Variable selection in continuous optimization: Some possible directions

Marc Schoenauer

Équipe TAO - INRIA Futurs - Orsay, France Marc.Schoenauer@inria.fr

Overview

- Optimization vs Classification
- Evolution Strategies
 - Adaptive and self-adaptive Gaussian mutations
 - The Covariance Matrix Adaptation
 - Variable Selection using the Covariance Matrix?
- Feature selection in Machine Learning
 - A survey
 - Feature ranking with ROGER
- Conclusion

Optimization vs Classification

- We are interested in optimization problems
- Machine Learning and Data Mining have designed many methods for Feature Selection . . .
- for classification problems

So what?

Learnable Evolutionary Models

- Evaluate the population
- Sort according to fitness
- Label as Good the best third, and as Bad the worst third
- Learn a classifier from those examples
- Generate next population by sampling the Good region

Can be viewed as an Estimation of Distribution Algorithm, that evolve a distribution on the search space.

Variable selection

Two possible directions:

- Use Data Mining tools for Feature Selection
 on the successive classification problems

 as defined in LEM
- Use the state-of-the-art Evolutionary Algorithm (CMA) that learns the Covariance Matrix of the objective function

Overview

- Optimization vs Classification
- Evolution Strategies
 - Adaptive and self-adaptive Gaussian mutations
 - The Covariance Matrix Adaptation
 - Variable Selection using the Covariance Matrix?
- Feature selection in Machine Learning
 - A survey
 - Feature ranking with ROGER
- Conclusion

Learning from examples

Given a set of examples

$$(x_i, y_i) \in \mathbf{R}^d \times \{0, 1\}$$

Find an hypothesis H s.t.

$$H(x_i) < 0 \text{ if } y_i = 0 \text{ and } H(x_i) > 0 \text{ if } y_i = 1$$

or minimizing $\sum (H(x_i) - y_i)^2$, or ...

- Such algorithm is called a learner.
- Well-known examples:
 - ▶ ID3, AQ15, ...

Neural networks, SVMs, /Idots

Symbolic learners

Numerical learners

Feature Selection: A hot topic

Data are growing in size

- in all directions :-)
- Genetic data, medical data, Web data, ...
- Most learners do not scale up well with the number of features

Special Issue of *Journal of Machine Learning Research* on Feature Selection in 2003.

Feature Selection: a (very) brief survey

Still (almost) up-to-date:

M. Dash and H. Liu, Feature selection for classification, *Intelligent Data Analysis*, 1(3), 1997.

Shift of paradigm

- Find the subset of features that gives the same empirical accuracy
 or does not decrease accuracy too much
- Find the optimal subset of size M w.r.t. accuracy
- Find the minimal size for a given accuracy

Feature Selection: methods

Whatever the target, it is a combinatorial problem

Try all subsets

- Does not scale up!
- Forward selection: add features one by one
- Backward selection: remove features one by one
- Stochastic: e.g. using Evolutionary Algorithms

In any case, need for a criterion

Feature Selection: Criteria

Use a learner to compute accuracy

Wrapper method

- Results depend on the learner
- Costly
- Use a measure on the feature space
 - Entropy

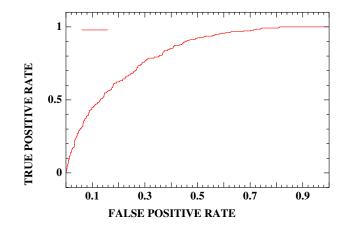
The most discriminant feature w.r.t. class

