Computing kernels of graphs

Adèle Pass-Lanneau Internship supervised by Frédéric Meunier

Ecole polytechnique - CERMICS

July 11, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Plan

Plan

2 Algorithm for chordal graphs

Graph theory basics

• Vertices, edges

Graph theory basics

- Vertices, edges
- Orientation, arcs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Graph theory basics

- Vertices, edges
- Orientation, arcs
- Neighbors/Adjacent vertices
- Successor
- Sink: vertex without successor

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

• Circuit

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a *kernel* of D when:

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- K is stable: it contains no pair of adjacent vertices
- K is absorbing: every vertex v ∉ K has a successor in K,
 i.e., ∀v ∉ K, there is a vertex k ∈ K such that (v, k) ∈ A.

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a *kernel* of D when:

- K is stable: it contains no pair of adjacent vertices
- K is absorbing: every vertex v ∉ K has a successor in K,
 i.e., ∀v ∉ K, there is a vertex k ∈ K such that (v, k) ∈ A.

• {1,6} is not an absorbing subset of *D*: vertex 2 has no successor in {1,6}

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a *kernel* of D when:

- K is stable: it contains no pair of adjacent vertices
- K is absorbing: every vertex v ∉ K has a successor in K,
 i.e., ∀v ∉ K, there is a vertex k ∈ K such that (v, k) ∈ A.

- {1,6} is not an absorbing subset of D: vertex 2 has no successor in {1,6}
- {1,2,6} is absorbing but not stable because of the arc (1,2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a *kernel* of D when:

- K is stable: it contains no pair of adjacent vertices
- K is absorbing: every vertex v ∉ K has a successor in K,
 i.e., ∀v ∉ K, there is a vertex k ∈ K such that (v, k) ∈ A.

- {1,6} is not an absorbing subset of *D*: vertex 2 has no successor in {1,6}
- {1,2,6} is absorbing but not stable because of the arc (1,2)
- {2,6} is absorbing and stable: it is a kernel of *D*

Definition

Let D = (V, A) be a directed graph. A subset of vertices K is a *kernel* of D when:

- K is stable: it contains no pair of adjacent vertices
- K is absorbing: every vertex v ∉ K has a successor in K,
 i.e., ∀v ∉ K, there is a vertex k ∈ K such that (v, k) ∈ A.

- {1,6} is not an absorbing subset of *D*: vertex 2 has no successor in {1,6}
- {1,2,6} is absorbing but not stable because of the arc (1,2)
- {2,6} is absorbing and stable: it is a kernel of *D*
- $\{3, 6\}$ is another kernel of D

Existence of a kernel

- Graphs can have several kernels (even exponentially many)
- Others have no kernel at all, for example odd circuits

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 Existence theorems are proven for some families of graphs Graphs without circuits, perfect graphs (Boros-Gurvich), graphs without odd circuit (Richardson), line-graphs (Maffray)...

Why kernels ?

Related to winning strategies in game theory Initially introduced by Von Neumann and Morgenstern in their *Theory of Games and Economic Behavior* in 1944

Consider a graph without circuit, with a token placed on a starting vertex s.

Two-player game: at his turn, each player moves the token from the current vertex to a successor of his.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The player who can't move anymore is the loser.

Why kernels ?

A game corresponds to a path $v_0 = s \rightarrow v_1 \rightarrow ... \rightarrow v_n$ with v_n a sink. Player 1 chooses $v_{2p+1} \forall p$.

Let K be a kernel of the digraph. Then:

- All sinks are in K.
- ∀v_{2p} ∉ K, Player 1 has a strategy to impose v_{2p+1} ∈ K.
- If $s \notin K$, Player 1 knows how to win !

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example of a Nim game

A Nim game:

- stack of 10 sticks
- two players playing in turns
- each of them removes 1, 2 or 3 sticks
- the loser is the player who removes the last stick

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example of a Nim game

A Nim game:

- stack of 10 sticks
- two players playing in turns
- each of them removes 1, 2 or 3 sticks
- the loser is the player who removes the last stick

Equivalent to moving a token in the appropriate state graph.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Example of a Nim game

A Nim game:

- stack of 10 sticks
- two players playing in turns
- each of them removes 1, 2 or 3 sticks
- the loser is the player who removes the last stick

Equivalent to moving a token in the appropriate state graph.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Example of a Nim game

A Nim game:

- stack of 10 sticks
- two players playing in turns
- each of them removes 1, 2 or 3 sticks
- the loser is the player who removes the last stick

Equivalent to moving a token in the appropriate state graph.

Kernel and Nim game

Now we compute a kernel of this graph...

Kernel and Nim game

Now we compute a kernel of this graph...

Kernel and Nim game

Now we compute a kernel of this graph...

Kernel and Nim game

Now we compute a kernel of this graph...

Winning strategy for player 1:

Always put player 2 in a state $s \in K$ \iff Always leave a number of sticks $\equiv 1$ [4]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

- Graphs do not always have a kernel.
 Deciding if a graph has a kernel is NP-complete in general (Chvatal 1973)
- In some graph families, a kernel do always exist. Thus the decision problem is trivial, but computing one kernel may still be hard (similar to Nash equilibrium)
- Our goal: find if computing a kernel is polynomial for families where kernel existence is guaranteed but computation complexity is unknown.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

 \longrightarrow chordal clique-acyclic graphs

Cliques

A clique of a graph is a subset of vertices that are adjacent two by two.

A kernel of a clique is a single vertex (an absorbing vertex).

イロト 不得下 不良下 不良下

3

A digraph has a *clique-acyclic orientation* if every clique has an absorbing vertex.

Chordal graphs

A graph is *chordal* is it has no cycle of length \geq 4 without a chord.

