Computing kernels of graphs

Computing kernels of graphs

Adele Pass-Lanneau
Internship supervised by Frédéric Meunier

Ecole polytechnique - CERMICS

July 11, 2016



© Introduction

© Algorithm for chordal graphs

© Generalization

«O> «4F»r «

DA



© Introduction

© Algorithm for chordal graphs

© Generalization

«O>» «Fr o«

DA



0’0 o Vertices, edges

«O>» «Fr «E»r» «E>» = Q>



Computing kernels of graphs
Introduction

Graph theory basics

° @ Vertices, edges
x @ Orientation, arcs

©



Computing kernels of graphs
Introduction

Graph theory basics

a @ Vertices, edges
x @ Orientation, arcs
@ o o Neighbors/Adjacent vertices
@ Successor
@ @ Sink: vertex without successor

o Circuit



Computing kernels of graphs
Introduction

Kernel

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a kernel of
D when:

@ K is stable: it contains no pair of adjacent vertices

@ K is absorbing: every vertex v ¢ K has a successor in K,
i.e.,Vv ¢ K, there is a vertex k € K such that (v, k) € A.




Computing kernels of graphs
Introduction

Kernel

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a kernel of
D when:

@ K is stable: it contains no pair of adjacent vertices

@ K is absorbing: every vertex v ¢ K has a successor in K,
i.e.,Vv ¢ K, there is a vertex k € K such that (v, k) € A.

@\’ e {1,6} is not an absorbing subset of D:
t @\ vertex 2 has no successor in {1,6}

@

®




Computing kernels of graphs
Introduction

Kernel

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a kernel of
D when:

@ K is stable: it contains no pair of adjacent vertices

@ K is absorbing: every vertex v ¢ K has a successor in K,
i.e.,Vv ¢ K, there is a vertex k € K such that (v, k) € A.

@\’ e {1,6} is not an absorbing subset of D:
t @\ vertex 2 has no successor in {1,6}

/ e {1,2,6} is absorbing but not stable
@ because of the arc (1,2)

®




Computing kernels of graphs
Introduction

Kernel

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a kernel of
D when:

@ K is stable: it contains no pair of adjacent vertices

@ K is absorbing: every vertex v ¢ K has a successor in K,
i.e.,Vv ¢ K, there is a vertex k € K such that (v, k) € A.

@\’ e {1,6} is not an absorbing subset of D:
@\ vertex 2 has no successor in {1,6}

e {1,2,6} is absorbing but not stable
@ o o because of the arc (1,2)
e {2,6} is absorbing and stable: it is a

@ kernel of D




Computing kernels of graphs
Introduction

Kernel

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a kernel of
D when:

@ K is stable: it contains no pair of adjacent vertices

@ K is absorbing: every vertex v ¢ K has a successor in K,
i.e.,Vv ¢ K, there is a vertex k € K such that (v, k) € A.

@\’ e {1,6} is not an absorbing subset of D:
@\ vertex 2 has no successor in {1,6}

e {1,2,6} is absorbing but not stable
@ o o because of the arc (1,2)

e {2,6} is absorbing and stable: it is a
@ kernel of D

e {3,6} is another kernel of D




Computing kernels of graphs
Introduction

Existence of a kernel

o Graphs can have several kernels (even exponentially many)
@ Others have no kernel at all, for example odd circuits

@ Existence theorems are proven for some families of graphs
Graphs without circuits, perfect graphs (Boros-Gurvich), graphs without
odd circuit (Richardson), line-graphs (Maffray)...



Computing kernels of graphs
Introduction

Why kernels ?

Related to winning strategies in game theory
Initially introduced by Von Neumann and Morgenstern in their Theory of
Games and Economic Behavior in 1944

Consider a graph without circuit,

with a token placed on a starting

vertex s.

Two-player game: at his turn,

each player moves the token from

the current vertex to a successor
losing positions Of hIS

The player who can’t move

anymore is the loser.



Computing kernels of graphs
Introduction

Why kernels ?

A game corresponds to a path
Vo =S5 — vy — ... = v, with v, a sink.
Player 1 chooses vop1+1 Vp.

Let K be a kernel of the digraph. Then:

@ All sinks are in K.
losing positions

@ Yy, ¢ K, Player 1 has a strategy to
impose vop 1 € K.

e If s ¢ K, Player 1 knows how to win !



