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Outline of the talk

» Computation of equilibrium (static) properties

# Transport properties and linear response theory
s Nonequilibrium dynamics
s Linear response theory
s Some standard examples
# A specific example: computation of shear viscosity with Langevin
dynamics?
s Description of the dynamics
s Definition of the viscosity
s Asymptotics with respect to the friction coefficient
s Numerical results

®R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with

Langevin dynamics, arXiv preprint 1106.0633 (2011), to appear in SIAM MMS
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Equilibrium Langevin dynamics



Microscopic description of a classical system

# Positions ¢ (configuration), momenta p = M q (M diagonal mass matrix)

# Microscopic description of a classical system (/N particles):

(¢,p) = (q1,---,qn, P1,---,pN) € E =DY x R

N
» Hamiltonian H(q, p) Z

.., qn) (all the physics in V)

: : : 1
» Canonical measure: density 1 (q,p) = Z ' e PH@P) with 3 = e
B

# Equilibrium (static) properties: compute approximations of the high
dimensional integral

(4) = /g A(q,p) o(q, p) dgdp

N
1
# Pressure observable: A(q,p) = — Z
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Langevin dynamics (1)

o

Stochastic perturbation of the Hamiltonian dynamics
dgs = M~ 'p, dt
dpt = —VV(qt) dt—’}/M_lpt dt + 0 th

. L . 2
Fluctuation/dissipation relation oo = =

~
5

When V smooth: v is the unique invariant measure
Ergodic averages to compute average properties:

1

T
lim = [ A dt= | A dqd s.
TEEOOT/O oy /g (¢,p)Yo(q,p)dgdp  as

Reference space L?(1)g) with the scalar product

s 9) 12 () :Z/gf(q,p)g(q,p) Yo(q, p) dq dp.

Generator Ag = Apam + Athm With Af . = —Apam and A = A
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Langevin dynamics (2)

» Precise expressions of the generators:

Aham — % ' Vq — VV(Q) ) vpa Athm — Ax,thm + Ay,thm

N
. « 1 1 *
Wlth Aa,thm — ,YOé (_% : Vpa —|_ BAPa> — _B Z (8]?0”‘) 8po¢i
1=1

o Note that [0, ,, Aham] = ic‘?qm (where [A, B] = AB — BA)
m

# Standard results of hypocoercivity® show that Ker (.\4p) = Span(1),

HetAg < Co M
B(H!(¢0)NH)
and A; ' compacton H = {f € L?(1by) ‘ fbo = O} = L% (¢po) N {1}
DN XRdN

2Villani, Trans. AMS 950 (2009); Pavliotis and Hairer, J. Stat. Phys. 131 (2008);
Ottobre and Pavliotis, Nonlinearity 24 (2011)
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Transport properties and linear
response theory




Computation of transport properties

# There are three main types of techniques
s Equilibrium techniques: Green-Kubo formula (autocorrelation)
s Transient methods

s Steady-state nonequilibrium technigues
s boundary driven
s bulk driven

# The determination of transport coefficients relies on an analogy with
macroscopic evolution equations

# First mathematical questions:
s For equilibrium techniques: integrability of the autocorrelation function

s For steady-state techniques: existence and uniqueness of an invariant
probability measure (the thermodynamic ensemble is well defined)
— usually only results for bulk driven dynamics (except systems with
very simple geometries)
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Nonequilibrium dynamics: Zoology

# We consider perturbations of equilibrium dynamics through
s non-gradient forces (periodic potential V', g € T)

dgy = M~ 'py dt
—1 2y
dp, = ( YV (g) + §F) dt —y M pedi 4|7 W,

s fluctuation terms with different temperatures
( dq; = p; dt,

) dp; = (U,(QH—I — Clq;) — ’U/(q@' — Qi—l) dt, l 7é 1, N,
dpr = v'(qa — q1) dt — yp1 dt + /2911, thl,

“dpy = —v'(gn — qn—1) dt —ypN dt + vV 2yIR thN,

# Nonequilibrium dynamics are characterized by

s the existence of non-zero currents in the system

s the non-reversibility of the dynamics with respect to the invariant
measure (entropy production, non self-adjointness of the generator)
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Nonequilibrium dynamics: General formalism

