

www.argon-consult.com

A stochastic multi-item lot-sizing problem with bounded number of setups

Séminaire des doctorants

February 8th, 2017

Etienne de Saint Germain joint work with Frédéric Meunier and Vincent Leclère

Outline

- Business problem and model
- Deterministic model
- Stochastic model
- Numerical experiments

Business problem

- Context: production function of the Supply Chain for one assembly line
- Objective: reduction of holding costs
- Main constraints: industrial flexibility and "high service level"
- Typical horizon: 10 to 15 weeks
- Typical time step: 1 week
- Input data:
 - \blacktriangleright a set of references $r \in \mathcal{R}$
 - ▶ capacity of the line
 - demand for each reference and each week

Classical problem: Capacitated Lot-Sizing Problem (CLSP)

$$\begin{array}{ll} \min & \sum_{t=1}^{T}\sum_{r\in\mathcal{R}}\left(h_{t}^{r}s_{t}^{r}+c_{t}^{r}x_{t}^{r}\right)\\ \text{s.t.} & s_{t}^{r}=s_{t-1}^{r}+q_{t}^{r}-d_{t}^{r} & \forall t,\forall r\\ & \sum_{r\in\mathcal{R}}q_{t}^{r}\leq 1 & \forall t\\ & q_{t}^{r}\leq x_{t}^{r} & \forall t,\forall r\\ & x_{t}^{r}\in\{0,1\} & \forall t,\forall r\\ & q_{t}^{r}, s_{t}^{r}\geq 0 & \forall t,\forall r \end{array}$$

• with $(r \in \mathcal{R} \text{ for references}, t \in [T] \text{ for weeks})$:

	input data	variables			
h_t^r	holding cost	s _t ^r	inventory level		
c_t^r	setup cost	q_t^r	produced quantity		
d_t^r	demand	x ^r t	setup variable		

(CLSP)

- Hard to compare holding costs and setup costs
- Number of setups is a "technical" constraint
 - ▶ Given by operational level
 - ▶ Represent scheduling constraints (which are neglected at tactical level)

Multi-item lot-sizing problem with bounded number of setups

min $\sum \sum (h_t^r s_t^r + c_t^r x_t^r)$ $\overline{t=1}$ $\overline{r\in\mathcal{R}}$ s.t. $\overline{s_t^r} = \overline{s_{t-1}^r} + q_t^r - d_t^r \qquad \forall t, \forall r$ $\sum q_t^r \leq 1$ ∀t $\overline{r\in\mathcal{R}}$ $q_t^r \leq x_t^r$ $\forall t, \forall r$ $\sum x_t^r \le N$ $\forall t$ $\stackrel{\checkmark}{r\in\mathcal{R}}$ $x_{t}^{r} \in \{0,1\}$ $\forall t, \forall r$ $q_{t}^{r}, s_{t}^{r} > 0$ $\forall t, \forall r$

(P)

- Bounded number of setups per week (N)
- Easier for industrials to quantify holding costs and N

Outline

- Business problem and model
- Deterministic model
- Stochastic model
- Numerical experiments

The deterministic model is hard

- (P) is \mathcal{NP} -hard (reducing 3-PARTITION)
 - ▶ Decide if there is a solution when N = 1 is polynomial
 - ▶ Cases N = 1 and N = 2 still open
- Continuous relaxation of (P) does NOT depend on N
- 2 natural extended formulations:
 - ▶ 1 binary variable $x_{p,t}$ where $p \in \binom{\mathcal{R}}{N}$ per possible plan for a week
 - ▶ 1 binary variable $y_{q,r}$ where $q \in 2^{[T]}$ per possible plan for a reference

▶ Same continuous relaxations than compact formulation

Outline

- Business problem and model
- Deterministic model
- Stochastic model
- Numerical experiments

Need for backlog

- Mathematical reason:
 - ▶ In general, there is no feasible solution
 - Simple example:
 - bounded capacity C
 - demand = Gaussian noise around forecast

- Industrial reason:
 - Negative inventories are commercial constraints
 - \implies "soft" constraints
 - Firms can deliver late

Stochastic model

$$\begin{array}{ll} \min \quad \mathbb{E} \left[\sum_{t=1}^{T} \sum_{r \in \mathcal{R}} \left(h_{t}^{r} \tilde{s}_{t}^{r} + \gamma b_{t}^{r} \right) \right] \\ \text{s.t.} \quad s_{t}^{r} = \tilde{s}_{t}^{r} - b_{t}^{r} & \forall t, \forall r \\ s_{t}^{r} = \tilde{s}_{t-1}^{r} + q_{t}^{r} - d_{t}^{r} & \forall t, \forall r \\ \sum_{r \in \mathcal{R}} q_{t}^{r} \leq 1 & \forall t \\ q_{t}^{r} \leq x_{t}^{r} & \forall t, \forall r \\ \sum_{r \in \mathcal{R}} x_{t}^{r} \leq N & \forall t \\ x_{t}^{r} \in \{0, 1\} & \forall t, \forall r \\ q_{t}^{r}, \tilde{s}_{t}^{r}, b_{t}^{r} \geq 0 & \forall t, \forall r \\ q_{t}^{r}, \tilde{s}_{t}^{r}, b_{t}^{r} \geq 0 & \forall t, \forall r \\ \sigma \left(q_{t}^{r}\right), \sigma \left(x_{t}^{r}\right) \subset \sigma \left(\left(d_{0}^{r}, \dots, d_{t}^{r}\right)_{r \in \mathcal{R}}\right) & \forall t, \forall r \\ b_{t}^{r} & \text{backlog quantity} \end{array} \right)$$

