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Qualitative properties of y = f(y)
There are many situations where the differential system

has structural properties that owed to be preserved

1. Firstintegral : 2-1(y) = 0.

2. Symplectic structure (Hamiltonian systems :
fly) = J'VH(y)).

3. symmetry : p(f(y)) = —f(p(y)).
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Trajectories of 2-D Kepler with various methods

FIG. 1 — E. Hairer, Geometric Integration, pp. 5
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Energy conservation - Global Error

conservation of energy '
02 exnlicit Tubsr, & LRI TNN|

]
mpdsce Bales, i = 0,001
L. L o e TR [, N, N .
S0 ' [ {})
il 1] global error of the solution
i ol Baler, b = 1L.0IK11
1
aymplecic Ewler, i = (L0001

Sy - ; A ! : i

o, | I

FIG. 2 — E. Hairer, Geometric Integration, pp. 6
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Geometric numerical integration

The main objective of GNI is to study existing numerical integrators and design new
ones that preserve some or all of these properties, with applications to

— celestial mechanics,

— robotics,

— molecular simulation...,

where obtaining an accurate approximation over long integration intervals is out of

reach.

The main idea of GNI is to re-interpret the numerical method as the exact solution of

a modified equation whose qualitative features can be described.

\_ _/




f Modified equations \

) =)
modified problem A
9(0) = yo
\ exact solution : Q(nh) = UYUn
= @} (yn)
Yn+1 L\ Yn
/ numerical solution : Y, ~ y(nh)
. =)
initial problem
y(0) = yo

Strictly speaking, this diagram holds true only formally : its validity can be justified by

a rigorous study of error terms (optimal truncature of the series involved leads to

exponentially small errors). J




f Taylor expansions or the urgent necessity of trees \

In trying to get the Taylor expansion of the implicit Euler solution

yi = yo+hf(y)
one gets successively (where we have omitted the argument yq in f, f/, ...
1. = Yyo+h f —|—O(h2),
—~—
=y’
yi = yo+h f +h7ff+O(R),
—~— ~—
=y’ =y’
1
yo= woth [ R FL AR (PSP ) ) +OmY),
N "~ X 2 g
=y’ =y ~~

Ly@=f1 1 f4 1 (f.F)
)

= yo+hF(e)+h*F(}) +h3(F(>) + 1F(\/’ )+ ...
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PART | : formal numerical integrators
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Rooted trees

Definition 1 (Rooted trees) The set of rooted trees is

recursively defined by :

1..€7T
2. (t1,...,ty) €T =t =ty,...,t,] €T

The order of a tree |¢| is its number of vertices.

o




Examples of rooted trees

wret |- |71y v oY

Ordre || 112334 4|44

Symétriec(t) |1 |12 |16 | 1]2]|1

TAB. 1 — Rooted trees of orders 1 to 4
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/ Forests (monomials of rooted trees)

Definition 2 (Forest) A forest u is an unordered k-uplet
oftrees. Iifu =1©¢;...01to...19...0C,...1T, Where the
trees t;’s are all distinct where each t; is repeated 1;
times, than the order and the symmetry of u are

recursively defined by :
L ful = 35y riltil,

2. o(u) = [T\, rilo(t:))".

We denote by e the empty forest and by F the set forests.J

o
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Examples of forests

orestu |- vt Y by
Order |u| 4 11 17 11
Symmetry o(u) | 2! | 213111 | 3!(2)%2! | 3!1!2!

o

TAB. 2 — A few forests
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/ The algebra of forests \

The set F can be naturally endowed with an algebra structure H on R :

-V (u,v) € FAV(\ u) € R, \u+ pv € H,
-V (u,v) € F?, uv € H, where u v denotes the commutative product of the
forests u and v,

- VYu e F, ue=eu = u, where e is the empty forest.

Example of calculus in H :

S FEYP%) 5 SRRRINN S T S ST

+ 3/’/’§3/’f§°+24/’/'-
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The tensor product of H by itself

Definition 3 The tensor product of H with itself is the set of elements of the form

u @ v with u and v in H, such that :

-V(u,v,w) €H?, (u+v)QU=uw+vw,
~V(u,v,w) €H>, u@v+w)=u®v+u®w,

-V(u,v) EHZVAER, Vu®@v=Nu)@uv=u® (\-v).

The product on H can be viewed as a mapping m from H & H into H :

V (u,v) € H?, uv = m(u®v).

