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1. INTRODUCTIONThe propagation of a steady planar premixed ame in an in�nite tube is one of the mostfundamentals problem of combustion theory. This problem has attracted the attention ofnumerous physicists since the pioneer work of Zeldovich and Frank-Kamenetskii in 1938 [15];in the past ten years, one can also notice an increase of the interest in the mathematicalaspects of this problem, starting from the article of Berestycki, Nicolaenko and Scheurer [2].Under classical hypotheses (and in particular with the assumption of a single one-stepchemical reaction A! B), a steady planar ame can be described with the following systemof two di�erential equations (see e.g. [14]):(1:1) 8><>:�T 00 + cT 0 = Y f(T );�Y 00Le + cY 0 = �Y f(T ) on IR ;with the boundary conditions:(1:2) �T (�1) = 0 ; T (+1) = 1 ;Y (�1) = 1 ; Y (+1) = 0 ;here, the unknowns are the normalised temperature and mass fraction pro�les T (x) and Y (x)and the scalar c, which corresponds to the normalised mass ux across the ame, and can alsobe seen as the speed of the ame with respect to the fresh mixture. The boundary conditionsat �1 (respectively: +1) correspond to the fresh mixture (resp. : to the burnt gases). Thepositive parameter Le is the Lewis number. We classically assume that the reaction termY f(T ) has an ignition temperature � 2 (0; 1), i.e.:(1:3) f(T ) � 0 on [0; �] ; f(T ) > 0 on (�; 1] :Our study deals with the questions of uniqueness and stability of the solutions of (1.1)-(1.2). From the works of Marion [9], we know that problem (1.1)-(1.2) has a unique solution(c; T; Y ) when the Lewis number is greater than or equal to 1. The question of uniqueness forLe < 1 has remained open till the recent investigations of the �rst author [3], [4], who builtan example for the reaction rate f such that problem (1.1)-(1.2) has three di�erent solutions.A natural question is then to know if these three solutions, which correspond to three steadyames travelling at three di�erent speeds, are physically relevant: are they stable or unstable1



steady solutions ? More precisely, we wish to know whether only one of these solutions isstable, or on the opposite if several of them are stable steady solutions.This is the object of the present work, which supports the interest of the example ofmultiple solutions shown in [3], [4]: we show indeed below that, among the three solutionsexhibited in [3], [4], two solutions are stable with respect to planar perturbations and one isunstable (the one with an intermediate speed of propagation). Therefore, we show that, insome situations, with a Lewis number less than 1, system (1.1)-(1.2) can have several stablesolutions.In order to investigate the stability of the solutions of (1.1)-(1.2), we will consider belowthe unsteady problem, which writes (see e.g. [7]):(1:4) 8><>:Tt = Txx + Y f(T );Yt = YxxLe � Y f(T );with the initial data T (x; 0) = T0(x), Y (x; 0) = Y0(x).The instabilities of the travelling-wave solutions of this system, i.e. of the solutions of(1.1)-(1.2), are well-known in the framework of the asymptotic analysis for high activationenergies (see for instance Clavin [5], Sivashinsky [13]). In particular, two di�erent types ofinstabilities may appear, depending on the sign of the di�erence Le� 1 : for a Lewis numbergreater than 1, one may observe a planar pulsating instability; on the opposite, when theLewis number is less than 1, the travelling-wave solution is stable with respect to planarperturbations, but cellular instabilities appear in the presence of non planar perturbations.These results do not directly apply to the situation we consider here, where we are going toanalyse the stability of multiple solutions of (1.1)-(1.2) with respect to planar perturbationswithout any hypothesis of high activation energies.In Section 2 below, we recall from [3], [4] the construction of multiple travelling-wavesolutions. Then, we investigate the stability of these solutions, by numerically solving theunsteady system (1.4) in Section 3 and by carrying out a formal linear stability analysis inSection 4.Remark 1.1: Since the Lewis number is less than 1, it might be the case that all threetravelling-wave solutions are indistinctly unstable with respect to non planar perturbations,exhibiting a cellular instability. Nevertheless, investigating the stability of these solutions2



