λ = 1. Left:
Relative displacement profile. Right: Velocity profile.
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Some numerical results (2)
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Same parameters, but results averaged over 10 realizations. Notice that there
remain oscillations at the shock front (similar results exist for 3D shocksa)

aZybin et al. (1999)
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A nonlinear bath model

Thermostating with less tranverse variables and for stronger shocks

Model

H({qn, pn, q̃j
n, p̃j

n}) = HS({qn, pn}) + HNLB({qn, pn, q̃j
n, p̃j

n}), (5)

with

HNLB =
∞
∑

n=−∞

N
∑

j=1

1

2
(p̃j

n)2 + kjU [γj(qn+1 − qn) + q̃j
n], (6)

Typically, Lennard-Jones like interaction U(x) = VLJ(1 + x)
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Some numerical results
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Strong shock (up = 1) with N = 8 NL oscillators, k = 1, Ω = 10, α = 5 and
λ = 0.2. Left: Relative displacement profile. Right: Velocity profile.
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Some numerical results (2)
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Same parameters, but results averaged over 100 realizations.
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III. Extension to detonation waves
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Modeling of detonation in 1D chains

Important features of detonation:

exothermicity (energy release) sustains and enhance the shock wave

activation barrier: the speed of the shock wave has to be sufficient for
ignition to begin

chemical kinetics of the reactions

Modeling the reaction rate at site n: introduction of an extra variable rn

(0 ≤ r ≤ 1)

For example, m-th order kinetics (while rn ≤ 1)

ṙn = D(1 − rn)m
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Rate-dependent potential
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Hardening of the potential + continuity point dc where chemical reactions are
initiated

V (d) → (1 + Mr) V (d) − MV (dc)

with r reaction rate, M > 0 hardening constanta

aSornette et al. (2003)
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Some numerical results
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Reactive shock (K = 1, first order kinetics D = 0.025, dc = 0.7) with the
stochastic limit of the harmonic model. Left: Relative displacement profile.
Right: Velocity profile.
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Some prospects
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Some prospects

Quantitative agreement with real 3D experiments

interaction potentials

spectrum parameters

diatomic chain with next nearest neighbor interactions

Continuum limit of the model (of the limiting stochastic differential
equation)

Models with reduced degrees of freedom (Holian et al) → systematic
strategy?
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