Example:m(->® /)= '2>f

\_ _/
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We define the operators B™ and B~ by :

The co-product

BtT-H - T B~ : T — H
U:tl...tn L [tl,...,tn] t:[tl,...,tn] = tl...tn

Examples: BT (s o ¢) = [- . -} :'\VetB_(Q) =/

Definition 4 (Co-product) The co-product A is a morphism from H to H & H

defined recursively by :

1. Ale) = e®e,

2. VtET, A(t)=t®e+ (idy ® BT) o Ao B (t),
3.Vu=ty...t, € F, A(u) = A(t1) ... A(tn).

o
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Examples of co-products \

e e+ er e,

] ®e+ (idyy @ BT) o A()

[ ®e+ (idy @B (e @e+e® o)

[ Qe+te® [+ e o,

A(e)A(s)=(e@ e+ e ®e)(e®@ « + » ®e),
eR oo +20RD e+ oo Re,

V ®e+ (idy @ B)o A(e )
Voet(idu@BT)(e®@ee+2e@ e+ oe®e)
Ve®etoee®@et+2e0 ) +ex Y,
3e@++3e®e+5e® [ +5e@++5] ®e.
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A formula for the co-product

The co-product of a tree can also be computed by the formula (A. Connes & D.

Kreimer 98) :

A(t)

= t®e+e®t+ Y PO(t)®R(1)
C

where (' is the set of «admissibles» cut of the tree t, i.e. such that there is no more

than one cut between any vertex of ¢ and its root. A similar formula holds for forests

(Murua 2003).

o

_/
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Elementary differentials

Definition 5 For each t € 7, the elementary differential F'(¢) associated with ¢ is

the mapping from R" to R"™, defined recursively by :

1 F(s)(y) = fy),
2. F([tr, - ta)(®) = F @) (F(#)©), - Flta) )
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/ B-series \

Definition 6 (B-Series) Let a be a mapping from 7 to R. We define B(a, ¥), the

B-series associated with a, as the formal series :

]
Bla,y) = y+ Y TsaP(0) =+ ha() () + Ral 1)) 0) + .

teT

The exact solution of y = f(y) has a B-series expansion

B(1/v,y) = y+ )

. iy
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Most numerical methods have a formal B-series expansion

Examples :

1. Explicit Euler: y + hf(y) = B(a,y)witha(+) =1l and a(t # «) = 0.
2. ImplicitEuler: Y =y + hf(Y)andy + hf(Y) = B(a,y) with a(t) = 1.

Classes of methods with a B-series expansion

1. Runge-Kutta methods
2. Composition methods
3. Multistep methods have an underlying B-series expansion

Classes of methods with a P-series expansion (decorated trees)

1. Splitting methods

2. Partitioned methods

\_ _/
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Elementary differential operators

Definition 7 Letu = t1 . ..t be a forest of F. The differential operator X (u)
associated with v is defined on D = C'*°(R"; R™) by :

X(w):D — D
g — Xlg=g"(F(t1),...,F(ts))

Examples :
X(e)lg] = g,
X()lg = 4'f,
X(Dlg) = 417,
X(+gl = g (F115)
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S-series

Definition 8 (Series of differential operators) Let o be a mapping from F into RR.
We define S(«), the series of differential operators associated with ¢, as the formal

series

S()g] = Ve r oya(u)X (u)[g]

Forallg € C*°(R™;R™):

S(a)lg] = ale)g + ha(+)g'f + %Oz( « )" (f, f) +h*a(l)g'f'f+. ..

\_ _/
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Theorem 1 (Composition of B-series) Let a and b be two mappings from 7 to R.

Composition of B-series and co-product in H \

The composition of the two B-series B(a, y) and B(b, y), i.e.
B(a, B(b,y))
is again a B-series, with coefficients ab defined on 7 by the composition law :

vt e T, (ab)(t) = (a®Db)A(t).

Example :
(@)(V) = (a®d)A(Y)
— (a@b)(V®€+(idﬁ®B+)oA(--))
= a(V)b(e) +a(+)a(+)b(+) +2a(+)b([) + a(e)b(V)

\_ _/
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f Composition of S-series and co-product on H \

Theorem 2 (Composition of S-series) Let o and 3 be two mappings from JF to
R. The composition of the two S-series S(«) and S(3), i.e.

S(@)[S(B)L]

is again a S-series, with coefficients 3 defined on JF by the composition law :
Vu e F, (af)(u) = (a® B)A(u).
Example :
(@B)(eee) = (a@B)A(+7)
= (a®ﬁ)(- Re+ed -)3
= a(+?)Be) +3a(+?)B(+) +3a(+)B(+*) + ale)B(+°)

\_ _/
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— A B-series is a S-series :

B(a,y) = S(a)|idr~](y)

Remarks and preliminary computations \

avec o7 = a.

— A S-series can be viewed as a Lie derivative operator (or a field) :

S()9](y) = Lp(a,y )W)

iftVue F/T, alu)=0.