with respect to planar perturbations still has its own interest, in order to compare the presentsituation with the well-known case of high activation energies, and also because the planarstability is the one which determines the observability of a planar ame in a thin tube witha diameter smaller than the wavelength of the possible cellular instabilities. �2. CONSTRUCTION OF THE MULTIPLE SOLUTIONSWe now recall how the multiple solutions of (1.1)-(1.2) are obtained; the reader is referredto [3], [4] for more details.One chooses a piecewise constant function f given by:(2:1) 8<: f(T ) = 0 for T < 0:0006 ,f(T ) = 0:001 for 0:0006< T < 0:3 ,f(T ) = 10 for 0:3 < T < 1 .In the sequel, we denote s2 = � = 0:0006, m2 = 0:001, s1 = 0:3 and m1 = 10; thus, thefunction f takes the value m2 on the interval (s2; s1) and m1 on (s1; 1). With this choice off and with:(2:2) Le = 0:02 ;one can show that that there exist three solutions of (1.1)-(1.2), with the propagation speedsc1 ' 1:02, c2 ' 1:12 and c3 ' 1:22. Their temperature and mass fraction pro�les are shownon �gures 1, 2 and 3.Remark 2.1: Examples of multiple solutions can be constructed for higher values ofthe Lewis number (for instance, Le ' 0:33). Nevertheless, we will keep this low value ofthe Lewis number, Le = 0:02, because, in this case, the values of the propagation speeds ciof the three travelling-wave solutions are 10% apart, which allows us to better distinguishthese solutions from each other in the numerical simulations. Let us also notice that it is alsopossible to construct an example where system (1.1)-(1.2) has three di�erent solutions witha smooth non linear function f . �Let us be more speci�c about the construction of the multiple solutions. We �rst noticethat it is easy to get an explicit analytic form for the solutions (T; Y ) of (1.1) since f ispiecewise constant: in each interval where f(T ) is constant and takes the value m, T and Yare obtained as a linear combinations of exponentials:(2:3) 8><>:T (x) = mae�x��2 + c� + mb e�x��2 + c� + g ecx + j ;Y (x) = a e�x + b e�x ;3



where a, b, g and j are some real constants which are determined from the boundary conditionsat �1 and +1 and from the continuity of T , Y and of their �rst derivatives. The constants� and � are the roots of � 1Lez2 + cz +m = 0 (with � < �).For any c > 0, we can try to construct a solution of (1.1)-(1.2) in the following way:we begin by writing T and Y on an interval (x1;+1) where T remains greater than s1; atthe boundaries, we naturally impose the relations T (x1) = s1, T (+1) = 1 and Y (+1) = 0,which determine the values of the constants a, b, g, j in (2.3) (with m = m1). Notice howeverthat x1 is undetermined, because of the translational invariance of the problem; with no lossof generality, we may set x1 = 0. Then, we construct the solution on an interval (x2; x1),using again (2.3) with nowm = m2; here we impose that T (x2) = m2 and that T , Y and their�rst derivatives are continuous at x1. These conditions allow us to determine the constantsa, b, g, j and x2. We have therefore de�ned T and Y on the interval (x2;+1). Then, we set:(2:4) h(c) = T 0(x2) :Lastly, on (�1; x2), T and Y are necessarily exponentials:(2:5) T (x) = s2ec(x�x2) ; Y (x) = 1� [1� Y (x2)] e c(x�x2 )Le :Then, the continuity of T 0 and Y 0 at x2 gives a necessary and su�cient condition on c:(2:6) h(c) = cs2 :The function c 7! h(c)c is shown on �gure 4, where we see that the condition (2.6) is ful�lledfor three values of c. For each of these three values, the above construction of T and Y givesa solution of (1.1)-(1.2), that is a travelling-wave solution of (1.4), or in other words a amepropagating with the speed c.In fact, the S-shaped curve of �gure 4 illustrates a classical situation of bifurcation. Tosee this clearly, we can modify the fresh mixture temperature and mass fraction and keepthe same conditions for the burnt gases at +1. Taking T (�1) = r, Y (�1) = 1 � r withr < s2, we obtain, together with the equations (1.1) and the boundary conditions (1.2) at+1, a di�erent problem which we call (Pr). For this problem, travelling-wave solutions areobtained if c satis�es:(2:7) h(c)c = s2 � r :4



