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Outline of the talk

The Gell-Mann and Low formula is a fundamental tool in Quantum Field
Theory, used to obtain expressions of the Green’s function amenable to a
perturbative treatment

Allow to transform an eigenstate of some unperturbed Hamiltonian H0

into an eigenstate of H = H0 + V where the interaction term has been
turned on (e.g Coulomb interactions between electrons)

However, eigenspaces of H0 (even for the ground-state) may be
degenerate. It is unclear how to choose the initial state so that the
Gell-Mann and Low formula remains valid

Outline

Some background on the spectral theory of Schrödinger operators

Proof in the case when the initial eigenspace is not degenerate

Extension to the degenerate case (is there a way to choose the initial
eigenstates?)
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First, some background material...
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Quantum description of molecular systems

Fixed nuclei of charges zm located at Rm ∈ R
3 (Born-Oppenheimer

approximation)

Wavefunction ψ((x1, σ1), . . . , (xN , σN )) ∈
∧N

i=1 L2(R3 × {−1, 1}) with

‖ψ‖L2 = 1

The spin variable will be omitted in the sequel

Hamiltonian operator (in atomic units)

H =

N∑

i=1

(
−

1

2
∆xi

+ Vnuc(xi)
)

+
∑

1≤i<j≤N

1

|xi − xj |

with domain D(H) =
∧N

i=1 H2(R3) ⊂ H =
∧N

i=1 L2(R3) and where

Vnuc(x) = −
M∑

m=1

zm

|x−Rm|
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Spectrum of a linear operator (1)

Linear operator A : D(A) ⊂ H → H on a Hilbert space, with dense
domain D(A)

A is injective if Ker(A) = {φ ∈ D(A) |Aφ = 0} = {0}

If A is injective, it is possible to define its inverse, which is an operator
with domain

D(A−1) = Ran(A) =
{
ψ ∈ H

∣∣∣ ∃φ ∈ D(A), ψ = Aφ
}

such that φ = A−1ψ ⇔ ψ = Aφ

A is invertible if it has a bounded inverse defined on D(A−1) = H

If A is closed and one-to-one D(A) → H, the operator A−1 : H → D(A)

is automatically bounded by the closed graph theorem

Resolvent set ρ(A) = (open) set of λ ∈ C such that λ−A is invertible

The spectrum σ(A) = C \ ρ(A) is closed
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Spectrum of a linear operator (2)

The spectrum can be decomposed as σ(A) = σp(A) ∪ σr(A) ∪ σc(A),
where (“by decreasing defaults of invertibility”)

λ ∈ σp(A) iff Ker(λ−A) 6= {0} [eigenvalues]

λ ∈ σr(A) iff λ−A is injective but Ran(λ−A) 6= H [the inverse is not
uniquely defined]

λ ∈ σc(A) iff λ−A is injective, Ran(λ−A) = H but Ran(λ−A) 6= H

[the inverse is unbounded with dense domain; generalized
eigenvalues]

Other decomposition: σ(A) = σd(A) ∪ σess(A), where the discrete
spectrum σd(A) ⊂ σp(A) = isolated eigenvalues of finite multiplicity

Examples (necessarily infinite dimensional)

Residual spectrum: shift operator τd on l2(N,C) with
τd(z0, z1, z2, . . . ) = (0, z0, z1, . . . )

Continuous spectrum: Aψ(x) = xψ(x) on L2(R)
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Spectrum of self-adjoint operators

Adjoint of an unbounded operator = closed operator with domain

D(A∗) =
{
φ ∈ H

∣∣∣ ∀ψ ∈ D(A), |〈Aψ, φ〉| ≤ Cφ‖ψ‖
}

=
{
φ ∈ H

∣∣∣ ∃ϕ ∈ H, ∀ψ ∈ D(A), 〈Aψ, φ〉 = 〈ψ,ϕ〉
}

defined by A∗φ = ϕ

Symmetric operator: ∀(φ, ψ) ∈ D(A)2, 〈Aφ,ψ〉 = 〈φ,Aψ〉 (i.e. A ⊂ A∗)

A symmetric operator is self-adjoint if A = A∗ (i.e. D(A) = D(A∗))