Theorem

Chordal clique-acyclic digraphs have a kernel.

Special case of Boros-Gurvich theorem (1996) on perfect graphs.

Not an algorithmic proof: no polynomial algorithm to compute a kernel.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Problem statement

Problem

Find a polynomial algorithm to compute a kernel of a chordal clique-acyclic graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Plan

An easy case: graph without \leftrightarrow

Input: Chordal clique-acyclic graph without reversible arcs.

- Claim 1: it has no circuit
- Claim 2: computing a kernel of a graph without circuit is easy

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

No circuit?

The graph has no reversible arc

 \implies the graph has no 2-circuit

The graph is clique-acyclic: every clique has an absorbing vertex
 the graph has no 3-circuit

• The graph is chordal \implies if it has a circuit of length ≥ 3 , it has a 3-circuit \implies the graph has no circuit of length ≥ 3

Chordal clique-acyclic graph without reversible arcs has no circuit.

Computing a kernel of a graph without circuit

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

We did it already for the Nim graph!

Reminder: all sinks must be in the kernel

Algorithm:

- Put all sinks in K
- Remove all their neighbors
- Reiterate

An easy case: graph without \leftrightarrow

Input: Chordal clique-acyclic graph without reversible arcs.

- Claim 1: it has no circuit ✓
- ullet Claim 2: computing a kernel of a graph without circuit is easy OK \checkmark

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Polynomial algorithm in this case

An easy case: graph without \leftrightarrow

Input: Chordal clique-acyclic graph without reversible arcs.

- Claim 1: it has no circuit ✓
- ullet Claim 2: computing a kernel of a graph without circuit is easy OK \checkmark

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Polynomial algorithm in this case

With \leftrightarrow :

- potentially no sink...
- replacing \leftrightarrow by \rightarrow creates circuits...

Our theorem in general case

Theorem

A kernel of a chordal clique-acyclic digraph can be computed in polynomial time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introducing the clique tree

Structural property of chordal graphs:

Efficiently represented by a tree whose nodes are cliques of the graph.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A special case of tree decomposition (Halin 1976)

Building a clique tree

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The chordal graph

Building a clique tree

The chordal graph

Its maximal cliques

Building a clique tree

The chordal graph

Its maximal cliques

(日) (同) (日) (日)

э

One clique tree

Clique tree: formal definition

A *clique tree* of a connected chordal digraph D is a tree $\mathcal{T} = (\mathcal{C}, \mathcal{E})$ such that:

- the node set ${\mathcal C}$ is the collection of all maximal cliques of D
- for every vertex $v \in V$, the subgraph of \mathcal{T} induced by all cliques of \mathcal{C} containing v is a subtree of \mathcal{T} .

Existence and computability (Habib 1995): Every chordal graph has a clique tree which is computable in polynomial time.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Result

 Using clique tree structure, we propose an algorithm to compute a kernel of chordal clique-acyclic graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It is polynomial of complexity $\leq O(n^4)$
- Now the question is to generalize it to other families of graphs

Plan

2 Algorithm for chordal graphs

◆□> <圖> < E> < E> E のQ@

Natural generalization

The theorem still holds for a graph verifying (H1), (H2), (H3).

Generalized assumptions

- (H1) ∃ tree decomposition such that the intersection of two bags is a clique
- (H2) ∀ subgraph B of a bag,
 B has a kernel computable in polynomial time
- (H3) ∀ subgraph B of a bag, ∀v fixed vertex in B, in polynomial time: compute a kernel of B containing v if exists, or report that none exists otherwise

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Extension of chordal case

DE graphs

- Consider a collection of paths on a directed tree
- Path are vertices of the DE graph
- Two vertices are adjacent if the paths share an edge
- The collection of paths is the *representation* of the DE graph

Stable marriages

- Two sets: men and women
- Every person ranks individuals from the other gender
- A matching is a set of married couples
- A matching is stable if there is no pair (m, w) not married together such that both of them prefer the other to their current husband/wife

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Algorithm of Gale and Shapley: a stable marriage is computed in poly time for any instance

Stable marriages

- Two sets: men and women
- Every person ranks individuals from the other gender
- A matching is a set of married couples
- A matching is stable if there is no pair (m, w) not married together such that both of them prefer the other to their current husband/wife

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Algorithm of Gale and Shapley: a stable marriage is computed in poly time for any instance

What about DE graphs ?

DE graphs

DE graphs have a tree decomposition verifying (H1)**Question**: do DE bags verify (H2), (H3) ?

One-to-one correspondance between:

- a DE bag with clique-acyclic orientation without reversible arc
- an instance of the stable marriage problem

A kernel of the DE graph is a stable marriage of the Gale-Shapley instance.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

DE graphs

DE graphs have a tree decomposition verifying (H1)**Question**: do DE bags verify (H2), (H3)?

One-to-one correspondance between:

- a DE bag with clique-acyclic orientation without reversible arc
- an instance of the stable marriage problem

A kernel of the DE graph is a stable marriage of the Gale-Shapley instance.

Thanks to stable marriages, (H1), (H2), (H3) can be verified for DE clique-acyclic without reversible arc. The generalized algorithm is applicable.

Conclusion and open questions

Results:

- Algorithm for chordal graphs
- Generalization applicable for some DE graphs

What's next:

- Refine the algorithm to compute all kernels? if possible. Would allow us to solve existence problem.
- Extend the results for DE graphs to the case of reversible arcs (weakly stable marriages)
- Characterize graph families that verify (H1), (H2), (H3)
- Look for minimal hypothesis instead of (H1), (H2), (H3) (we would appreciate to weaken (H3))

Lunch time

Thank you for your attention !