Correlation

between features

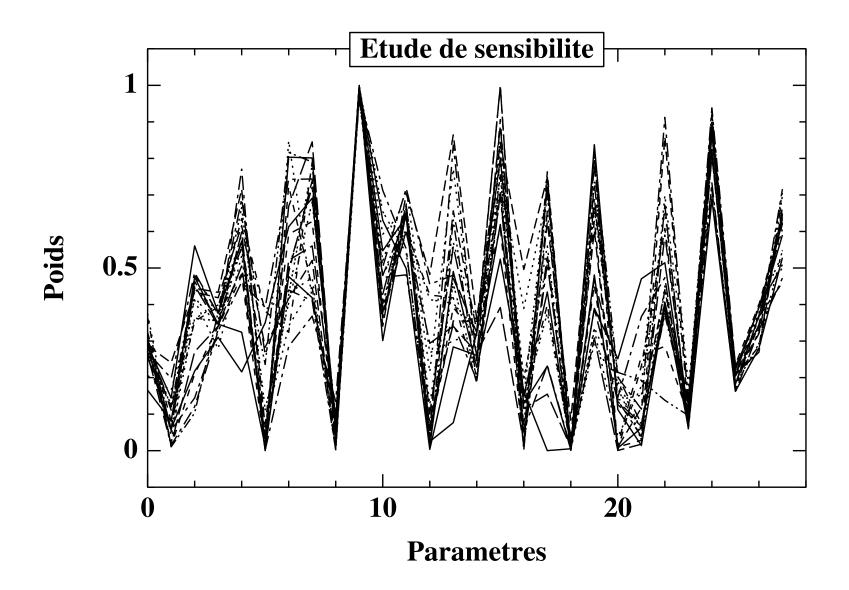
ROGER

Does not try to "fit" the data



- Optimizes the Area under the ROC curve using ... Evolution Strategies
- Look for ω_i and h_i s.t. $H(x) = \sum |w_i x_i h_i|$ optimizes the ranking of the examples
- Look at the weights for each feature accross different evolutionary runs

Feature ranking with ROGER



Overview

- Optimization vs Classification
- Evolution Strategies
 - Adaptive and self-adaptive Gaussian mutations
 - The Covariance Matrix Adaptation
 - Variable Selection using the Covariance Matrix?
- Feature selection in Machine Learning
 - A survey
 - Feature ranking with ROGER
- Conclusion

Evolution Strategies

- μ parents
- generate λ offspring
- using normal mutations

$$X := X + \sigma \mathcal{N}(0, C)$$

- deterministically choose who will survive
 - Best μ among λ offspring

$$(\mu, \lambda) - ES$$

• Best μ among μ parents plus λ offspring $(\mu + \lambda) - ES$

Issue: Tune σ (the step-size) and C (the covariance matrix)

Adaptation of Gaussian mutation

History

• $\sigma \propto^{-1} t$ Not adaptive

Simulated annealing like

• $\sigma \propto^{-1}$ fitness Adaptive, individual

Early EP, difficult to tune

- The $1/5^th$ rule: Modify σ w.r.t. # successful mutations Adaptive, population
- Self-adaptive mutations, allele or individual
- Covariance Matrix Adaptation
 Adaptive, population

"Derandomized self-adaptation"

Self-adaptive mutations

• Isotropic: One σ per variable, $C = I_d$

$$\begin{cases} \sigma := \sigma \ e^{\tau N_0(0,1)} \\ X_i := X_i + \sigma N_i(0,1) \ i = 1,\dots, d \end{cases}$$

• Non -isotropic: $d \sigma$'s per individual, $C = \text{diag}(\sigma_1, \dots, \sigma_d)$

$$\begin{cases} \kappa = \tau N_0(0, 1) \\ \sigma_i := \sigma_i \ e^{\kappa + \tau' N_i(0, 1)} \ i = 1, \dots, d \\ X_i := X_i + \sigma_i N_i'(0, 1) \ i = 1, \dots, d \end{cases}$$

 N_i and N_i 1 are independent

Self-adaptive mutations

Correlated: C positive definite:

$$\vec{N}(0, C(\vec{\sigma}, \vec{\alpha})) = \prod_{i=1}^{d-1} \prod_{j=i+1}^{d} R(\alpha_{ij}) \vec{N}(0, \vec{\sigma}) \qquad d(d-1)/2 \text{ rotations}$$