For self-adjoint operators, σ(A) ⊂ R and σr(A) = ∅

An operator V is H0-bounded if D(H0) ⊂ D(V ) and

∀φ ∈ D(H0), ‖V φ‖ ≤ a‖H0φ‖ + b‖φ‖

Kato-Rellich criterion: If H0 is self-adjoint and V is symmetric and
H0-bounded with relative bound a < 1, then H = H0 + V defined on
D(H) = D(H0) is self-adjoint
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Important example: the molecular Hamiltonian

Consider D(HN
0 ) =

∧N
i=1 H2(R3)

HN
0 =

N∑

i=1

(
−

1

2
∆xi

+ Vnuc(xi)
)
, V N =

∑

1≤i<j≤N

1

|xi − xj |

(Kato) Using the Hardy inequality

∀φ ∈ H1(R3),

∫

R3

|φ(x)|2

|x|2
dx ≤ 4

∫

R3

|∇φ(x)|2 dx,

it can be shown that HN = HN
0 + V N is self-adjoint on HN =

∧N
i=1 L2(R3)

HVZ theorem: σess(H
N ) = [EN−1,+∞[, where

EN−1 = inf σ
(
HN−1

)

If N < Z + 1, then there are infinitely many eigenvalues of finite
multiplicity below the essential spectrum
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The Gell-Mann and Low formula for
nondegenerate states
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Switching procedure (1)

Consider, on a given Hilbert space H,

a self-adjoint operator H0, bounded from below and with dense
domain D(H0) ⊂ H

a symmetric perturbation V , H0-bounded with relative bound a < 1.

Set H̃(λ) = H0 + λV with λ ∈ [0, 1]

Switching function f ∈ C1
(
(−∞, 0], [0, 1]

)

integrable

f(0) = 1 and lim
τ→−∞

f(τ) = 0

for τ ∈ (−∞, 0], define H(τ) = H0 + f(τ)V

Denote by Uε(s, s0) the unitary evolution generated by H(εs), i.e. the
unique solution of the problem:

i
dUε(s, s0)

ds
= H(εs)Uε(s, s0), Uε(s0, s0) = I
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Switching procedure (2)

Divergent phase as ε→ 0! Consider V = 0 and φ an eigenstate of H0:

Uε(s, s0)φ = exp

(
−

iE0(s− s0)

ε

)
φ

Remove divergence by working in the interaction picture:

Uε,int(s, s0) = eisH0Uε(s, s0) e−is0H0 .

Macroscopic time t = εs, then unitary evolution

i ε
dUε(t, t0)

dt
= H(t)Uε(t, t0), Uε(t0, t0) = I,

so that, in the interaction picture, Uε
int(t, t0) = eitH0/ε Uε(t, t0) e−it0H0/ε

Standard results show that, for ψ ∈ D(H0), the following limit exists:

Uε
int(t,−∞)ψ = lim

t0→−∞
Uε

int(t, t0)ψ
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Structure of the spectrum

In order for eigenstates to be stable during the switching procedure, some
gap conditions are required

The spectrum of H̃(λ) = H0 + λV , λ ∈ [0, 1], consists of two disconnected
pieces

σ(H̃(λ)) = σN (λ) ∪
(
σ(H̃(λ))\σN (λ)

)

where σN (λ) =
{
Ẽj(λ), j = 1, . . . , N

}
⊂ σdisc

(
H̃(λ)

)

There is a uniform gap between the two parts of the spectrum, and
between the elements of σN (λ), in the sense that:

∆(λ) = min
j=1,...,N

(
min

{ ∣∣∣Ẽj(λ) − E
∣∣∣ , E ∈ σ(H(λ))\{Ẽ1(λ), . . . , ẼN (λ)}

})
,

δ(λ) = min
{ ∣∣∣Ẽj(λ) − Ẽi(λ)

∣∣∣ , 1 ≤ i < j ≤ N
}

are bounded from below by a positive constant for all λ ∈ [0, 1]
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The Gell-Mann and Low formula

For simplicity, eigenvalues Ej(τ) = Ẽj(f(τ)) of multiplicity 1

Then, for an eigenstate ψj of H0 associated with Ej(−∞), if

‖Pj(−∞) − Pj(0)‖ < 1,

the limit

Ψj = lim
ε→0

Uε
int(0,−∞)ψj

〈ψj | Uε
int(0,−∞)ψj 〉

exists and is an eigenstate of H0 + V corresponding to the eigenvalue
Ej(0) = Ẽj(1).

