### Computation of transport coefficients in molecular dynamics

A mathematical perspective, and an application to shear viscosity

Gabriel STOLTZ

CERMICS & MICMAC project team, Ecole des Ponts ParisTech

http://cermics.enpc.fr/~stoltz/

#### Outline of the talk

- Computation of equilibrium (static) properties
- Transport properties and linear response theory
  - Nonequilibrium dynamics
  - Linear response theory
  - Some standard examples
- A specific example: computation of shear viscosity with Langevin dynamics<sup>a</sup>
  - Description of the dynamics
  - Definition of the viscosity
  - Asymptotics with respect to the friction coefficient
  - Numerical results

<sup>&</sup>lt;sup>a</sup>R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin dynamics, *arXiv* preprint **1106.0633** (2011), to appear in SIAM MMS

### Equilibrium Langevin dynamics

### Microscopic description of a classical system

- Positions q (configuration), momenta  $p = M\dot{q}$  (M diagonal mass matrix)
- ullet Microscopic description of a classical system (N particles):

$$(q,p) = (q_1,\ldots,q_N,\ p_1,\ldots,p_N) \in \mathcal{E} = \mathcal{D}^N \times \mathbb{R}^{dN}$$

- ▶ Hamiltonian  $H(q,p) = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(q_1,\ldots,q_N)$  (all the physics in V!)
- Canonical measure: density  $\psi_0(q,p)=Z^{-1}\,\mathrm{e}^{-\beta H(q,p)}$ , with  $\beta=\frac{1}{k_\mathrm{B}T}$
- Equilibrium (static) properties: compute approximations of the high dimensional integral

$$\langle A \rangle = \int_{\mathcal{E}} A(q, p) \, \psi_0(q, p) \, dq \, dp$$

• Pressure observable:  $A(q,p) = \frac{1}{d|\mathcal{D}|} \sum_{i=1}^{N} \left( \frac{p_i^2}{m_i} - q_i \cdot \nabla_{q_i} V(q) \right)$ 

### Langevin dynamics (1)

Stochastic perturbation of the Hamiltonian dynamics

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sigma dW_t \end{cases}$$

- Fluctuation/dissipation relation  $\sigma\sigma^T=\frac{2}{\beta}\gamma$
- When V smooth:  $\psi_0$  is the unique invariant measure
- Ergodic averages to compute average properties:

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T A(q_t, p_t) dt = \int_{\mathcal{E}} A(q, p) \, \psi_0(q, p) \, dq \, dp \qquad \text{a.s.}$$

• Reference space  $L^2(\psi_0)$  with the scalar product

$$\langle f, g \rangle_{L^2(\psi_0)} := \int_{\mathcal{E}} f(q, p) g(q, p) \, \psi_0(q, p) \, dq \, dp.$$

• Generator  $\mathcal{A}_0 = \mathcal{A}_{\mathrm{ham}} + \mathcal{A}_{\mathrm{thm}}$  with  $\mathcal{A}^*_{\mathrm{ham}} = -\mathcal{A}_{\mathrm{ham}}$  and  $\mathcal{A}^*_{\mathrm{thm}} = \mathcal{A}_{\mathrm{thm}}$ 

### Langevin dynamics (2)

Precise expressions of the generators:

$$\mathcal{A}_{\text{ham}} = \frac{p}{m} \cdot \nabla_q - \nabla V(q) \cdot \nabla_p, \qquad \mathcal{A}_{\text{thm}} = \mathcal{A}_{x,\text{thm}} + \mathcal{A}_{y,\text{thm}}$$

with 
$$\mathcal{A}_{\alpha, \text{thm}} = \gamma_{\alpha} \left( -\frac{p_{\alpha}}{m} \cdot \nabla_{p_{\alpha}} + \frac{1}{\beta} \Delta_{p_{\alpha}} \right) = -\frac{1}{\beta} \sum_{i=1}^{N} \left( \partial_{p_{\alpha i}} \right)^* \partial_{p_{\alpha i}}$$

- Note that  $[\partial_{p_{\alpha i}}, \mathcal{A}_{\mathrm{ham}}] = \frac{1}{m} \partial_{q_{\alpha i}}$  (where [A, B] = AB BA)
- Standard results of hypocoercivity<sup>a</sup> show that  $Ker(A_0) = Span(1)$ ,

$$\left\| e^{t\mathcal{A}_0^*} \right\|_{\mathcal{B}(H^1(\psi_0)\cap\mathcal{H})} \le Ce^{-\lambda t}$$

$$\text{ and } \mathcal{A}_0^{-1} \text{ compact on } \mathcal{H} = \left\{ f \in L^2(\psi_0) \ \left| \ \int_{\mathcal{D}^N \times \mathbb{R}^{dN}} \!\! f \psi_0 = 0 \right. \right\} = L^2(\psi_0) \cap \{1\}^\perp \right\}$$