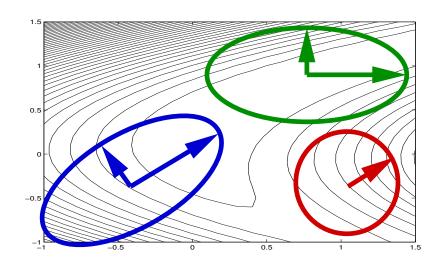
$$\begin{cases} \sigma_i = \sigma_i e^{\tau' N_0(0,1) + \tau N_i(0,1)} & i = 1, \dots, d \\ \alpha_j := \alpha_j + \beta N_j(0,1) & j = 1, \dots, d(d-1)/2 \\ \vec{X} := \vec{X} + \vec{N}(0, C(\vec{\sigma}, \vec{\alpha})) \end{cases}$$

• From Schwefel: $\tau \propto \frac{1}{\sqrt{2\sqrt{d}}}$, $\tau' \propto \frac{1}{\sqrt{2d}}$, $\beta = 0.0873$ (=5°)

Isotropic mutation

Non-isotropic mutation

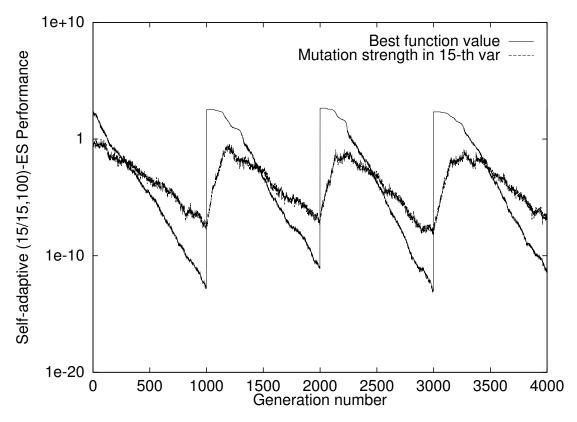
Correlated mutation



Evidence of self-adaptivity — SA-ES Deb & Beyer 01

Experiments on dynamic landscape

Slightly elliptic function with random moves of minimum every K generations



Fitness and σ_{15} for non-isotropic mutation

Self-adaptivity – discussion

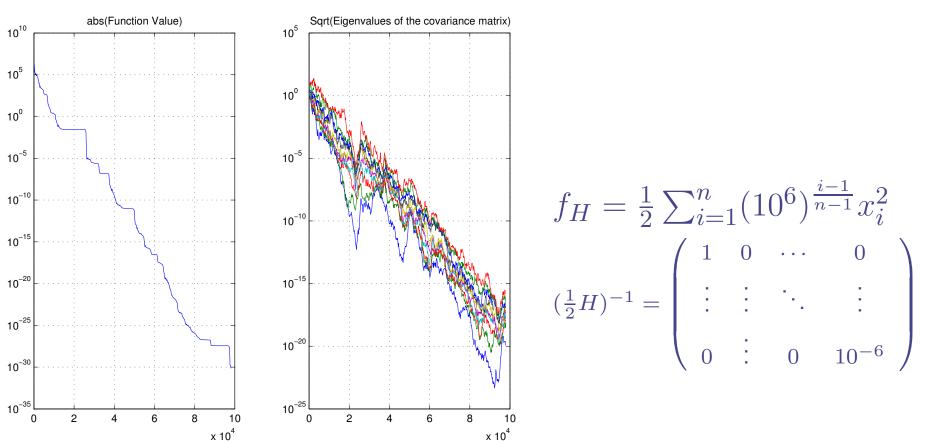
- Stability: Correlated mutation and DE require crossover
- Sensitivity to the characteristic basis of the fitness:
 Correlated mutation (and DE) perform poorly on rotated (elliptic) functions
- Speed: Adaptation can be very slow

But what covariance matrix should be learned?

Good reasons to believe it's $(\frac{1}{2}H)^{-1}$

H Hessian matrix of fitness

What does SA-ES learn?



