

CERMICS (ENPC) and LAGA (Paris 13)

Séminaire des doctorants - CERMICS - 26 septembre 2016

Marion Sciauveau Cost functionals for large random trees

Somen	atations for	hinary trees	

Figure: Binary trees with 5 internal nodes

- T_n rooted full binary ordered tree with n internal nodes
- $|T_n|$: the cardinal of T_n
- $L(\mathbf{T}_n)$: the left-sub-tree of \mathbf{T}_n
- $R(\mathbf{T}_n)$: the right-sub-tree of \mathbf{T}_n
- the sub-tree $\mathrm{T}_{n,v}$ of T_n with root v

A random binary tree is a binary tree selected at random from some probability distribution on binary trees. We often used two models of probability:

- Catalan model: random tree uniformly distributed among the full binary ordered trees with given number of internals nodes. In others words, the probability that a particular tree occurs is ¹/_{C_n} where C_n is the nth Catalan number.
- **Random permutation model**: binary search trees are recursive binary trees with keys associated with the internal nodes. The keys are given by a given random permutation of the numbers {1,2,...,n}. In the RPM model, each permutation is equally likely.

Comparison between the two models

Figure: $C_3 = 5$ rooted full binary ordered trees with 3 internal nodes

Framework		

2 Binary trees and Brownian excursion

Marion Sciauveau

Definition of cost functionals

Additive functional

A functional F on binary trees is called an additive functional if it satisfies the following recurrence relation:

$$F(\mathbf{T}) = F(L(\mathbf{T})) + F(R(\mathbf{T})) + b_{|\mathbf{T}|}$$

for all trees T such that $|T| \ge 1$ and with $F(\emptyset) = 0$

Remark:

()
$$(b_n,n\geq 1)$$
 is called the toll function ()
$$F(\mathbf{T}_n)=\ \sum\ b_{|\mathbf{T}_n,v|}$$

$$v \in T_n$$

Some examples of additive functionals

Index	Total size	Total path length	Wiener index
Expression	$ \mathbf{T}_n $	$P(\mathbf{T}_n) = \sum_v d(\emptyset, v)$	$W(\mathbf{T}_n) = \sum_{u,v} d(u,v)$
Toll function	$b_n = 1$	$b_n = n$	$b_n = n$ and $b_n = n^2$
Additive functional	$\sum_{v} 1$	$P(\mathbf{T}_n) = \sum_{v} \mathbf{T}_{n,v} - \mathbf{T}_n $	$W(\mathbf{T}_n) = 2 \mathbf{T}_n \sum_{w} \mathbf{T}_{n,w} - 2\sum_{w} \mathbf{T}_{n,w} ^2$
Scaling factor		$ \mathbf{T}_n ^{-\frac{1}{2}}$	$ \mathbf{T}_n ^{-\frac{3}{2}}$
Asymptotics (a.s.)		$2\int_0^1 e(s)ds$	$4\int_0^1 e(s)ds - 4\int_{[0,1]^2} ds dt m_e(s,t)$

	Introduction		
Motivation	(1)		

Goal: study the asymptotics of cost functional with toll function of type $b_n = n^{\beta}$ for $\beta > 0$.

Question: For $\beta > 0$,

- For β > 0, Fill and Kapur (2003) showed that this functional converges in distribution, after a suitable scaling, to a limit Z_β. The limit is characterized by its moments.
- Fill and Janson (2007) announced that for $\beta > \frac{1}{2}$, Z_{β} can be represented as a functional of the normalized Brownian excursion e.

	Introduction		
Motivati	ion (2)		

for f satisfying smooth conditions

• Aim: derive an invariance principle for such tree functionals

• Model: Catalan model

	Binary trees and Brownian excursion	

2 Binary trees and Brownian excursion

Marion Sciauveau

Brownian tree associated to the normalized Brownian excursion

Let e be a normalized Brownian excursion on [0,1] i.e. a standard Brownian motion on [0,1] conditioned on being nonnegative on [0,1] and on taking the value 0 at 1.

For $s, t \in [0, 1]$, s < t, we define

$$d_e(s,t) = e(s) + e(t) - 2 \inf_{s < u < t} e(u)$$

The Browian tree is defined as $\mathcal{T}_e = [0,1]/\sim_e$ where $s \sim_e t \Leftrightarrow d_e(s,t) = 0$ and we let d_e be the induced distance on the quotient. We denote by \mathbf{p} the canonical projection from [0,1] to \mathcal{T}_e .