<sup>&</sup>lt;sup>a</sup>Villani, *Trans. AMS* **950** (2009); Pavliotis and Hairer, *J. Stat. Phys.* **131** (2008); Ottobre and Pavliotis, *Nonlinearity* **24** (2011)

# Transport properties and linear response theory

### Computation of transport properties

- There are three main types of techniques
  - Equilibrium techniques: Green-Kubo formula (autocorrelation)
  - Transient methods
  - Steady-state nonequilibrium techniques
    - boundary driven
    - bulk driven
- The determination of transport coefficients relies on an analogy with macroscopic evolution equations
- First mathematical questions:
  - For equilibrium techniques: integrability of the autocorrelation function
  - For steady-state techniques: existence and uniqueness of an invariant probability measure (the thermodynamic ensemble is well defined)
    - → usually only results for bulk driven dynamics (except systems with very simple geometries)

### Nonequilibrium dynamics: Zoology

- We consider perturbations of equilibrium dynamics through
  - non-gradient forces (periodic potential  $V, q \in \mathbb{T}$ )

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = \left(-\nabla V(q_t) + \xi F\right) dt - \gamma M^{-1}p_t dt + \sqrt{\frac{2\gamma}{\beta}} dW_t \end{cases}$$

fluctuation terms with different temperatures

$$\begin{cases} dq_{i} = p_{i} dt, \\ dp_{i} = \left(v'(q_{i+1} - q_{i}) - v'(q_{i} - q_{i-1})\right) dt, & i \neq 1, N, \\ dp_{1} = v'(q_{2} - q_{1}) dt - \gamma p_{1} dt + \sqrt{2\gamma T_{L}} dW_{t}^{1}, \\ dp_{N} = -v'(q_{N} - q_{N-1}) dt - \gamma p_{N} dt + \sqrt{2\gamma T_{R}} dW_{t}^{N}, \end{cases}$$

- Nonequilibrium dynamics are characterized by
  - the existence of non-zero currents in the system
  - the non-reversibility of the dynamics with respect to the invariant measure (entropy production, non self-adjointness of the generator)

### Nonequilibrium dynamics: General formalism

- Equilibrium dynamics: invariant measure  $\psi_0$ , generator  $\mathcal{A}_0$
- Nonequilibrium dynamics: generator  $A_0 + \xi A_1$ , invariant measure

$$\psi_{\xi} = f_{\xi}\psi_0, \qquad f_{\xi} = 1 + \xi f_1 + \xi^2 f_2 + \dots$$

solution of  $(A_0^* + \xi A_1^*) f_{\xi} = 0$ , where adjoints are considered on  $L^2(\psi_0)$ :

$$\int_{\mathcal{E}} f(\mathcal{A}_0 g) \ \psi_0 = \int_{\mathcal{E}} (\mathcal{A}_0^* f) g \psi_0$$

- Formally,  $f_{\xi} = \left(1 + \xi \left(\mathcal{A}_{0}^{*}\right)^{-1} \mathcal{A}_{1}\right)^{-1} \mathbf{1} = \left(1 + \sum_{n=1}^{+\infty} \xi^{n} \left[-\left(\mathcal{A}_{0}^{*}\right)^{-1} \mathcal{A}_{1}^{*}\right]^{n}\right) \mathbf{1}$
- To make such computations rigorous (for  $\xi$  small enough): prove that
  - (properties of the equilibrium dynamics)  ${\rm Ker}(\mathcal{A}_0^*)=1$  and  $\mathcal{A}_0^*$  is invertible on  $\mathcal{H}=\mathbf{1}^\perp$
  - (properties of the perturbation)  $\operatorname{Ran}(\mathcal{A}_1^*) \subset \mathcal{H}$  and  $(\mathcal{A}_0^*)^{-1} \mathcal{A}_1^*$  is bounded on  $\mathcal{H}$ . Typically,  $\|\mathcal{A}_1\varphi\| \leq a\|\mathcal{A}_0\varphi\| + b\|\varphi\|$  for  $\varphi \in \mathcal{H}$