Fitness and square-root of eigenvalues for SA-ES on
$$f_H$$
 ($n=10$)

- The actual path contains local information on the landscape
- It is lost through the self-adaptive mutation process
 - Derandomized Evolution Strategies
- Consecutive steps in colinear directions
 - → increase step-size

and vice-versa

- Add direction information to the covariance matrix
- Also, use a $(\mu/\mu,\lambda)-ES$ better with small populations Scheel, 85 i.e. generate offspring from $<\!X\!>^{n+1}=\sum_{i=1}^\mu w_i X_{i:\lambda}^n$

 $X_{i:\lambda}^n, i=1,\ldots,\mu$: best μ offspring from the λ mutations of < X > n

A $(\mu/\mu, \lambda) - ES$ with covariance matrix I_n

or $diag(\sigma_1,\ldots,\sigma_n)$

• Compute the cumulative path p^n using

$$p_{\sigma}^{n+1} = (1 - c_{\sigma})p_{\sigma}^{n} + \sqrt{c_{\sigma}(2 - c_{\sigma})} \frac{\langle X \rangle^{n+1} - \langle X \rangle^{n}}{\sigma^{n}}$$

Update the step-size by

e.g. isotropic

$$\sigma^{n+1} = \sigma^n \exp\left(\frac{1}{d_{\sigma}} \left(\frac{||p_{\sigma}^{n+1}||}{E(||\mathcal{N}(0, I_d)||)} - 1\right)\right).$$

- Rationale:
 - if $p_{\sigma}^n \sim \mathcal{N}(0,I_d)$ and $\frac{<\!\!X\!\!>^{n+1}-<\!\!X\!\!>^n}{\sigma^n} \sim \mathcal{N}(0,I_d)$ and they are independent, then $p_{\sigma}^{n+1} \sim \mathcal{N}(0,I_d)$
 - if there is no selection then $\sigma^{n+1} = \sigma^n$

e.g. $\lambda = \mu$

Nothing should happen

Covariance Matrix Adaptation

A $(\mu/\mu, \lambda) - ES$ with full covariance matrix C^n

Update the (global) step-size

•
$$p_{\sigma}^{n+1} = (1 - c_{\sigma})p_{\sigma}^{n} + \sqrt{c_{\sigma}(2 - c_{\sigma})}(C^{n})^{-\frac{1}{2}} \frac{\langle X \rangle_{\mu}^{n+1} - \langle X \rangle_{\mu}^{n}}{\sigma^{n}}$$

•
$$\sigma^{n+1} = \sigma^n \exp\left(\frac{1}{d_\sigma} \left(\frac{||p_\sigma^{n+1}||}{E(||\mathcal{N}(0,I_d)||)} - 1\right)\right).$$

- Rationale: idem CSA with a full covariance matrix C^n
- Note: $E[\|\mathcal{N}(0,I_d)\|]=\sqrt{2}\Gamma(\frac{n+1}{2})/\Gamma(\frac{n}{2})$ is approximated practically by $\sqrt{d}(1-\frac{1}{4d}+\frac{1}{21d^2})$

CMA (2)

Update the Covariance Matrix:

Rank 1 update

compute the cumulated path

$$p_c^{n+1} = (1 - c_c)p_c^n + \sqrt{c_c(2 - c_c)} \frac{\langle X \rangle_{\mu}^{n+1} - \langle X \rangle_{\mu}^n}{\sigma^n}.$$

- $C^{n+1} = (1 c_{\text{cov}})C^n + c_{\text{cov}}p_c^{n+1}p_c^{n+1}T$
- Rationale:
 - p_c^{n+1} is (roughly) the descent direction
 - C^n is updated with the rank 1 matrix $p_c^{n+1}p_c^{n+1\,T}$ whose eigenvector is p_c^{n+1}

CMA (3)

• Use all μ best offspring to update C^n :

$$U^{n+1} = \sum_{i=1}^{\mu} \frac{(X_{i:\lambda} - < X >_{\mu}^{n})(X_{i:\lambda} - < X >_{\mu}^{n})^{T}}{(\sigma^{n})^{2}}$$
 Rank μ

•
$$C^{n+1} = (1 - c_{\text{cov}})C^n + c_{\text{cov}}(\alpha_{\text{cov}}p_c^{n+1}p_c^{n+1}T + (1 - \alpha_{\text{cov}})U^{n+1})$$