As a consequence, three di�erent situations may occur:(i) For s2 � r bigger than some value �1 (�1 ' 0:00065 on �gure 4), then (2.7)has a unique solution c1. There is a unique steady ame solution of (Pr), with thepropagation speed c1.(ii) If �2 < s2 � r < �1 (with �2 ' 0:0002 on �gure 4), then (2.7) has threesolutions, and there exist three steady ames, with the speeds c1 < c2 < c3.(iii) Lastly, for 0 < s2 � r < �2, (2.7) again has a unique solution c3, and there isa unique solution to problem (Pr).In this situation, one expects that the ames of speeds c1 and c3 are stable and that theame of speed c2 is unstable. This is in fact the result we will prove in the next sections.Remark 2.2: We observe on Figure 1 that the temperature and mass fraction pro�lesassociated with the solution of speed c1 have the usual aspect (but with an order of magnitudeof di�erence in the maximal temperature and mass fraction gradients, as it can be expectedsince the Lewis number is very far from unity). In contrast with this, the temperature pro�lesof the two other solutions, on �gures 2 and 3, have a quite surprising aspect, which is dueto the disparacy between the exponents �, � and c in the analytical expressions (2.3) (moreprecisely, in the interval (x2; x1), we have � ' �m2c and � ' c Le since m2 is very small). �3. NUMERICAL INVESTIGATION OF THE STABILITYIn this section, we perform a numerical investigation of the stability of the three travel-ling-wave solutions described in the preceding section, by numerically solving the unsteadysystem (1.4).The numerical method used in our experiments is very classical and simple, and we willomit the details. Let us just mention that, instead of simply solving (1.4), we add in the right-hand side of (1.4) a convective term which amounts to observing the solution in a referenceframe moving with the ame; this allows us to observe a discrete steady solution instead of atravelling-wave solution propagating with constant speed; we refer to [8] for the details. Letus also add that the convergence of this numerical was proved in [1] (in a two-dimensionalframework).To investigate the stability of the three steady solutions, we have solved system (1.4)while taking as initial data each steady solution with some small perturbation. These expe-riments have shown that: 5



(i) the steady solutions of speeds c1 and c3 are stable;(ii) the steady solution of speed c2 is unstable.More precisely, we observed that the numerical solution obtained when the (perturbed)solution of speed c2 was used as initial data converged to the fastest steady solution (of speedc3).4. LINEAR STABILITY ANALYSISWe now study the linear stability of the steady solutions of problem (1.1)-(1.2) with theparticular choice (2.1) for f .For a particular steady solution (c0; T0; Y0) of (1.1)-(1.2), we rewrite the evolution pro-blem (1.4) in the reference frame of the travelling ame:(4:1) 8><>:Tt = Txx � c0Tx + Y f(T ) ;Yt = YxxLe � c0Yx � Y f(T ) :Linearizing (4.1) amounts to perturbate the steady solution (T0; Y0) with exponentiallytime-dependent terms. We consider the perturbed solution:(4:2) Tp(x; t) = T0(x) + �e�tT (x) ; Yp(x; t) = Y0(x) + �e�tY (x) ;as usual, we will assume below that the perturbations T and Y are bounded. In the limit�! 0, T and Y must be solutions of the linearized system:(4:3) 8><>:�T = T 00 � c0T 0 + Y f(T0) + Y0f 0(T0)T ;�Y = Y 00Le � c0Y 0 � Y f(T0)� Y0f 0(T0)T ;on each interval (�1; x2), (x2; x1) and (x1;+1). At x1 and x2, T and Y are continuous andtheir derivatives must satisfy the jump conditions:(4:4) 8>>><>>>: [T 0](xi) = �Y0(xi)T 00(xi)T (xi)[f ](si) ;[Y 0](xi) = Le Y0(xi)T 00(xi)T (xi)[f ](si) ;6