### Nonequilibrium dynamics: Linear response

• Response property  $R \in \mathcal{H}$ , conjugated response  $S = \mathcal{A}_1^* \mathbf{1}$ :

$$\alpha = \lim_{\xi \to 0} \frac{\langle R \rangle_{\xi}}{\xi} = \int_{\mathcal{E}} R \, f_1 \, \psi_0 = -\int_{\mathcal{E}} \left[ \mathcal{A}_0^{-1} R \right] \left[ \mathcal{A}_1^* \mathbf{1} \right] \, \psi_0$$
$$= \int_0^{+\infty} \mathbb{E} \left( R(x_t) S(x_0) \right) dt$$

where formally 
$$-\mathcal{A}_0^{-1}=\int_0^{+\infty}\mathrm{e}^{t\mathcal{A}_0}\,dt$$
 (as operators on  $\mathcal{H}$ )

- Autocorrelation of R recovered for perturbations such that  $\mathcal{A}_1^*\mathbf{1}\propto R$
- In practice:
  - Identify the response function
  - Construct a physically meaningful perturbation
  - Obtain the transport coefficient  $\alpha$
  - It is then possible to construct non physical perturbations allowing to compute the same transport coefficient ("Synthetic NEMD")

### Example 1: Autodiffusion

Periodic potential V, constant external force F

$$\begin{cases} dq_t = M^{-1}p_t dt \\ dp_t = \left(-\nabla V(q_t) + \xi F\right) dt - \gamma M^{-1}p_t dt + \sqrt{\frac{2\gamma}{\beta}} dW_t \end{cases}$$

- In this case,  $A_1 = F \cdot \partial_p$  and so  $A_1^* \mathbf{1} = -\beta F \cdot M^{-1} p$
- Response:  $R(q, p) = F \cdot M^{-1}p$  = average velocity in the direction F
- Linear response result: defines the mobility

$$\lim_{\xi \to 0} \frac{\left\langle F \cdot M^{-1} p \right\rangle_{\xi}}{\xi} = \beta \int_0^{+\infty} \mathbb{E}\left( (F \cdot M^{-1} p_t) (F \cdot M^{-1} p_0) \right) dt = \beta \lim_{T \to +\infty} \frac{\left( F \cdot \mathbb{E}(q_T - q_0) \right)}{2T}$$

since 
$$\left[F \cdot \mathbb{E}(q_T - q_0)\right]^2 = 2T \int_0^T \mathbb{E}\left((F \cdot M^{-1}p_t)(F \cdot M^{-1}p_0)\right) \left(1 - \frac{t}{T}\right) dt$$

### Example 2: Thermal transport

- Consider  $T_{\rm L}=T+\Delta T$  and  $T_{\rm R}=T-\Delta T$  so that  $\xi=\Delta T$
- Reference dynamics = Langevin with thermostats at temperature T at the boundaries, generator of the perturbation  $\mathcal{A}_1 = \gamma(\partial_{p_1}^2 \partial_{p_N}^2)$
- Invariant measure for the equilibrium dynamics

$$\psi_0(q,p) = Z^{-1} e^{-\beta H(q,p)} dq dp, \qquad H(q,p) = \sum_{i=1}^N \frac{p_i^2}{2} + \sum_{i=1}^{N-1} v(q_{i+1} - q_i)$$

- Ergodicity (up to global translations) can be proven under some conditions on the interaction potential  $\boldsymbol{v}$
- Response function: energy current (local variations of the energy)

$$\varepsilon_i = \frac{p_i^2}{2} + \frac{1}{2} \left( v(q_{i+1} - q_i) + v(q_i - q_{i-1}) \right), \qquad \frac{d\varepsilon_i}{dt} = j_{i-1,i} - j_{i,i+1},$$

### Example 2: Thermal transport (continued)

- Total energy current  $J = \sum_{i=1}^{N-1} j_{i+1,i}$  with  $j_{i+1,i} = -v'(q_{i+1} q_i) \frac{p_i + p_{i+1}}{2}$
- Linear response: after some (non trivial) manipulations,

$$\lim_{\Delta T \to 0} \frac{\langle J \rangle_{\Delta T}}{\Delta T} = -\beta^2 \gamma \int_0^{+\infty} \int_{\mathcal{E}} \left( e^{-t\mathcal{A}_0} J \right) (p_1^2 - p_N^2) \psi_0 dt$$
$$= \frac{2\beta^2}{N - 1} \int_0^{+\infty} \mathbb{E} \left( J(q_t, p_t) J(q_0, p_0) \right) dt$$