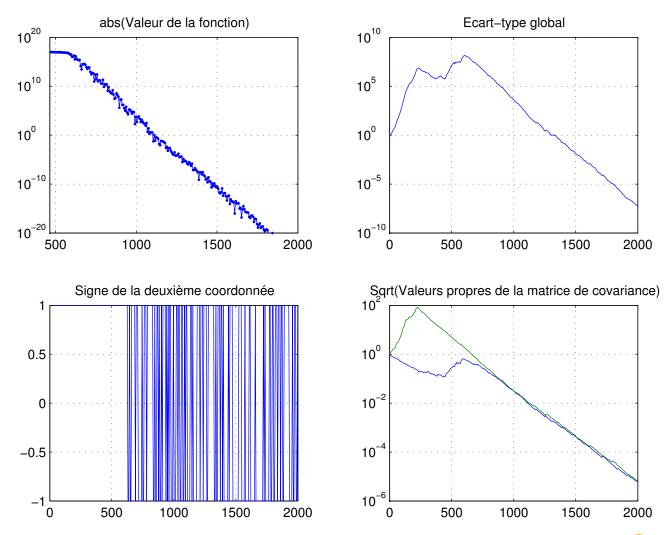
Increase the speed of adaptation in high dimensions

CMA parameters

$$c_c = \frac{4}{d+4}, \ c_\sigma = \frac{10}{d+20}, \ d_\sigma = \max(1, \frac{3\mu}{d+10}) + \frac{1}{c_\sigma}$$

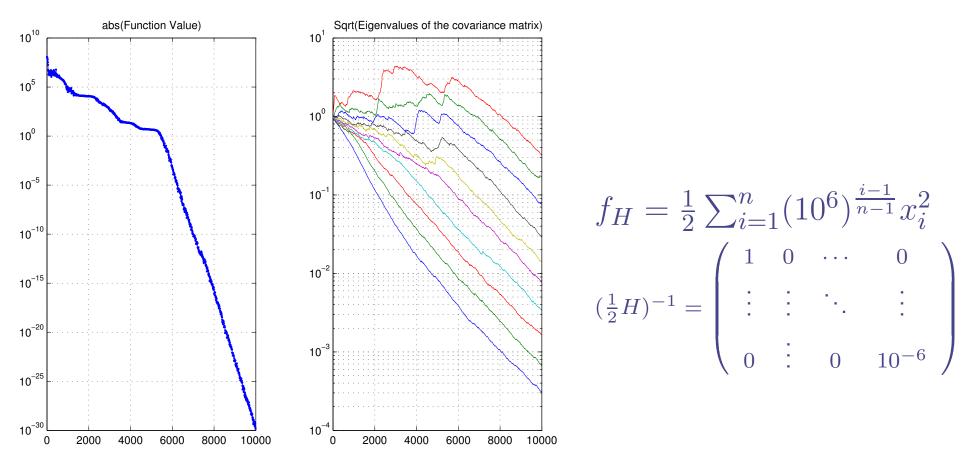
$$c_{\text{cov}} = \frac{1}{\mu} \frac{2}{(d+\sqrt{2})^2} + (1 - \frac{1}{\mu}) \min(1, \frac{2\mu - 1}{(d+2)^2 + \mu})$$
with initial values $p_\sigma^0 = 0$, $p_c^0 = 0$ and $C^0 = I_d$.

CMA-ES at work



Sphere function, n = 2, initial point $(0, 10^9)$. Fitness, (global) step-size, sign (x_2) and sqrt(eigenvalues)

What does CMA-ES learn?



Fitness and square-root of eigenvalues for CMA-ES on f_H (n=10)

Toward variable selection

Idea

- Once the covariance matrix has been learned
- select the eigenvectors with the smallest eignevalues

But

- How good is the approximation?
 Error criterion Auger, PhD 04
- What threshold? Cross-validate with other measures

Entropy, covariance, ...

A moving target

The interesting variables might change along evolution

Conclusion

Nothing yet