— The action of a fonction g on a B-series can be viewed as S-series :

g(Bla,y) =Y

ueF

iff « € Alg(H,R) et ar = a.

o
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Numerical methods preserving invariants

Let I be a first integral of y = f(y), i.e.

vy € B, (VI(y) f(y)=0

The numerical method associated with the B-series B(a, y) preserves [ iff

vy € R, I(Bla,y)) = I(y),

I.e.

where « is the unique algebra-morphism extending a onto H.

o
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In algebraic terms, saying that [ is an invariant can be written

The annihilating left ideal Z || of I (part I)

X (o)1 =0.
If S(w) acts on X («)[I] from the left, one gets :
S(w)[hX («)I]] = S(W)I] =0,

with

Vu=ty...t,, € F, w’(u):Zw(B_(ti)Htj).

i=1 ji

Example :

S D= YD rezvh e Y 0
\_

~
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The annihilating left ideal Z|I| of I (part 1)

Lemma 1 Consider § € H*. Then, § € Z|I]ifand onlyif 5(e) = 0 and for all
treesty,...,t,, de 7, one has:

m

Sty .. t) = Z5(tj o th)
j=1 iF#]
Notation :
so(tity...ty) = B* (B_(s)t1t2 iy .tm).
Examples :

—Pourm =2:6(e[) 25(>)+5('\[).

—Pourm =3:0(J¢«¢) :25(Y)‘|’5(\V)
\
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Integrators preserving general invariants

Theorem 3 Let o € Alg(H,R). Then « satifies S(«)[I] = I that for all couples
(f, I) of avector field f and a first integral I, if and only if a(e) = 1 and «
satisfies the condition

aty) - altm) = ZT:1 a(t; o Hz’;éj t;)

forallm > 2andall ¢;'sin 7.

Theorem 4 A B-series integrator that preserves all cubic polynomial invariants does
in fact preserve polynomial invariants of any degree, and thus is the B-series

corresponding to the (scaled) exact flow.

Consequence : There remains hope only for quadratic invariants.

\_ _/
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Integrators preserving quadratic invariants

Theorem 5 Let o« € Alg(H,R). Then « satifies S(«)[I] = I that for all couples
(f, I) of a vector field f and a quadratic first integral /, if and only if «(e) = 1 and

« satisfies the condition

Oé(tl)()é(tg) = Oé(tl ) tg) + Oé(tg @) t1>

for all pairs (t1,t2) € T2,

Example : A B-series integrator B(a,, y) preserve quadratic invariants (m = 2) if

and only if, for all pairs of trees (¢1,t2) € 72, the following relation holds :
a(t1 ) tz) + CL(tQ ) tl) = a(tl)a(tg).

This condition is also the condition for B(a, ) to be symplectic.

\_ _/
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Integrators preserving Hamiltonian invariants

We now turn our attention to systems of the form ¢ = f(y) with

fly) = J'VH(y),

and we explore the conditions under which a B-series integrator B(a, y) preserves

exactly the Hamiltonian function, i.e.
S(a)|H] = H

where « is the only algebra morphism such that a7 = a.

\_ _/
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We define the elementary Hamiltonian H(t) as the mapping from R"™ to R

Elementary Hamiltonians

obtained recursively by :

H(+)(y) = Hy),
H([s1,...,5m,1]) = H(”“)(F(sl),...,F(sn),F(t)),

— (F(t))TJ (J‘WH)(R)(F(Sl),---,F(Sn))
— (F(t))TJF(s) — H(sot)

Lemma 2 Let s and t be two trees of 7 . We have the relation :

H(sot)=—H(tos).

o
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f The annihilating ideal Z|H| of H (part I)

~

Since X (u)[H] = H(B™(u)) = H([u]), alot of forests u € F give rise to the

same elementary differential.

Examples :

Auxiliary consequence :
One has 3+ B(b,y) = J 'V Hy(y) with Hy,(y) = S(a)[H] iff

o

\V/(tl,tg) c 72, b(tl O tg) + b(tQ O tl) = 0.

_/
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The set ’HS of non-superfluous free trees

We define an equivalence class t as being the set of trees that can be obtained from

t by changing the position of the root.

Examples : Fort = \/, £ = {/, }} Fort = /.t = {\V, Y}

, the set H.S is defined by

Given a total order > on 7, compatible with | -
t € HSifft = « or 3(s1, s2) €T? 51> 89, t =810 8.