Marion Sciauveau

Natural embedding of binary trees into the Brownian excursion e (1)

• Normalized Brownian excursion: *e*

Marion Sciauveau

Natural embedding of binary trees into the Brownian excursion e (1)

- Normalized Brownian excursion: *e*
- $(U_i)_{1 \le i \le 5}$ i.i.d. uniform on [0, 1] and indep. of e

Marion Sciauveau

Natural embedding of binary trees into the Brownian excursion e (1)

- Normalized Brownian excursion: *e*
- $(U_i)_{1 \leq i \leq 5}$ i.i.d. uniform on [0,1] and indep. of e
- $(V_i)_{1 \leq i \leq 4}$ such that

$$e(V_i) = \min_{u \in [U_{(i)}, U_{(i+1)}]} e(u)$$

Marion Sciauveau

Natural embedding of binary trees into the Brownian excursion e (2)

Figure: The Brownian excursion and $\mathcal{T}_{[n]}$ for n = 4

Marion Sciauveau

Natural embedding of binary trees into the Brownian excursion e (2)

Figure: The Brownian excursion, $\mathcal{T}_{[n]}$ (for n = 4) and T_n

Marion Sciauveau

	Results	

Binary trees and Brownian excursion

Marion Sciauveau

Length of a subexcursion

 $\sigma_{r,s} = \text{length of the excursion of } e$ above level r straddling s

$$\sigma_{r,s} = \int_0^1 dt \mathbf{1}_{\{\min_e(s,t) \ge r\}}$$

Marion Sciauveau

		Results	
Invariar	nce principle		

Let

$$A_n(f) = |\mathbf{T}_n|^{-\frac{3}{2}} \sum_{v \in \mathbf{T}_n} |\mathbf{T}_{n,v}| f\left(\frac{|\mathbf{T}_{n,v}|}{|\mathbf{T}_n|}\right)$$

and

$$\Phi_e(f) = \int_0^1 ds \int_0^{e_s} dr \ f(\sigma_{r,s})$$

Theorem

A.s., $\forall f \in \mathcal{C}^0((0,1])$ s.t. $\lim_{x\downarrow 0^+} x^a f(x) = 0$ for some $0 \le a < \frac{1}{2}$, we have:

$$\lim_{n \to +\infty} A_n(f) = 2 \Phi_e(f)$$

Marion Sciauveau

 $\mathrm{For}\beta>0$ and $n\in\mathbb{N}^*,$ we set:

$$Z_{\beta} = \int_{0}^{1} ds \, \int_{0}^{e_{s}} dr \, \sigma_{r,s}^{\beta-1} \quad \text{and} \quad Z_{\beta}^{(n)} = |\mathbf{T}_{n}|^{-(\beta+\frac{1}{2})} \sum_{v \in \mathbf{T}_{n}} |\mathbf{T}_{n,v}|^{\beta}$$

Theorem

We have a.s., $\forall \beta > 0$,

 $\lim_{n \to +\infty} Z_{\beta}^{(n)} = 2 \, Z_{\beta}$

Marion Sciauveau

 $\mathrm{For}\beta>0$ and $n\in\mathbb{N}^*,$ we set:

$$Z_{\beta} = \int_{0}^{1} ds \, \int_{0}^{e_{s}} dr \, \sigma_{r,s}^{\beta-1} \quad \text{and} \quad Z_{\beta}^{(n)} = |\mathbf{T}_{n}|^{-(\beta+\frac{1}{2})} \sum_{v \in \mathbf{T}_{n}} |\mathbf{T}_{n,v}|^{\beta}$$

Theorem

We have a.s., $\forall \beta > 0$,

Lemma

If $\beta > \frac{1}{2}$,

a.s.
$$Z_{\beta} < +\infty$$
 and $\mathbb{E}[Z_{\beta}] < +\infty$

 $\lim_{n \to +\infty} Z_{\beta}^{(n)} = 2 \, Z_{\beta}$

Otherwise,

a.s.
$$Z_{\beta} = +\infty$$

Marion Sciauveau

Fluctuations of the invariance principle

Theorem

Let $f \in \mathcal{C}([0,1])$ be locally Lipschitz continuous on (0,1] with $\|x^a f'\|_{essup} < +\infty$ for some $a \in (0,1)$. We have

$$\left(\underbrace{|\mathbf{T}_n|^{1/4}}_{speed of CV}(A_n - 2\Phi_e)(f), A_n\right) \xrightarrow[n \to \infty]{\mathcal{L}} \left(\sqrt{2}\sqrt{\Phi_e(xf^2)} G, 2\Phi_e\right),$$

where $G \sim \mathcal{N}(0, 1)$ and is independent of the excursion e

Marion Sciauveau

• Results:

- invariance principle for more general additive functional
- recover some classical results on additive functional (e.g. total size, total path length ...)
- fluctuations coming from the approximation of the branch lengths by their mean.
- **Ongoing work**: study asymetric cost functionals depending on the cardinal of the left and right sub-tree of each nodes.

		Conclusion

Thank you for your attention !

Marion Sciauveau