- Synthetic dynamics: fixed temperatures of the thermostats but external forcings → bulk driven dynamics (convergence may be faster)
  - Non-gradient perturbation  $-\xi \Big(v'(q_{i+1}-q_i)+v'(q_i-q_{i-1})\Big)$
  - Hamiltonian perturbation  $H_0 + \xi H_1$  with  $H_1(q,p) = \sum_{i=1}^N i \varepsilon_i$

In both cases,  $A_1^* = -A_1 + cJ$ 

#### **Extensions**

- Time-dependent forcings (Fourier transforms of autocorrelations, stochastic resonance)
- Constrained nonequilibrium systems (computation of transport properties for systems with molecular constraints)
- Variance reduction (in particular, importance sampling) for nonequilibrium dynamics is difficult since the invariant measure depends non-trivially on the dynamics
- ullet Simple one-dimensional example:  $q\in\mathbb{T}$  and V periodic,

$$dx_t = \left(-V'(x_t) + F\right)dt + \sqrt{2} dW_t$$

The unique invariant probability measure is

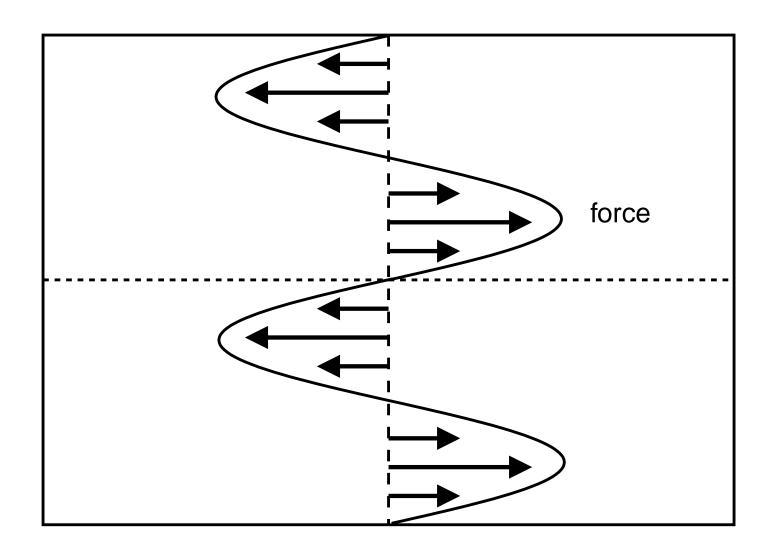
$$\psi_{\infty}(x) = Z^{-1} \int_0^1 e^{V(x+y)-V(x)-Fy} dy$$

Local perturbations of V are felt globally.

## Nonequilibrium Langevin dynamics for shear computations

### A picture of the nonequilibrium forcing

2D system to simplify notation:  $\mathcal{D} = L_x \mathbb{T} \times L_y \mathbb{T}$ 



### The nonequilibrium dynamics

• Add a smooth nongradient force in the x direction, depending on y:

$$\begin{cases} dq_{i,t} = \frac{p_{i,t}}{m} dt, \\ dp_{xi,t} = -\nabla_{q_{xi}} V(q_t) dt + \xi F(q_{yi,t}) dt - \gamma_x \frac{p_{xi,t}}{m} dt + \sqrt{\frac{2\gamma_x}{\beta}} dW_t^{xi}, \\ dp_{yi,t} = -\nabla_{q_{yi}} V(q_t) dt - \gamma_y \frac{p_{yi,t}}{m} dt + \sqrt{\frac{2\gamma_y}{\beta}} dW_t^{yi}, \end{cases}$$

- For any  $\xi \in \mathbb{R}$ , existence/uniqueness of a smooth invariant measure with density  $\psi_{\xi} \in C^{\infty}(\mathcal{D}^N \times \mathbb{R}^{2N})$  provided  $\gamma_x, \gamma_y > 0$
- Series expansion: there exists  $\xi^* > 0$  such that, for any  $\xi \in (-\xi^*, \xi^*)$ ,

$$\psi_{\xi} = f_{\xi}\psi_0, \qquad f_{\xi} = 1 + \sum_{k>1} \xi^k f_k, \qquad \|f_k\|_{L^2(\psi_0)} \le C(\xi^*)^{-k}$$