Computing kernels of graphs
Introduction

Example of a Nim game

A Nim game:
@ stack of 10 sticks
@ two players playing in turns
@ each of them removes 1, 2 or 3 sticks

@ the loser is the player who removes the last stick



Computing kernels of graphs
Introduction

Example of a Nim game

A Nim game:

@ stack of 10 sticks

@ two players playing in turns

@ each of them removes 1, 2 or 3 sticks

@ the loser is the player who removes the last stick
Equivalent to moving a token in the appropriate state graph.

WOOOOOOLEOO



Computing kernels of graphs
Introduction

Example of a Nim game

A Nim game:

@ stack of 10 sticks

@ two players playing in turns

@ each of them removes 1, 2 or 3 sticks

@ the loser is the player who removes the last stick
Equivalent to moving a token in the appropriate state graph.

ONONONORORORORORORO,



Computing kernels of graphs
Introduction

Example of a Nim game

A Nim game:
@ stack of 10 sticks
@ two players playing in turns
@ each of them removes 1, 2 or 3 sticks

@ the loser is the player who removes the last stick

Equivalent to moving a token in the appropriate state graph.




Computing kernels of graphs
Introduction

Kernel and Nim game

Now we compute a kernel of this graph...




Computing kernels of graphs
Introduction

Kernel and Nim game

Now we compute a kernel of this graph...




Now we compute a kernel of this graph...

«O>» «Fr «E»r» «E>» = Q>



Computing kernels of graphs
Introduction

Kernel and Nim game

Now we compute a kernel of this graph...

Winning strategy for player 1:

Always put player 2 in a state s € K
<= Always leave a number of sticks = 1 [4]



Computing kernels of graphs
Introduction

Motivation

@ Graphs do not always have a kernel.
Deciding if a graph has a kernel is NP-complete in general
(Chvatal 1973)

@ In some graph families, a kernel do always exist.
Thus the decision problem is trivial, but computing one kernel
may still be hard (similar to Nash equilibrium)

@ Our goal: find if computing a kernel is polynomial
for families where kernel existence is guaranteed but computation
complexity is unknown.
— chordal clique-acyclic graphs



Computing kernels of graphs
Introduction

Cliques

A clique of a graph is a subset of

vertices that are adjacent two by two.

A kernel of a clique is a single vertex (an !
absorbing vertex). @

A digraph has a clique-acyclic orientation if every clique has an absorbing
vertex.



Computing kernels of graphs
Introduction

Chordal graphs

A graph is chordal is it has no cycle of length > 4 without a chord.

Chordal clique-acyclic digraphs have a kernel.

Special case of Boros-Gurvich theorem (1996) on perfect graphs.

Not an algorithmic proof: no polynomial algorithm to compute a kernel.



Computing kernels of graphs
Introduction

Problem statement

Problem

Find a polynomial algorithm to compute a kernel of a chordal
clique-acyclic graph.




© Introduction

© Algorithm for chordal graphs

© Generalization

«O>» «Fr o«

DA



Computing kernels of graphs
Algorithm for chordal graphs

An easy case: graph without <+

Input: Chordal clique-acyclic graph without reversible arcs.
e Claim 1: it has no circuit

e Claim 2. computing a kernel of a graph without circuit is easy



Computing kernels of graphs
Algorithm for chordal graphs

No circuit?

@ The graph has no reversible arc
= the graph has no 2-circuit

@ The graph is clique-acyclic: every clique has an absorbing vertex
= the graph has no 3-circuit

ofke
© The graph is chordal

= if it has a circuit of length > 3, it has a 3-circuit
= the graph has no circuit of length >3

Chordal clique-acyclic graph without reversible arcs has no circuit.




Computing kernels of graphs
Algorithm for chordal graphs

Computing a kernel of a graph without circuit

We did it already for the Nim graph!

Reminder: all sinks must be in the kernel

Algorithm:
o Put all sinks in K
@ Remove all their neighbors
@ Reiterate




Computing kernels of graphs
Algorithm for chordal graphs

An easy case: graph without <+

Input: Chordal clique-acyclic graph without reversible arcs.

e Claim 1: it has no circuit

e Claim 2: computing a kernel of a graph without circuit is easy OK

Polynomial algorithm in this case



Computing kernels of graphs
Algorithm for chordal graphs

An easy case: graph without <+

Input: Chordal clique-acyclic graph without reversible arcs.

e Claim 1: it has no circuit

e Claim 2: computing a kernel of a graph without circuit is easy OK

Polynomial algorithm in this case

With <
@ potentially no sink...
@ replacing <+ by — creates circuits...