Extension to the case of eigenspaces of multiplicity higher than 1 provided
some direction φ exists such that the denominator does not vanish...

Proposed by GELL-MANN and LOW (Phys. Rev. 1951), first proof due to NENCIU

and RASCHE (Helvetica Physica Acta, 1989)
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First step of the proof: Geometric evolution

Kato intertwining operator:
dÃ(λ, λ0)

dλ
= K̃(λ) Ã(λ, λ0) with Ã(λ0, λ0) = I

Generator K̃(λ) = −
N+1∑

j=1

P̃j(λ)
dP̃j

dλ
(λ), with P̃N+1(λ) = I −

N∑

j=1

P̃j(λ)

Since K̃(λ) is uniformly bounded (gap, hence projectors smooth), the
operator Ã(λ, λ0) is well-defined and strongly continuous

Ã(λ, λ0) is unitary (since K∗ = −K), and intertwines the spectral
subspaces:

P̃j(λ) = Ã(λ, λ0)P̃j(λ0)Ã(λ, λ0)
∗

Denoting by A(s, s0) = Ã(f(s), f(s0)),

Pj(0)A(0,−∞)ψj = A(0,−∞)Pj(−∞)ψj = A(0,−∞)ψj ,

so that A(0,−∞)ψj is an eigenstate of H(0) = H0 + V
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Second step: Adiabatic evolution (adding the dynamical phase)

Adiabatic evolution operator UA(s, s0) is defined as the unique solution of

i
dUA(s, s0)

ds
= HA(s)UA(s, s0), UA(s0, s0) = I,

where the adiabatic Hamiltonian is HA(s) = H(s) + iK(s)

Since both UA and A are intertwiners, they differ only by a phase which
commutes with the spectral projectors: define

Φ(s, s0) = A(s, s0)
∗UA(s, s0),

so that UA(s, s0) = A(s, s0) Φ(s, s0). Then, [Φ(s, s0), Pj(s0)] = 0

The time-evolution of the phase matrix is then easily obtained and

UA(s, s0)Pj(s0) = exp

(
−i

∫ s

s0

Ej(r) dr

)
A(s, s0)Pj(s0)
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Second step: Adiabatic evolution (2)

Important again to work in the interaction picture to remove the divergent
(dynamical) phase: UA,int(s, s0) = eisH0 UA(s, s0) e−is0H0

It can be shown that

UA,int(0,−∞)Pj(−∞) = exp

(
−i

∫ 0

−∞

Ej(r) − E0 dr

)
A(0,−∞)Pj(−∞)

Phase well-defined since |Ej(r) − E0| =
∣∣∣Ẽj(f(r)) − Ẽj(0)

∣∣∣ ≤ Cf(r)

In the time-rescaled variable t = εs,

Uε
A,int(0,−∞)Pj(−∞) = exp

(
−

i

ε

∫ 0

−∞

Ej(τ) − E0 dτ

)
A(0,−∞)Pj(−∞).

Eliminate the phase using

Pj(0)ψj

‖Pj(0)ψj‖2
=

A(0,−∞)ψj

〈ψj | A(0,−∞)ψj 〉
=

Uε
A,int(0,−∞)ψj〈

ψj

∣∣∣Uε
A,int(0,−∞)ψj

〉 ,
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Third step: Adiabatic limit of the full evolution

Compare the adiabatic and full evolutions in the rescaled time-variable:

i ε
dUε

A(t, t0)

dt
=

(
H(t) + iεK(t)

)
Uε

A(t, t0), i ε
dUε(t, t0)

dt
= H(t)Uε(t, t0)

Prove the uniform convergence lim
ε→0

‖Uε(0,−∞) − Uε
A(0,−∞)‖ = 0

(although Uε(0,−∞), Uε
A(0,−∞) do not have a limit as ε→ 0)

Strategy from (TEUFEL, Adiabatic perturbation theory in quantum dynamics, 2003):

Uε(t, t0) − Uε
A(t, t0) = −Uε(t, t0)

∫ t

t0

Uε(t0, t
′)K(t′)Uε

A(t′, t0) dt
′

Define K(t) = −iεUε(t0, t)F (t)Uε(t, t0) with [H(t), F (t)] = K(t). Then

K′(t) = Uε(t0, t)[H(t), F (t)]Uε(t, t0) − iεUε(t0, t)F
′(t)Uε(t, t0)