- Use  $\|\mathcal{B}\varphi\|^2 \leq |\langle \varphi, \mathcal{A}_0 \varphi \rangle|$ , define  $f_{k+1} = -(\mathcal{A}_0^*)^{-1} \mathcal{B}^* f_k$  so  $(\mathcal{A}_0 + \xi \mathcal{B})^* f_{\xi} = 0$
- Averages with respect to the measure  $\psi_{\xi}$ :  $\langle h \rangle_{\xi} = \langle h, f_{\xi} \rangle_{L^{2}(\psi_{0})}$

### Local conservation of the longitudinal velocity

- Linear response result:  $\lim_{\xi \to 0} \frac{\langle \mathcal{A}_0 h \rangle_{\xi}}{\xi} = -\frac{\beta}{m} \left\langle h, \sum_{i=1}^N p_{xi} F(q_{yi}) \right\rangle_{L^2(\psi_0)}$
- Can be applied to  $\mathcal{A}_0^{-1}h$  for a function  $h \in \mathcal{H}$  (otherwise consider  $h \langle h \rangle_0$ )
- Average longitudinal velocity  $u_x(Y) = \lim_{\varepsilon \to 0} \lim_{\xi \to 0} \frac{\langle U_x^{\varepsilon}(Y, \cdot) \rangle_{\xi}}{\xi}$  where

$$U_x^{\varepsilon}(Y,q,p) = \frac{L_y}{Nm} \sum_{i=1}^{N} p_{xi} \chi_{\varepsilon} (q_{yi} - Y)$$

$$\frac{1}{L_x} \left( \sum_{i=1}^{N} \frac{p_{xi} p_{yi}}{m} \chi_{\varepsilon} (q_{yi} - Y) - \sum_{1 \le i < j \le N} \mathcal{V}'(|q_i - q_j|) \frac{q_{xi} - q_{xj}}{|q_i - q_j|} \int_{q_{yj}}^{q_{yi}} \chi_{\varepsilon}(s - Y) ds \right)$$

• Local conservation law<sup>a</sup>  $\frac{d\sigma_{xy}(Y)}{dY} + \gamma_x \overline{\rho} u_x(Y) = \overline{\rho} F(Y)$  (with  $\overline{\rho} = N/|\mathcal{D}|$ )

<sup>&</sup>lt;sup>a</sup>Irving and Kirkwood, *J. Chem. Phys.* **18** (1950)

### Definition of the viscosity and asymptotics (1)

- Definition  $\sigma_{xy}(Y) := -\eta(Y) \frac{du_x(Y)}{dY}$
- Closure assumption  $\eta(Y) = \eta > 0$
- Closed equation on the longitudinal velocity: basis for numerics

$$-\eta u_x''(Y) + \gamma_x \overline{\rho} u_x(Y) = \overline{\rho} F(Y)$$

• Asymptotic behavior of the viscosity for large frictions: understand the limit of the longitudinal velocity field as  $\gamma_x$  or  $\gamma_y \to +\infty$ 

$$u_x^{\gamma_\alpha,\varepsilon}(Y) := \lim_{\xi \to 0} \frac{\langle U_x^{\varepsilon}(Y,\cdot) \rangle_{\xi}}{\xi} = \frac{\beta}{m} \left\langle \sum_{i=1}^N p_{xi} F(q_{yi}), \mathscr{U}^{\varepsilon}(Y,q,p) \right\rangle_{L^2(\psi_0)}$$

with 
$$-\mathcal{A}_0 \mathscr{U}^{\varepsilon}(Y,\cdot) = U_x^{\varepsilon}(Y,\cdot)$$
 and  $\mathcal{A}_0 = \mathcal{A}_{\mathrm{ham}} + \gamma_x \mathcal{A}_{x,\mathrm{thm}} + \gamma_y \mathcal{A}_{y,\mathrm{thm}}$ 

- Behavior of solutions to the Poisson equation  $-\mathcal{A}_0 f = \sum_{i=1}^N p_{xi} G(q_{yi})$ ?
- Formal solution  $f = f^0 + \gamma_{\alpha}^{-1} f^1 + \gamma_{\alpha}^2 f^2 + \dots$