Computing kernels of graphs
Algorithm for chordal graphs

Our theorem in general case

A kernel of a chordal clique-acyclic digraph can be computed in
polynomial time.




Computing kernels of graphs
Algorithm for chordal graphs

Introducing the clique tree

Structural property of chordal graphs:
Efficiently represented by a tree whose nodes are cliques of the graph.

A special case of tree decomposition (Halin 1976)



Computing kernels of graphs
Algorithm for chordal graphs

Building a clique tree

The chordal graph




Computing kernels of graphs
Algorithm for chordal graphs

Building a clique tree

The chordal graph Its maximal cliques




Computing kernels of graphs
Algorithm for chordal graphs

Building a clique tree

The chordal graph Its maximal cliques One clique tree




Computing kernels of graphs
Algorithm for chordal graphs

Clique tree: formal definition

A clique tree of a connected chordal digraph D is a tree T = (C, £) such
that:

- the node set C is the collection of all maximal cliques of D

- for every vertex v € V, the subgraph of 7 induced by all cliques of C
containing v is a subtree of T .

Existence and computability (Habib 1995): Every chordal graph has a
clique tree which is computable in polynomial time.



Computing kernels of graphs
Algorithm for chordal graphs

Result

e Using clique tree structure, we propose an algorithm to compute a
kernel of chordal clique-acyclic graph

e It is polynomial of complexity < O(n*)

@ Now the question is to generalize it to other families of graphs



© Introduction

© Algorithm for chordal graphs

© Generalization

«O>» «Fr o«

DA



Computing kernels of graphs
Generalization

Natural generalization

The theorem still holds for a graph verifying (H1), (H2), (H3).

Generalized assumptions

@ (H1) 3 tree decomposition such that the intersection of two bags is
a clique

e (H2) V subgraph B of a bag,
B has a kernel computable in polynomial time

@ (H3) V subgraph B of a bag, Vv fixed vertex in B,
in polynomial time: compute a kernel of B containing v if exists, or
report that none exists otherwise

Extension of chordal case



Computing kernels of graphs
Generalization

DE graphs

Consider a collection of paths on a directed tree

Path are vertices of the DE graph

Two vertices are adjacent if the paths share an edge

The collection of paths is the representation of the DE graph

®© 6 6 ¢




Computing kernels of graphs
Generalization

Stable marriages

@ Two sets: men and women
@ Every person ranks individuals from the other gender
@ A matching is a set of married couples

o A matching is stable if there is no pair (m, w) not married together
such that both of them prefer the other to their current
husband/wife

Algorithm of Gale and Shapley: a stable marriage is computed in poly
time for any instance



Computing kernels of graphs
Generalization

Stable marriages

@ Two sets: men and women
@ Every person ranks individuals from the other gender
@ A matching is a set of married couples

o A matching is stable if there is no pair (m, w) not married together
such that both of them prefer the other to their current
husband/wife

Algorithm of Gale and Shapley: a stable marriage is computed in poly
time for any instance

What about DE graphs ?



Computing kernels of graphs
Generalization

DE graphs

DE graphs have a tree decomposition verifying (H1)
Question: do DE bags verify (H2),(H3) ?
One-to-one correspondance between:

e a DE bag with clique-acyclic orientation without reversible arc
@ an instance of the stable marriage problem

A kernel of the DE graph is a stable marriage of the Gale-Shapley
instance.



Computing kernels of graphs
Generalization

DE graphs

DE graphs have a tree decomposition verifying (H1)
Question: do DE bags verify (H2),(H3) ?

One-to-one correspondance between:

e a DE bag with clique-acyclic orientation without reversible arc
@ an instance of the stable marriage problem

A kernel of the DE graph is a stable marriage of the Gale-Shapley
instance.

Thanks to stable marriages, (H1), (H2), (H3) can be verified for DE
clique-acyclic without reversible arc. The generalized algorithm is
applicable.




Computing kernels of graphs
Generalization

Conclusion and open questions

Results:
o Algorithm for chordal graphs
@ Generalization - applicable for some DE graphs

What's next:

@ Refine the algorithm to compute all kernels? if possible.
Would allow us to solve existence problem.

o Extend the results for DE graphs to the case of reversible arcs
(weakly stable marriages)

o Characterize graph families that verify (H1), (H2), (H3)

@ Look for minimal hypothesis instead of (H1), (H2),(H3) (we would
appreciate to weaken (H3))



Thank you for your attention !

DA



	Introduction
	Algorithm for chordal graphs
	Generalization

