A Simplified One-Dimensional Model of Shock and Detonation Waves

 ${\rm Gabriel}\ {\rm STOLTZ}^{1,2,3}$

¹ CERMICS, ENPC (Marne-la-Vallée, France)

² CEA/DAM (Bruyères-le-Châtel, France)

 3 currently long term visitor at IPAM (UCLA) for the program "Bridging Time and Length Scales"

http://cermics.enpc.fr/~stoltz/

References

 G. Stoltz, Shock waves in an augmented one-dimensional atom chain, Nonlinearity 18 (2005) 1967-1985

Presentation and preprints available at the URL http://cermics.enpc.fr/~stoltz/

Why looking for a simplified model?

- Shock/detonation waves are multiscale phenomena
- Different descriptions (fluid dynamics, molecular dynamics)
- Usually, MD is used to calibrate parameters
- A direct micro/macro limit (at least in some asymptotic regime) would be very interesting
- Hence simplified 1D model since mathematical results on 1D chains exist?

- Shock waves in one dimensional chains
- Introducing some mean higher dimensional perturbations
 - some heuristical forcing term
 - a bath of linear oscillators and its stochastic limit
 - a nonlinear model
- Extension to detonation waves
 - a simplified model of detonation in 1D chains
 - some numerical results

I. Shock waves in one-dimensional atom chains

The model

Consider the Hamiltonian (nearest-neighbor interactions):

$$H_{\mathsf{S}}(\{q_n, p_n\}) = \sum_{n=-\infty}^{\infty} V(q_{n+1} - q_n) + \frac{1}{2}\dot{p}_n^2, \tag{1}$$

with $(q_n, p_n) = (x_n, \dot{x}_n)$ (x_n = displacement, not position!).

Newton's equations of motion:

$$\ddot{x}_n = V'(x_{n+1} - x_n) - V'(x_n - x_{n-1}).$$
(2)

- Usually, Lennard-Jones like potential (possibly Morse or Toda)
- Normalization conditions V(0) = 0, V'(0) = 0, V''(0) = 1
- b = -V'''(0) measures at the first order the anharmonicity of the system

Shocks in the 1D chain

- Shock obtained by compression by an infinitely massive piston (velocity u_p)^a
- Classification of the shock regimes according to $a = b u_p$:
 - a < 2 = harmonic like behavior
 - a > 2 = hard rod like behavior
- Rigorous mathematical proof in the Toda case^b
- Robustness of the profiles with respect to thermal initial conditions / averaging over several realizations

^aDuvall *et al.* (1969); Holian *et al.* (1978, 1979, 1981) ^bVenakides *et al.* (1991)

Weak shock profiles (a < 2)

Weak shock profiles (a = 0.45) for a Lennard-Jones like potential for particles initially at rest. Left: Relative displacement profile ($x_{n+1} - x_n$). Right: Particle velocity. The sizes of the different regions grow linearly in time.

Strong shock profiles (a > 2)

Strong shock profiles (a = 9) for a Lennard-Jones like potential for particles initially at rest. Left: Relative displacement profile ($x_{n+1} - x_n$). Right: Particle velocity. The sizes of the different regions grow linearly in time. Relaxation waves are problematic (soliton train not damped out).

Thermalized strong shock profiles (a > 2

Strong shock profiles (a = 9) for a Lennard-Jones like potential for particles initially at rest. Left: Relative displacement profile ($x_{n+1} - x_n$). Right: Particle velocity. The initial temperature is $\beta^{-1} = 0.01$.

II. Introducing some mean higher dimensional perturbations

3D is not 1D

- 1D shocks behave badly because there is no room for relaxation (formation of the most energetic waves = binary waves)
- 3D shocks are 1D like only at T = 0 and when the compression is done along a principal axis^a
- Otherwise, local equilibrium is quickly restored after the shock front has passed
- Idea: the transverse degrees of freedom are necessary for this relaxation
 = thermostat like degrees of freedom!

^aHolian, Shock waves (1995)

The form of the transverse perturbations

Assumption: constrained d.o.f in the tranverse and longitudinal directions For harmonic potentials (FCC <100> structure):

$$\ddot{x}_n = \frac{9}{8}(x_{n+1} - 2x_n + x_{n-1}) + \frac{\sqrt{3}}{4}(y_n - y_{n-1}), \quad \ddot{y}_n = -\frac{3}{2}y_n - \frac{\sqrt{3}}{2}(x_{n+1} - x_n)$$