### Definition of the viscosity and asymptotics (2)

- Infinite transverse friction:  $\gamma_y \to +\infty$ 
  - $f_{\gamma_y}$  unique solution in  $\mathcal H$  of the equation  $-\mathcal A_0(\gamma_y)f_{\gamma_y}=\sum_{i=1}^n p_{xi}G(q_{yi})$
  - for all  $\gamma_y \geq \gamma_x$ ,  $\left\| f_{\gamma_y} f^0 \right\|_{H^1(\psi_0)} \leq \frac{C}{\gamma_y}$
  - the function  $f^0$  is of the form  $f^0(q,p) = \sum_{i=1}^N G(q_{yi}) \phi_i(q_x,q_y,p_x)$
  - a finite limit is obtained for the longitudinal velocity ( $G = \chi_{\varepsilon}(\cdot Y)$ )
- Infinite longitudinal friction:  $\gamma_x \to +\infty$ 
  - $f_{\gamma_x} \in \mathcal{H}$  unique solution of  $-\mathcal{A}_0(\gamma_x)f_{\gamma_x} = \sum_{i=1}^{N} p_{xi}G(q_{yi})$
  - for all  $\gamma_x \geq \gamma_y$ ,  $\left\|f_{\gamma_x} \gamma_x^{-1} f^1\right\|_{H^1(\psi_0)} \leq \frac{C}{\gamma_x^2}$
  - it holds  $f^1(q,p) = m \sum_{i=1}^N p_{xi} G(q_{yi}) + \widetilde{f}^1(q,p_y)$
  - vanishing longitudinal velocity:  $\overline{u}_x(Y) = \lim_{\varepsilon \to 0} \lim_{\gamma_x \to +\infty} \gamma_x u_x^{\varepsilon}(Y) = F(Y)$

### Definition of the viscosity and asymptotics (3)

- ullet Idea of the proof in the case when  $\gamma_y o +\infty$

$$\begin{cases} \mathcal{A}_{y,\text{thm}} f^0 = 0, \\ \mathcal{A}_{y,\text{thm}} f^1(q,p) = -p_y \cdot \nabla_{q_y} f^0(q,p_x) - \sum_{i=1}^N p_{xi} G(q_{yi}) - \mathcal{T}_{q_y} f^0(q,p_x) \end{cases}$$

- The first equation shows that  $f^0 \equiv f^0(q, p_x)$
- Solvability condition:  $f^0(q,p) = -\sum_{i=1}^N G(q_{yi}) \mathcal{T}_{q_y}^{-1}(p_{xi})$  and  $\widetilde{f}^1 = 0$
- Uniform hypocoercivity estimates: useful for  $\gamma_y \geq \gamma_x$ :

$$C \|u\|_{H^{1}(\psi_{0})}^{2} - (\gamma_{y} - \gamma_{x}) \underbrace{\langle \langle u, \mathcal{A}_{y, \text{thm}} u \rangle \rangle}_{>0} \leq - \langle \langle u, \mathcal{A}_{0} u \rangle \rangle$$

ullet Finish the proof by considering  $u=f_{\gamma_y}-f^0-\gamma_y^{-1}f^1$  Multiscale systems, Edinburgh, February 201

### Numerical results: Description of the system

- 2D Lennard-Jones fluid  $\mathcal{V}_{\mathrm{LJ}}(r) = 4\varepsilon_{\mathrm{LJ}} \left( \left( \frac{d_{\mathrm{LJ}}}{r} \right)^{12} \left( \frac{d_{\mathrm{LJ}}}{r} \right)^{6} \right)$  ( $d_{\mathrm{LJ}} = \varepsilon_{\mathrm{LJ}} = 1$ , smooth cut-off between 2.9 and 3)
- Thermodynamic conditions:  $\beta = 0.4$ ,  $\rho = 0.69$  (m = 1)
- Applied nongradient forces:
  - sinusoidal:  $F(y) = \sin\left(\frac{2\pi y}{L_y}\right)$ ;
  - $\text{piecewise linear: } F(y) = \begin{cases} \frac{4}{L_y} \left(y \frac{L_y}{4}\right), & 0 \leq y \leq \frac{L_y}{2}, \\ \frac{4}{L_y} \left(\frac{3L_y}{4} y\right), & \frac{L_y}{2} \leq y \leq L_y; \end{cases}$
  - piecewise constant:  $F(y)= egin{cases} 1, & 0 < y < rac{L_y}{2}, \\ -1, & rac{L_y}{2} < y < L_y. \end{cases}$