# Equilibrium dynamics: invariant measure iy, generator A

# Nonequilibrium dynamics: generator A, + £A44, invariant measure

VYe = fevbo, fe=1+&H + 6+ ..

solution of (Aj + A7) fe = 0, where adjoints are considered on L?(vy):

[5 7 (Aog) o = /5 (A3 1) 9o

— +00 n
o Formally, fe = (1 +§(A8)_1A1) 11 = <1 + Zg” {— (AS)_lAﬂ ) 1
n=1

# To make such computations rigorous (for ¢ small enough): prove that
s (properties of the equilibrium dynamics) Ker(A{) = 1 and A is
invertible on H = 1+
s (properties of the perturbation) Ran(A*) c H and (A%) ' A* is
bounded on H. Typically, ||A1¢|| < al|Agepl| + bl|¢|| for ¢ € H
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Nonequilibrium dynamics: Linear response

# Response property R € ‘H, conjugated response S = Aj1:

. (R — *
azgﬂ%:/gmmo:—/gmol}z} [AT1] g

_ /O +ooIE«;:(R(g[;t)S(q;O))dt

400
where formally —A; ! = !0 dt (as operators on H
° 0

# Autocorrelation of R recovered for perturbations such that Aj1 oc R

# In practice:
s ldentify the response function
s Construct a physically meaningful perturbation
s Obtain the transport coefficient «

s Itis then possible to construct non physical perturbations allowing to
compute the same transport coefficient (“Synthetic NEMD”)
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Example 1: Autodiffusion

» Periodic potential V', constant external force F’

( dqt = M_lpt dt

>
dp; = ( YV (g) + §F> dt — M~ \py dt + /% AW,
\

» Inthiscase, A, =F-9,andso A1 =—3F -M~'p
» Response: R(q,p) = F - M~'p = average velocity in the direction F

# Linear response result: defines the mobility

<F ' M_1p>§

— ﬁ/—l_ooE((F'M_lpt)(F'M_lpo)> it —§ lim (F -E(qr — QO))

£—0 £ T—+o00 2T

since [F E(gr — qo)}2 — 9T /OTIE<(F M~ 1p,)(F - M—lpo)) (1 ~ %) dt
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Example 2: Thermal transport

o ConsiderT, =T+ AT andIgr =T — AT sothat £ = AT

# Reference dynamics = Langevin with thermostats at temperature 1" at the
boundaries, generator of the perturbation A; = ~(97, — 95 ,)

# Invariant measure for the equilibrium dynamics

N—
. p?
tolg.p) = 2~ e MW dgdp,  H(g.p)=) =+ Z v(gis1 —

1=1

# Ergodicity (up to global translations) can be proven under some
conditions on the interaction potential v

# Response function: energy current (local variations of the energy)

o 1( I o ) dei .o L
€q 9 + 9 (QZ—i—l QZ)"_U(QZ Q'L—l) ) dt —]z—l,z ]z,z—l—la
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Example 2: Thermal transport (continued)

N—-1

» Total energy current J = ) i1 With jit1; = —0' (g1 — ¢ D +2pz+1
1=1
# Linear response: after some (non trivial) manipulations,
lim (/) — 3%y /+OO/ —t.AOJ — 2 )bo dt
AT —0 AT
-2 /ME(J(%: Pe)J (qo po)) dt
N-1J, ’ ’

# Synthetic dynamics: fixed temperatures of the thermostats but external
forcings — bulk driven dynamics (convergence may be faster)

s Non-gradient perturbation —5(@’(qi+1 q)+ v (g — qi_ 1))
N

» Hamiltonian perturbation Hy + ¢Hy with Hy(q,p) = » ie;
=1

In both cases, A} = —A; +c¢J
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Extensions

# Time-dependent forcings (Fourier transforms of autocorrelations,
stochastic resonance)

# Constrained nonequilibrium systems (computation of transport properties
for systems with molecular constraints)

# Variance reduction (in particular, importance sampling) for nonequilibrium
dynamics is difficult since the invariant measure depends non-trivially on
the dynamics