Similar to
∫ t

0

e−iτ/εdτ = iε
(
e−it/ε − 1

)
= highly oscillatory integral
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The degenerate case
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Structure of the spectrum

Initial state is degenerate: Ẽj(0) = Ẽk(0) for all 1 ≤ j, k ≤ N

Degeneracy splitting (for simplicity): P0V P0 has non-degenerate
eigenvalues and for any λ∗ > 0, there exists α such that

inf
λ∗≤λ≤1

min
k 6=l

∣∣∣Ẽk(λ) − Ẽl(λ)
∣∣∣ ≥ α > 0

Switching function f analytic, such that f ∈ W2,1((−∞, 0]), and f ′/f and
f ′ belong to L∞((−∞, 0]) (In addition to the previous constraints)

For example, f(s) = es

Let (ψ1, . . . , ψN ) be an basis of E0 which diagonalizes the bounded
operator P0V P0

∣∣
E0

. Then, if ‖Pj(−∞) − Pj(0)‖ < 1, the limit

Ψj = lim
ε→0

Uε
int(0,−∞)ψj

〈ψj | Uε
int(0,−∞)ψj 〉

exists and is an eigenstate of H0 + V corresponding to Ej(0) = Ẽj(1)
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Characterization of the initial states

Theorem II.6.1 in (KATO, Perturbation Theory for Linear Operators) shows that the
eigenvalues Ẽj and projectors P̃j are analytic functions

Eigenvectors satisfy H̃(λ)φj(λ) = Ẽj(λ)φj(λ) with

Ẽj(λ) =

+∞∑

n=0

λnEj,n, φj(λ) =

+∞∑

n=0

λnϕj,n

Hierarchy of equations. First order condition

(H0 − E0)ϕj,1 = (Ej,1 − V )ϕj,0

A necessary condition for this equation to have a solution is that the
right-hand side belongs to E⊥

0

This requires Ej,1 = 〈ϕj,0, V ϕj,0 〉 and ∀k 6= j, 〈ϕk,0, V ϕj,0 〉 = 0 so that
the basis diagonalizes P0V P0

∣∣
E0

When degeneracies of P0V P0: higher order conditions
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Idea of the proof and further references

Geometric and adiabatic evolutions: unchanged, since the regularity of
the projectors is obtained with the theorem of Kato

Adiabatic limit: decomposition of the evolution into

an evolution on [T, 0], for Hamiltonians operators with (small) gaps

an evolution on the time-frame (−∞, T ], with T small enough so that
the unitary evolutions are not very different

References:

C. BROUDER, G. STOLTZ AND G. PANATI, Adiabatic approximation,
Gell-Mann and Low theorem and degeneracies: A pedagogical
example, Phys. Rev. A 72 (2008) 042102

C. BROUDER, G. PANATI AND G. STOLTZ, Gell-Mann and Low formula for
degenerate unperturbed states [the math paper!]

C. BROUDER, G. PANATI AND G. STOLTZ, The Green function of degenerate
systems, submitted to Phys. Rev. Lett.
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Application to Green functions (formal...)

Operator A expressed in the Heisenberg picture Ahsnbrg(t) = eitHA e−itH

and, in the interaction picture, Aint(t) = eitH0A e−itH0

Correlation function CA,B(t, t′) = 〈ψ |T [Ahsnbrg(t)Bhsnbrg(t
′)]|ψ〉

Technical lemma (proof to be done...):

s− lim
ε→0

Uε,int(t, 0)∗Aint(t)Uε,int(t, t
′)Bint(t

′)Uε,int(t
′, 0) = Ahsnbrg(t)Bhsnbrg(t

′)

Using the Gell-Mann and Low formula, it can then be shown that

CA,B(t, t′) = lim
ε→0

〈ψ0 |T [Aint(t)Bint(t
′)Uε,int(+∞,−∞)]|ψ0〉

〈ψ0 |Uε,int(+∞,−∞)|ψ0〉
.

Formal extension to the case when A,B are field operators

Basis for a perturbative treatment of the Green’s function, where the
operators Uε,int(+∞,−∞) in the numerator and denominator are
expanded using Feynman diagrams.
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