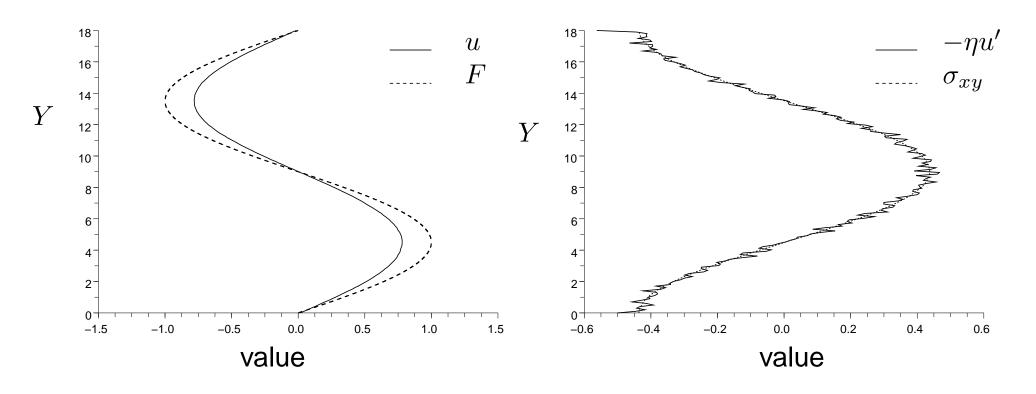
### Numerical implementation

• Numerical scheme:  $\alpha_{x,y} = \exp(-\gamma_{x,y}\Delta t)$ , time step  $\Delta t = 0.005$ 

$$\begin{cases} p^{n+1/4} = p^n - \frac{\Delta t}{2} \nabla V(q^n), \\ q^{n+1} = q^n + \Delta t \, p^{n+1/4}, \\ p^{n+1/2} = p^{n+1/4} - \frac{\Delta t}{2} \nabla V(q^{n+1}), \\ p_{xi}^{n+1} = \alpha_x p_{xi}^{n+1/2} + \sqrt{\frac{1}{\beta} (1 - \alpha_x^2)} \, G_{xi}^n + (1 - \alpha_x) \, \frac{\xi}{\gamma_x} F\left(q_{yi}^{n+1}\right) \\ p_y^{n+1} = \alpha_y p_y^{n+1/2} + \sqrt{\frac{1}{\beta} (1 - \alpha_y^2)} G_y^n, \end{cases}$$

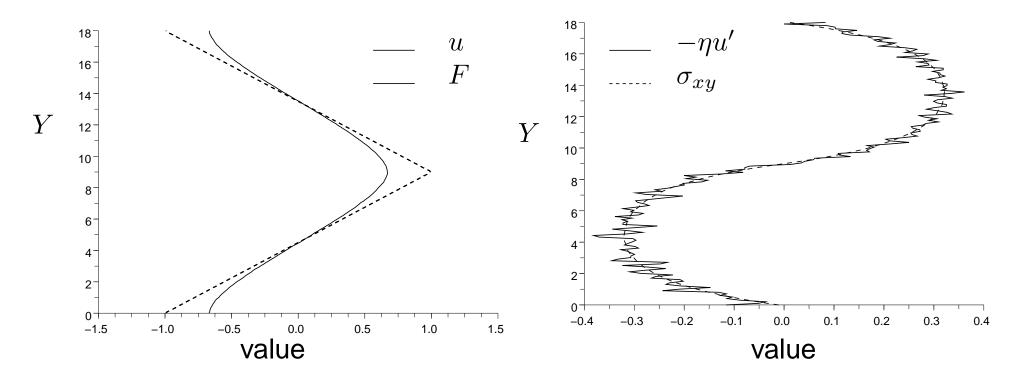
- Well behaved in the limits  $\gamma \to \text{and/or } \gamma \to +\infty$
- ullet Binning procedure to obtain averages as a function of the altitude Y
- Fourier series analysis to estimate the viscosity  $U_k = \frac{F_k}{\frac{\eta}{\overline{\rho}} \left(\frac{2\pi}{L_u}\right)^2 k^2 + \gamma_x}$