ParisTech

Stochastic model: size difficulty

• Extensive formulation leads to a huge number of variables

- ▶ example: for each references, 2 independent possibilities for demand
 ⇒ number of variables multiplied by (2^T)^{|R|}
 ▶ for T = 10, |R| = 10, numbers of variables ≈ 10³⁰
- Need for heuristics to solve (S)
 - ▶ lot-size and cover-size
 - open-loop feedback approach
 - repeated two-stage stochastic programming approach

Aside: computing lot-size and cover-size

Simplified model:

cover-siz

- Constant demand for each reference over time
- Aggregated demand
- Inventory level of reference r: $\overline{s}_r = \frac{1}{2} d_r T_r^2$ inventory level 0

Corresponding program to solve:

Closed-form expressions of solutions

$$\nu_r^* = \frac{1}{T_r^*} = \frac{N\sqrt{h_r d_r}}{\sum_{p \in \mathcal{R}} \sqrt{h_p d_p}} \quad \text{and} \quad \text{Cost} = \frac{1}{2N} \left(\sum_{r \in \mathcal{R}} \sqrt{h_r d_r}\right)^2$$

Closed-form expressions of solutions for stochastic case

lot-size > time

 $2T_r$

Strategy: lot-size and cover-size

• Heuristic parameters: safety stock for each reference

```
foreach r \in \mathcal{R} do

| Compute cover-size T_r / lot size \ell_r = d_r T_r;

for week from 1 to T do

foreach r \in \mathcal{R} do

| Observe inventory level of r;

if current inventory level < safety stock then

| case lot-size: produce quantity \ell_r;

case cover-size: produce the cumulated expected demand for the T_r

next weeks;
```

- Example:
 - ▶ For a reference r, $T_r = 2$ weeks
 - Expected demand is:

week t	1	2	3	4	5
expected demand f_t	2	3	5	4	1

▶ If current inventory level < safety stock at week 1, we must produce:

$$f_1 + f_2 = 2 + 3 = 5$$
 units of reference r

Strategy: open-loop feedback approach

- At week t:
 - Observe current inventory level
 - Solve deterministic version of (S) where the random variable d^r_t is replaced by the deterministic expected demand
 - It is a Mixed Integer Program
 - Almost program (P) but with backlog
 - Set production decisions for week t

Strategy: repeated two-stage stochastic programming approach

- At week *t*:
 - Observe current inventory level
 - Construct a fan of demand scenarios to approximate the tree of scenarios in (S)

- ► Solve (S)
- \blacktriangleright Set production decisions for week t

There is a lot of possible forecasts

- Static deterministic forecast
 - ▶ Expectation, median...
- Adaptative deterministic forecast
 - ▶ Autoregressive process, time series...
- Stochastic forecast
 - ▶ Tree of scenario, fan of scenarios...

Every strategy works even if we do not know distribution laws. We just need a forecast function!

Outline

- Business problem and model
- Deterministic model
- Stochastic model
- Numerical experiments

Simulations

École des Ponts

ParisTech

Data of the instances

- We use historical data from industrial
- Numerical values:
 - ▶ Horizon T = 13 weeks
 - ▶ $|\mathcal{R}| = 30$ references
 - ▶ Demands $0 \le d_t^r \le 4000$ units
 - \blacktriangleright Weekly capacity ${\it C}\approx 13000$ units
 - ▶ Weekly number of setups N = 10
 - ▶ Holding costs $50 \le h_t^r \le 80$ per units

Building the distribution of the demand

$$d_{t+1} = f_{t+1} + \underbrace{\alpha e_t + (1 - \alpha) \epsilon_{t+1}}_{e_{t+1}}$$

where (at week t):

- ▶ d_t is the demand
- f_t is the forecast
- ▶ *e_t* is the forecast error
- $\epsilon_t \sim \mathcal{N}(0, \sigma f_t)$ is a white noise

17 / 20

• 2 parameters:

S U

- $\alpha \in [0, 1]$ proportion error/noise
- σ is the volatility.

Results: holding costs for several realizations of demand

Results: holding costs for several values of volatility

Results: holding costs for several values of volatility

Thanks for your attention!

20 / 20