The set H.S is the set of representatives of equivalence classes whose elementary

differential does not vanish. The first of these are :

rons ems v ens Y ans Y gns v cns. b ens

N _/
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fAn algebraic condition for the preservation of HamiltoniarD

Writing the S-series in terms of elementary Hamiltonians :

||
S@UN-H = 3 SsoliX@lH] -1
ueF
LY iy Y (—1)w<[u]>a(u)
teHS\{*} u€F, [u]€t U(u)

7(|u]) is the «distance» between the root of [u] and the root of . Since the
elementary Hamiltonians H (t),t € HS\{ « } are independent :

Theorem 6 Let « € Alg(H,R). One has S(«)|H| = H for all Hamiltonian

systems, if and only if «(e) = 1 and

o

Vi e HS, Zue}‘, [u]ef(_l)W([UD a(u) _

o(u)

_/
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Example : the fifth-order condition for t;; =

. 7 A RN S R )

B- | B- | B- | B-
SR AV Y

(=)ol (=1)"/o | (=1)7/o | (=1)7/o |

T R )
a |

a | a | o |
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The non-existence of symplectic Hamiltonian preserving

Integrators

Theorem 7 Suppose a B-series integrator B(«, ) satisfies both conditions

\V/(tl,tz) c 72, (tl)()é( ) — Oé(tl o tz) + Oé(tQ o) tl)
VieHS, Z (ful) O ):O.
ueF, [ule O'(U)

for the preservation of quadratic invariants and for the preservation of exact

Hamiltonians. Then it is the B-series of the scaled exact flow.

There exists no symplectic numerical method that preserves the Hamiltonian exactly

- _/
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Symplectic methods are formally conjugate to a method

that preserve the Hamiltonian exactly

Theorem 8 Consider a symplectic integrator B(c, y). Then, there exists

1

7 € Alg(‘H, R) such that the integrator associated with & = 7~ a7y exactly

preserves the Hamiltonians.

Jo — G111 — — O
Ly Ly 1y 1y
Yo — U1 = — Yn
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PART Il : modified equations
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Backward error analysis

The fundamental idea of backward error analysis consists in interpreting the

numerical solution i1 = <I>£(yo)
y = [f)
y(()) = Yo,
as the exact solution of a modified differential equation
g = f),
g(0) = vo.

o
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Partitions and skeletons

Definition 9 (Partitions of a tree) The partition p” of atree 7 € 7 is the tree
obtained from 7 by replacing some of its edges by dashed ones. We denote
P(p™) = {s1,..., Sk} the list of subtrees s; € 7 obtained from p” by removing
dashed edges. The set of all partitions p” of T is denoted P (7).

Definition 10 The skeleton x(p”) € 7 of a partition p” € P(7) ofatree 7 € T
is the tree obtained by replacing in p” each tree of P(pT) by a single vertex and
then dashed edges by solid ones. We can notice that | x(p™)| = #p”.

\_ _/
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Example : The 8 partitions of tree 7 = ||e, || with

corresponding skeletons and lists

o Y VYT LT Y

4T 1 2 2 2 3 3 3 4

w) -2 el oy Y

SR B SRV 2 N 2 I NN I
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Theorem 9 Let a, b be two mappings from 7" U {e} to R with b(e) = 0 and

A substitution law

consider the (h-dependent) field

hgn(y) = By(b,y).

Then, there exists a mapping a x b from 7 U {e} to R satisfying

th (av y)

— Bf(a*b, y)

and a * b is defined by a *x b(e) = a(e) and for all 7in 7 :

axb(t) =3

p" € P(7)

a(x(p")) H5EP(pT) b(9).

o

~
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A few terms of the substitution law

axb(s) = a(+)b(+),
axb(}) = al*)b(])+a(])b(+)*
axb(V) = al)b(V)+2a(])b(+)b( )+ a(\)b(+)?
axb(Y) = alo(Y )+ ol 20(-)0(V) + 2a( 200D
Fa(\VH(+ b 1)+ 2a( D)0 )?b(]) + al Y Jo(+'
a*b<§> = af >b<§>+2a<1>b<->b D) +a(H(1)
L +3a(>)b(-)%(.f)+a<§)b(-)4
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Main result

>

A

= B(b, y) such that

Theorem 10 There exists a modified field f7,(y) =
@5, (o) = §(h),

where () denotes the exact solution of

where %B(w, y) can be interpreted as the B-series expansion of the modified field

for the Euler explicit method.

\_ _/

45




-

Main consequence

Theorem 11 Consider a B-series with coefficients a satisfying the condition :

m

~

Vm, 2<m<n, Y(ui,...,un,) €T, Za(uioHuj):Ha(ui).
i=1

i=1 j#i

Then the coefficients b of its modified equation satisfy :

Vm, 2<m<mn, Y(uy,...,un) €T, Zb(uioHuj):O.
i=1 j#i

The converse is also true.

o
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