# Simple one-dimensional example: ¢ € T and V' periodic,
dy = ( — V' (xy) + F)dt V24w,

The unique invariant probability measure is
1
woo(x) _ Z—l/ eV(:c—l—y)—V(x)—Fy dy
0

Local perturbations of V' are felt globally.
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Nonequilibrium Langevin dynamics
for shear computations




A picture of the nonequilibrium forcing

2D system to simplify notation: D = L, T x L, T

force
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The nonequilibrium dynamics

# Add a smooth nongradient force in the x direction, depending on y:

Pit
dqfi,t = =
m

’

dt,

Apai = =V, V(@) dt + EF(ay0.0) dt =32t dt 4 % AW,

i 2 ;
| dpyis =~V V(@) dt - vy P2 gt \/% daw,

/\\

m

# Forany ¢ € R, existence/unigueness of a smooth invariant measure with
density ¢, € C>° (DY x R?") provided v,, v, > 0

# Series expansion: there exists £* > 0 such that, for any £ € (—£*, &%),

e = febo,  fe=1+> & fullrze < CE) ™

k>1

® Use ||By|? < |(¢, Aop)], define 1 = — (A%) ™" B*f;, s0 (Ag + £B)"fe = 0

» Averages with respect to the measure v¢: (h)e = (h, fe) 12 (40)
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Local conservation of the longitudinal velocity

Aoh

# Linear response result: gm%< Z >5 = —ﬁ <h7 E paziF(Qyi)>
— m

= L2(¢o)

# Can be applied to Ao_lh for a function h € ‘H (otherwise consider h — (h)()

# Average longitudinal velocity u,(Y) = lm% glm% : where
Us(Y,q,p) = — Zp:mXa qyi — Y)

» Average off-diagonal stress o,, (V) = lim lim —= where ... =

e—0&—0
PxiP z sz qzx;j s
Y Qyz . Z V/ |Qz | — |] XE(S — Y) ds
1<i<j<N i = djl Jqy,
Y :
# Local conservation law?® d)ﬁ ) + Yo pu. (Y) =pF(Y) (with p = N/|D|)

%Irving and Kirkwood, J. Chem. Phys. 18 (1950)
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Definition of the viscosity and asymptotics (1)

du(Y)
dY
# Closure assumption n(Y)=n>0

» Definition 0,,(Y) := —n(Y)

# Closed equation on the longitudinal velocity: basis for numerics

—nuz(Y) + Y2pug (V) = pF(Y)

» Asymptotic behavior of the viscosity for large frictions: understand the
limit of the longitudinal velocity field as ~,, or v, — +00

Us(Y,- N
uy s (Y) = lim < x(g e _ i <priF(Qyi)7dZ/s(Y7Q7p)>
1=1

L2(%o)

Wlth _AO%g(Ya ) — U;,: (Ya ) and -AO — Aham + /VxAx,thm + fYyAy,thm
N
» Behavior of solutions to the Poisson equation —Asf = > ps:iG(gyi)?
1=1

# Formal solution f = fO +~ 1 fl+927% + ...
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Definition of the viscosity and asymptotics (2)

»# |Infinite transverse friction: ~, — +oo

s f,, unique solution in H of the equation —Ay(vy) f,, = me (Gyi)

C

0
fvy -/ HHl(%) < W_y
N

s the function (O is of the form f°(q,p) = > ~ G(ayi)i(¢e, y» Pa)
1=1

» afinite limit is obtained for the longitudinal velocity (G = x-(- — Y))

s forall v, >,

»# Infinite longitudinal friction: v, — +o0

s fy, € H unique solution of —Ay(vz)f,, = me (qyi)

c

s forall v, > vy, || fr. —Wg?lleHl(%) < 2

N
s itholds f'(q,p) =m > paiGlay:) + [ (q,py)
1=1
» Vvanishing longitudinal velocity: u,.(Y) = hn% hrﬁ Yzuo (Y) = F(Y)
e—0 vgp—
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Definition of the viscosity and asymptotics (3)

»# |dea of the proof in the case when v, — +o0

» Define %y = Dg qu — quV(Qxa Qy) | va + foAx,thm aCting on LQ(\PQy)

{ Ay,thmfo — O

Ay.tom [ (¢,0) = —py - Vg, [ (¢, p2) me (ayi) — T4, (4, Pz)

o The first equation shows that f° = fo(q,px)

