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Business problem

• Context: production function of the Supply Chain for one assembly line
• Objective: reduction of holding costs
• Main constraints: industrial flexibility and “high service level”
• Typical horizon: 10 to 15 weeks
• Typical time step: 1 week
• Input data:

I a set of references r ∈ R
I capacity of the line
I demand for each reference and each week
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Classical problem: Capacitated Lot-Sizing Problem (CLSP)
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• with (r ∈ R for references, t ∈ [T ] for weeks):
input data variables

hr
t holding cost sr

t inventory level
c r
t setup cost qr

t produced quantity
d r
t demand x r

t setup variable
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Disadvantage of CLSP formulation (according to Argon Consulting)

• Hard to compare holding costs and setup costs
• Number of setups is a “technical” constraint

I Given by operational level
I Represent scheduling constraints (which are neglected at tactical level)
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Multi-item lot-sizing problem with bounded number of setups
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(P)

• Bounded number of setups per week (N)
• Easier for industrials to quantify holding costs and N
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The deterministic model is hard

• (P) is NP-hard (reducing 3-PARTITION)
I Decide if there is a solution when N = 1 is polynomial
I Cases N = 1 and N = 2 still open

• Continuous relaxation of (P) does NOT depend on N
• 2 natural extended formulations:

I 1 binary variable xp,t where p ∈
(R
N

)
per possible plan for a week

I 1 binary variable yq,r where q ∈ 2[T ] per possible plan for a reference

references
w
ee

ks
yq,r

xp,t

I Same continuous relaxations than compact formulation
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Need for backlog

• Mathematical reason:
I In general, there is no feasible solution
I Simple example:

• bounded capacity C
• demand = Gaussian noise around forecast

infeasible region

demand

probability of realization

forecast capacity

• Industrial reason:
I Negative inventories are commercial constraints

=⇒ “soft” constraints
I Firms can deliver late
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Stochastic model
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with: γ backlog penalization, s̃r
t inventory level,

br
t backlog quantity
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Stochastic model: size difficulty

• Extensive formulation leads to a huge number of variables
t = 0

t = 1

t = 2

t = 31 1 1 12 2 2 2

1 12 2

1 2

0

I example: for each references, 2 independent possibilities for demand
=⇒ number of variables multiplied by

(
2T

)|R|

I for T = 10, |R| = 10, numbers of variables ≈ 1030

• Need for heuristics to solve (S)
I lot-size and cover-size
I open-loop feedback approach
I repeated two-stage stochastic programming approach

9 / 20



Aside: computing lot-size and cover-size

• Simplified model:
I Constant demand for each reference over time
I Aggregated demand

Inventory level of reference r :
s̄r = 1
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Corresponding program to solve:
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• Closed-form expressions of solutions
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• Closed-form expressions of solutions for stochastic case
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Strategy: lot-size and cover-size

• Heuristic parameters: safety stock for each reference
foreach r ∈ R do

Compute cover-size Tr / lot size `r = drTr ;
for week from 1 to T do

foreach r ∈ R do
Observe inventory level of r ;
if current inventory level < safety stock then

case lot-size: produce quantity `r ;
case cover-size: produce the cumulated expected demand for the Tr

next weeks;

• Example:
I For a reference r , Tr = 2 weeks
I Expected demand is:

week t 1 2 3 4 5
expected demand ft 2 3 5 4 1

I If current inventory level < safety stock at week 1, we must produce:
f1 + f2 = 2 + 3 = 5 units of reference r

11 / 20



Strategy: open-loop feedback approach

• At week t:
I Observe current inventory level
I Solve deterministic version of (S) where the random variable d r

t is
replaced by the deterministic expected demand

• It is a Mixed Integer Program
• Almost program (P) but with backlog

I Set production decisions for week t
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Strategy: repeated two-stage stochastic programming approach

• At week t:
I Observe current inventory level
I Construct a fan of demand scenarios to approximate the tree of scenarios

in (S)

t = 0

t = 1

t = 2

t = 3

Complete tree of scenarios

1 2 3

0

Fan of scenarios

1 2 3

0

I Solve (S)
I Set production decisions for week t
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There is a lot of possible forecasts

• Static deterministic forecast
I Expectation, median...

• Adaptative deterministic forecast
I Autoregressive process, time series...

• Stochastic forecast
I Tree of scenario, fan of scenarios...

Every strategy works even if we do not know distribution laws.
We just need a forecast function!
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Simulations

Simulator

• Start at week t = 0
• For each week t:

time
past

current

I Observe inventory level
I Use strategy and forecast to

compute the production planning
I Set production for current week

• Return KPI

Strategy

Forecast

Data

Demand realization

Key performance
indicators:

• Holding costs

• Backlog costs

• Cycle service
level

• Fill rate service
level

• . . .
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Data of the instances

• We use historical data from industrial
• Numerical values:

I Horizon T = 13 weeks
I |R| = 30 references
I Demands 0 ≤ d r

t ≤ 4000 units
I Weekly capacity C ≈ 13000 units
I Weekly number of setups N = 10
I Holding costs 50 ≤ hr

t ≤ 80 per units
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Building the distribution of the demand

• Autoregressive Process (AR1).
For each reference r ,

dt+1 = ft+1+αet + (1 − α) εt+1︸ ︷︷ ︸
et+1

where (at week t):
I dt is the demand
I ft is the forecast
I et is the forecast error
I εt ∼ N (0, σft) is a white

noise
• 2 parameters:

I α ∈ [0, 1] proportion
error/noise

I σ is the volatility. time

de
m

an
d

forecast

α = 50%
σ = 80%
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Results: holding costs for several realizations of demand
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Results: holding costs for several values of volatility
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Results: holding costs for several values of volatility

Thanks for your attention!
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