where we denote [g](y) the jump of a function g at point y. A justi�cation of the jumpconditions (4.4) is given in the Appendix below.Classically we will say that the solution (T0; Y0) of (4.1) is linearly stable if there is nonontrivial solution of system (4.2)-(4.3) for any � 6= 0 of non-negative real part.To solve system (4.2)-(4.3), we use the fact that f(T0) is constant in each of the threeintervals (�1; x2), (x2; x1) and (x1;+1): T and Y are thus solution of a system of constant-coe�cient linear di�erential equations, which we can easily solve explicitly. In order tosimplify the algebra, we de�ne the constants (for i = 1; 2 or 3, with m3 = 0):(4:5) �i = c0 �rc20 + 4Le (mi + �)2Le ; �i = c0 +rc20 + 4Le (mi + �)2Le ;(4:6) Ai = mi� � �2 + c0� ; Bi = mi� � �2 + c0� ;(4:7)  = c0 �pc20 + 4�2 ; � = c0 +pc20 + 4�2 :We have then the following explicit solutions in each interval:(i) on (x1;+1), T and Y are given by:(4:8) T (x) = A1e�1x + g1ex ; Y (x) = e�1x ;where g1 is an unknown constant;(ii) on (x2; x1) we have:(4:9) T (x) = A2a2e�2x +B2b2e�2x + g2ex + d2e�x ; Y (x) = a2e�2x + b2e�2x ;where a2, b2, g2 and d2 are unknown constants;(iii) on (�1; x2) we get:(4:10) T (x) = d3e�(x�x2) ; Y (x) = b3e�3(x�x2) ;where b3 and d3 are unknown constants.7



Now, we have seen that T and Y are continuous at x1 and x2, and that their �rstderivatives T 0 and Y 0 should satisfy the jump conditions (4.4) at x1 and x2. These conditionsgive a system of eight equations for the seven unknowns g1, a2, b2, d2, g2, b3 and d3:
(4:11) 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 = a2 + b2 ;�1 � (�2a2 + �2b2) = Le Y0(x1)T 00(x1) (m1 �m2)(A1 + g1) ;A1 + g1 = A2a2 +B2b2 + g2 + d2 ;A1�1 + g1 � (A2a2�2 + B2b2�2 + g2 + d2�) = �Y0(x1)T 00(x1) (m1 �m2)(A1 + g1) ;a2e�2x2 + b2e�2x2 = b3 ;a2�2e�2x2 + b2�2e�2x2 � b3�3 = Le Y0(x2)T 00(x2)m2d3 ;A2a2e�2x2 +B2b2e�2x2 + g2ex2 + d2e�x2 = d3 ;A2�2a2e�2x2 +B2�2b2e�2x2 + g2ex2 + d2�e�x2 � d3� = �Y0(x2)T 00(x2)m2d3 :Remark 4.1: Classically we should have ended with an homogeneous system of eightequations and eight unknowns. In fact, we already took advantage of this homogeneityproperty when we arbitrarily took the coe�cient of e�1x to be 1 in the last relation (4.8). �The system (4.11) has a solution (g1; a2; b2; d2; g2; b3; d3) if and only if its determinantD(�) vanishes. Consequently, we have a necessary and su�cient condition for stability: thesteady ame (T0; Y0) is linearly stable if and only if D(�) does not vanish for any � 6= 0 withnonnegative real part.In practice, �nding the zeros of D(�) is not an easy task. We limit ourselves to anumerical study of D(�) on IR+ and iIR. These numerical calculations give:(i) for c = c2 there is a zero of D(�) in IR�+;(ii) for c = c1 and c = c3 D(�) 6= 0 on IR�+ and iIR.These numerical observations do not allow us to rigorously conclude about the stabilityof the ames of speed c1 and c3. However, together with the numerical simulations of Section8