### Numerical results: Validation of the closure (1)



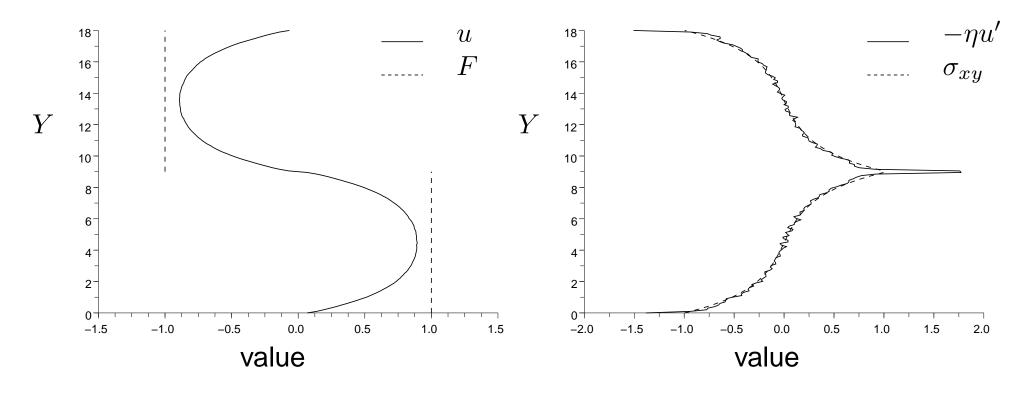
Velocity profile and off diagonal component of the stress tensor for the sinusoidal nongradient force.

### Numerical results: Validation of the closure (2)

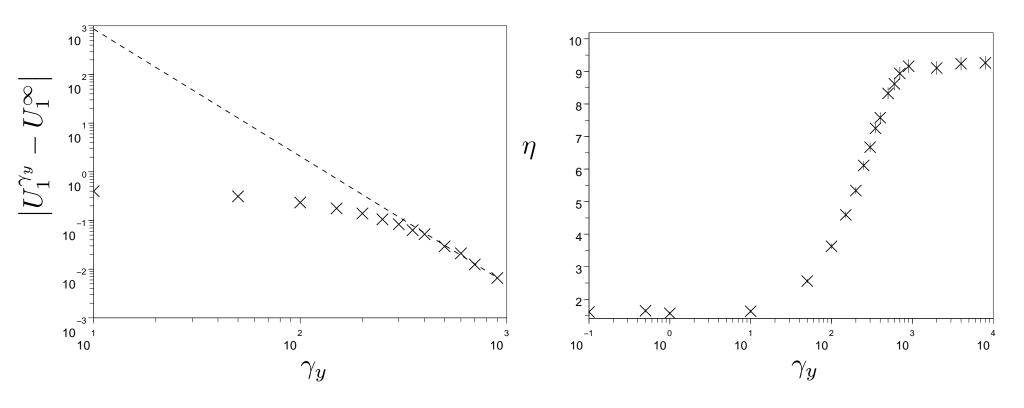


Velocity profile and off diagonal component of the stress tensor for the piecewise linear nongradient force.

### Numerical results: Validation of the closure (3)



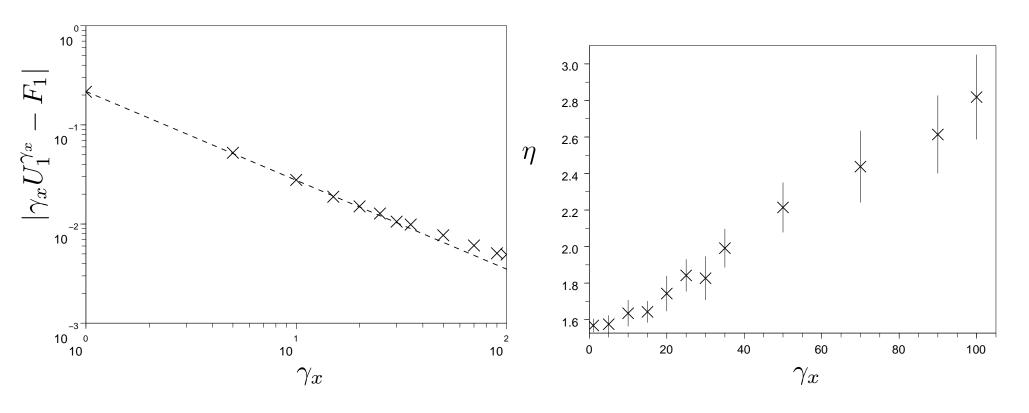
Velocity profile and off diagonal component of the stress tensor for the piecewise constant nongradient force.



Left: Convergence of the velocity profile for increasing values of the transverse friction  $\gamma_y$ .

Right: Shear viscosity  $\eta$  as function of  $\gamma_y$  in the case  $\gamma_x = 1$ , for the sinusoidal nongradient force.

### Numerical results: Infinite longitudinal friction



Left: Convergence of the rescaled velocity profile for increasing values of the transverse friction  $\gamma_x$ .

Right: Shear viscosity  $\eta$  as function of  $\gamma_x$  in the case  $\gamma_y=1$ , for the sinusoidal nongradient force.