General case: sum of potentials with different spring constants

The augmented 1D model

- System (S) and a heat bath (B) described by bath variables $\{y_n^j\}$ $(n \in \mathbb{Z}, j = 1, ..., N)$.
- The full Hamiltonian reads:

$$H(\{q_n, p_n, \tilde{q}_n^j, \tilde{p}_n^j\}) = H_{\mathsf{S}}(\{q_n, p_n\}) + H_{\mathsf{SB}}(\{q_n, p_n, \tilde{q}_n^j, \tilde{p}_n^j\}), \qquad (3)$$

where $(q_n, p_n, \tilde{q}_n^j, \tilde{p}_n^j) = (x_n, \dot{x}_n, y_n^j, m_j \dot{y}_n^j)$, H_s is given by (1), and

$$H_{\rm SB} = \sum_{n=-\infty}^{\infty} \sum_{j=1}^{N} \frac{1}{2m_j} (\tilde{p}_n^j)^2 + \frac{1}{2} k_j \left[\gamma_j (x_{n+1} - x_n) + y_n^j \right]^2. \tag{4}$$

Interpretation: each longitudinal spring length is thermostated

Spectrum $\omega_j^2 = k_j$, coupling constants γ_j

Choice of the spectrum parameters

• Compute the solutions for y, and insert it into the equations for x:

$$\ddot{x}_n(t) = V'(x_{n+1} - x_n) - V'(x_n - x_{n-1}) + \int_0^t K_N(t-s)(\dot{x}_{n+1} - 2\dot{x}_n + \dot{x}_{n-1})(s) \, ds + \sigma_n^N(t)$$

- σ random forcing term
- memory kernel $K_N(t) = \sum_{j=1}^N \gamma_j^2 \omega_j^2 \cos(\omega_j t)$ ("generalized Langevin equation")
- Exponentially decreasing in time ($e^{-\alpha t}$) in the limit $N \to +\infty$ for the choice

$$\omega_j = \Omega\left(\frac{j}{N}\right)^k, \quad \gamma_j^2 \omega_j^2 = \lambda^2 f^2(\omega_j) \; (\Delta \omega)_j,$$

with $f^2(\omega) = \frac{2\alpha}{\pi} \frac{1}{\alpha^2 + \omega^2}$, $(\Delta \omega)_j = \omega_{j+1} - \omega_j$, $\alpha, \lambda > 0$ and k > 0

Some numerical results

Strong shock (a = 3) with N = 200, k = 1, $\Omega = 5$, $\alpha = 2$ and $\lambda = 1$. Left: Relative displacement profile. Right: Velocity profile.

Some numerical results (2)

Same parameters, but results averaged over 10 realizations. Notice that there remain oscillations at the shock front (similar results exist for 3D shocks^a)

^aZybin *et al.* (1999)

Thermostating with less tranverse variables and for stronger shocks

Model

$$H(\{q_n, p_n, \tilde{q}_n^j, \tilde{p}_n^j\}) = H_{\mathsf{S}}(\{q_n, p_n\}) + H_{\mathsf{NLB}}(\{q_n, p_n, \tilde{q}_n^j, \tilde{p}_n^j\}), \qquad (5)$$

with

$$H_{\text{NLB}} = \sum_{n=-\infty}^{\infty} \sum_{j=1}^{N} \frac{1}{2} (\tilde{p}_n^j)^2 + k_j U[\gamma_j (q_{n+1} - q_n) + \tilde{q}_n^j], \tag{6}$$

• Typically, Lennard-Jones like interaction $U(x) = V_{LJ}(1+x)$

Some numerical results

Strong shock ($u_p = 1$) with N = 8 NL oscillators, k = 1, $\Omega = 10$, $\alpha = 5$ and $\lambda = 0.2$. Left: Relative displacement profile. Right: Velocity profile.

Some numerical results (2)

Same parameters, but results averaged over 100 realizations.

III. Extension to detonation waves

Modeling of detonation in 1D chains

- Important features of detonation:
 - exothermicity (energy release) sustains and enhance the shock wave
 - activation barrier: the speed of the shock wave has to be sufficient for ignition to begin
 - chemical kinetics of the reactions
- Modeling the reaction rate at site n: introduction of an extra variable r_n $(0 \le r \le 1)$
- For example, *m*-th order kinetics (while $r_n \leq 1$)

$$\dot{r}_n = D(1 - r_n)^m$$

Rate-dependent potential

Hardening of the potential + continuity point d_c where chemical reactions are initiated

$$V(d) \rightarrow (1 + Mr) V(d) - MV (d_c)$$

with r reaction rate, M > 0 hardening constant^a

^aSornette et al. (2003)

Some numerical results

Reactive shock (K = 1, first order kinetics D = 0.025, $d_c = 0.7$) with the stochastic limit of the harmonic model. Left: Relative displacement profile. Right: Velocity profile.

Some prospects

- Quantitative agreement with real 3D experiments
 - interaction potentials
 - spectrum parameters
 - diatomic chain with next nearest neighbor interactions
- Continuum limit of the model (of the limiting stochastic differential equation)
- Models with reduced degrees of freedom (Holian *et al*) → systematic strategy?