3, we may say that there is strong evidence towards the stability of the ames of speed c1and c3.For the ame of speed c2, we can be more precise and state a rigorous result. Followingthe works of Evans [6] and Sattinger [10], who show that the stability for the evolutionproblem (1.4) boils down to that of the linearized problem, we can prove the:Theorem 4.1:The steady ame of speed c2 is linearly and nonlinearly unstable. �Remark 4.2: The determinant D(�) always vanishes for � = 0 because of the trans-lational invariance of the problem. Indeed, (T 00; Y 00) is a solution of (4.3)-(4.4) when � = 0.� APPENDIXWe give here the details about the derivation of the jump conditions (4.4) for the per-turbations T and Y . These conditions can be obtained using two di�erent methods.The �rst method relies on regularizing f . If f is discontinuous at some point s0 weintroduce a smooth fonction f� de�ned by:(A:1) � f�(s) = f(s) for s =2 (s0 � �; s0 + �) ;f� smooth and monotone in (s0 � �; s0 + �) :Substituting f� for f in (4.1), we write the linearized equations as:(A:2) 8><>:�T = T 00 � c0T 0 + Y f�(T0) + Y0f 0�(T0)T ;�Y = Y 00Le � c0Y 0 � Y f�(T0)� Y0f 0�(T0)T :When � ! 0, f 0�(T )! [f ](s0)�T=s0 (� is the Dirac delta function). The integration of (A.2) ina neighborhood of the discontinuity followed by a straightforward change of variables readilyleads to conditions (4.4).The jump conditions (4.4) can also be derived without regularizing f . This secondmethod relies on writing the evolution equations in a reference frame attached to the interfaceof the perturbed solution. This method is classical and has been used in several works related9



to ame instabilities (see e.g. [11], [12]); its application to the present case deserves howeversome particular comments.We assume as above that f is discontinuous at a point s0, and (for the sake of simplicityonly) that the steady solution satis�es T0(0) = s0. We also assume that T 00(0) 6= 0 (which isnecessary for the jump conditions (4.4) to hold !). Then, considering a small perturbation ofthe steady solution and calling (Tp; Yp) the perturbed solution, we de�ne x̂(t) by:(A:3) Tp(x̂(t)) = s0 :The method now consists in writing the evolution equation in the reference frame of the\interface" T = s0, i.e. using the variable � = x� x̂(t). The equations (4.1) become:(A:4) 8><>:Tt = T�� � c0T� + x̂0(t)T� + Y f(T ) ;Yt = Y��Le � c0Y� + x̂0(t)Y� � Y f(T ) :Writing the pertubed solution as:(A:5) Tp(�; t) = T0(�) + � e�tT̂ (�); Yp(�; t) = Y0(�) + � e�tŶ (�) ;and also searching for x̂(t) under the form:(A:6) x̂(t) = � e�t ;we obtain the equations for the perturbations as:(A:7) 8>><>>:�T̂ = T̂�� � c0T̂� + �T 00 + Ŷ f(T0) + Y0T̂ f 0(T0) ;�Ŷ = Ŷ��Le � c0Ŷ� + �Y 00 � Ŷ f(T0)� Y0T̂ f 0(T0) :Since the de�nition of x̂(t) and � implies that T̂ (0) = 0, it is clear that T̂ and Ŷ andtheir �rst derivatives are continuous (notice that the situation is di�erent here from the abovementioned works [11], [12], where the same method is used but with a function f which isnot just discontinuous, but converges in the high activation energy limit to a Dirac deltafunction). This nice property shows the advantage of the present method over the one usedin Section 4 above, in the case where their exists a single discontinuity. In our problemhowever, with the choice (2.1) for f , we have two interfaces, and we cannot �nd a reference10
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Figure 1: Temperature and mass fraction pro�les for the steady solution of speed c1.
Figure 2: Temperature and mass fraction pro�les for the steady solution of speed c2.
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Figure 3: Temperature and mass fraction pro�les for the steady solution of speed c3.
Figure 4: Plotting h(c)c as a function of c (see (2.4)).
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