N
» Set fl — fl + Dy - vqyf() so that -Ay,thmf1 — _priG(Qy’i) _ %y fO(Q7p£IJ)

» Solvability condition: f°(g, p) ZG 4yi)T,. ' (p2i) and =0

# Uniform hypocoercivity estimates: useful for v, > 7,:

Ol oy — (o = ) ({21 Ay anmte)) < — (fur, Agu)

Ve

>0

» Finish the proof by considering u = f, — fO -~ trl
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Numerical results: Description of the system

d 12 d 6
# 2D Lennard-Jones fluid Vyj(r) = 4ey; ((LJ> — (ﬂ) >

Tr T
(dr,; = 1,5 = 1, smooth cut-off between 2.9 and 3)

# Thermodynamic conditions: 6 = 0.4, p = 0.69 (m = 1)

# Applied nongradient forces:
: : 2
s Sinusoidal: F(y) = sin (i?J)
Ly
(4
L,
4

Y 2

4
s piecewise linear: F'(y) = {
p (y) 3L, L,
- y ’ PN S y S Lya
(L, \ 4 2
( L
1, 0<y < Ty’
s piecewise constant: F'(y) = ¢ I
_ -y
\ 1, 5 <y <Ly,
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Numerical implementation

» Numerical scheme: a; , = exp(—,,,At), time step At = 0.005

\

( At
pn—|—1/4 _ pn o 7vv(qn>’

qn—i—l _ qn —|—Atpn+1/4,

pnTE = prtl/d - VV(q ),
n+1 n‘|‘1/2 l 1 o 2 G’n 1 o iF n+1
B Vo
n n 1 n
pitt = a,pit 2 4+ /= (1 - a2)GY,

» Well behaved in the limits v — and/or v — +oo

# Binning procedure to obtain averages as a function of the altitude Y

# Fourier series analysis to estimate the viscosity U, =

Fy,

n (2w 2
— T k2+/yx
P <Ly>
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Numerical results: Validation of the closure (1)

187
167
147
127

107

value value

Velocity profile and off diagonal component of the stress tensor for the
sinusoidal nongradient force.
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Numerical results: Validation of the closure (2)

187
167

147

107

L — T T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15

value value

Velocity profile and off diagonal component of the stress tensor for the
piecewise linear nongradient force.
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Numerical results: Validation of the closure (3)

187 U 187
167 F 16
147 147
Y 127 Y 12
107 107
8 8
67 67
47 47
2 2
oi — oi w w w w w w w w
-15 . 15 20 -15 -10 -05 00 05 1.0 15 2.0
value value

Velocity profile and off diagonal component of the stress tensor for the
piecewise constant nongradient force.
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Numerical results: Infinite transverse friction

10 § S~ 107
] L o >2<>¢< x X X
8 10 RN ) X
L S N 81
b 1§ \\ . >E<
10 3 > R 7
| . 77 X
= e AR 67 X
T 10 7 AN 4 X
b X X X \\\ 57
— ] X XX, ] X
10 N 47
XX X
23 X 37
10 X i X
2? X X X
3 T AT T T T
10 1 2 3 1 0 1 2 3 4
10 10 10 10 10 10 10 10 10
Ty Ty

Left: Convergence of the velocity profile for increasing values of the transverse
friction ~,,.

Right: Shear viscosity n as function of ~, in the case v, = 1, for the sinusoidal
nongradient force.
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Numerical results: Infinite longitudinal friction

0
10 4
b 3.0
— 7 |
&g X
~ 2.8
| -1 \\\\\ b
o 10 - ~el 2.6
C ] X ~ . T] 7
\\ X 2.4 —
-~ R |
~ 2.2 7
27 X\Xx )
10 A \‘>§ X
] A X5 2.0
1.8 7
-3 T T T T T T T T T T T T T T 1.6 7
10 o 1 2
10 10 10
Y

%***

M

|1

20

40

T T T T T

60

Yz

T
80

100

Left: Convergence of the rescaled velocity profile for increasing values of the

transverse friction ~,.

Right: Shear viscosity n as function of -, in the case ~, = 1, for the sinusoidal

nongradient force.
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