
A PRECONDITIONER FOR INTEGRAL EQUATIONSMODELING HELMHOLTZ EQUATION1Armel de La BourdonnayeCERMICSINRIA06902 Sophia-Antipolis CedexFranceAbstractIn this paper, we analyze a preconditioning operator for the scattering problem in acoustics.We �rst recall the integral equations we use to modelize the problem. Then, we study thecase of a plane scatterer as a preliminary. We show that the preconditioning operator has alimit when the frequency grows to in�nity. We repeat this study with a more general thoughcompact geometry of the scatterer. We obtain the same result as in the plane case. Then,in order to understand the e�ects of the preconditioning operator, we apply this result to thesphere, as we can perform more analytical computation in this case. We can observe that itmakes the higher part of the spectrum of the scattering operator much more empty. This factexplains the reduction of the number of iterations to reach convergence. Finally, we show somenumerical experiments that reveal the actual e�ciency of the preconditioner.UN PR�ECONDITIONNEUR POUR LES �EQUATIONSINT�EGRALES MOD�ELISANT L'�EQUATION DEHELMHOLTZR�esum�eDans ce papier, nous analysons un pr�econditionneur adapt�e aux probl�emes de di�raction acous-tique. Nous commen�cons par rappeler la formulation en �equations int�egrales que nous utilisons,puis nous �etudions comme pr�eliminaire le cas d'une surface plane comme objet di�ractant. Nousvoyons qu'alors le pr�econditionneur a une limite lorsque le nombre d'onde, et donc la fr�equence,crô�ssent. Nous refaisons la même �etude dans le cas d'une surface di�ractante plus g�en�eralemais compacte. Nous obtenons exactement la même limite pour le pr�econditionneur. Nous ap-pliquons ensuite le r�esultat �a la sph�ere a�n de pouvoir comprendre l'action du pr�econditionneur.Il apparait que celui-ci a pour e�et de rendre le haut du spectre de l'op�erateur plus creux. Ceciexplique l'am�elioration de la vitesse de convergence. Nous montrons dans la derni�ere partie desr�esultats num�eriques qui montrent la bonne qualit�e du pr�econditionneur obtenu.1This work was supported by ONERA



IntroductionNumerical treatment of integral equations is known to be a hard problem because it leads to fullnon hermitian matrices which are often ill-conditioned. Many authors already contributed toimprove this treament. Among them we can mention G. Markham [8] who studied conjugategradient methods for complex and non hermitian systems or K. Chen [3] who presented apreconditioner for boundary integral equations which has proven to be e�cient in the vicinityof the singularities of the boundary. In our paper, we present and analyze a new and e�cientpreconditioner for the solution integral equations arising from Helmholtz equations. We will�rst recall the mathematical problem under consideration and brie
y present the numericalmethod. In a second part we will study the theoretical properties of the preconditioningmatrix. We will study the case of the sphere with a special attention. Finally we will presentnumerical experiments showing the e�ciency of the preconditioner.1 The mathematical problemWe want to solve the classical problem of scattering. Given 
 a regular and bounded openset of IR3 and 
0 the interior of its complementary, we are looking for u in H1(
) \H1loc(
0)solution of the Helmholtz equation with Neumann boundary conditions. Let � be the boundaryof 
, n the outgoing unitary normal vector, and g 2 H�1=2(�) the Neumann condition, then�u+ k2u = 0 in 
 [ 
0 (1)@u@r + iku = o(1r )for r!1 (2)@u@n = g on � (3)We will use integral representation of the solution. More precisely, we take as the unknown thejump of u through � :� = [u]j�. Then the integral equation for � writes, as shown by Hamdi[5], : 8 2 H1=2(�)Z��� eikjx�yj4�jx� yj(rot� (x):rot��(y)� k2nx:ny (x)�(y))dxdy = (4)Z�  (x)g(x)dx (5)We discretize this variational formulation with a �nite element method. This leads to afull complex and non hermitian matrix A. For solving the discretized equation, we use thepreconditioned iterative method \Orthomin" (cf. [6]). The preconditioning matrix B is asubmatrix of matrix A. More precisely, we keep only coe�cients that represent interactionsbetween degrees of freedom whose distance is less than a constant times the wavelength. Ona mathematical point of view, it means that B is the discretization of variational formulation(5) in which the kernel G(r) = eikrr is replaced by Gp(r) = G(r):�(kr)k . Here � is a \cut-o�"around 0 in IR, regular and with compact support.In the following we will discuss the behaviour of the preconditioner as k grows to in�nity.



2 PreliminariesIn this section we will �rst study the case of a plane surface. Second we will recall sometechnical points of geometry2.1 Case of a plane surfaceWe start with studying the case where � is a plane. The �rst interest in this simpli�cation isthat we can use Fourier transform and convolution so that we may hope optimal results. Thesecond one is that all surfacic di�erential operators are much more simpler because the normalis the same everywhere. We will denote by B the operator made with the preconditioningkernel, so that < B�;  >= �k2 < Gp � �;  > + < Gp � r�;r > where * denotes theconvolution. In this section we will prove the following theorem.Theorem 1 Given positive s; s0 verifying 1 � s + s0 > 0, there exists a positive constant �such that for all functions � in Hs+1(R2) and  in Hs0+1(R2)����< B�;  > +C� < (Id+ ��k2 )�;  >���� < (6)�� jj�jjHsjj jjHs0ks+s0 + jj�jjHs+1jj jjHs0+1ks+s0+2 � (7)where C� is a constant which depends only on the cut-o�.This result means that, when k grows to in�nity, B is equivalent to Id+ ��k2 . Before giving theproof of theorem 1, we will enonce a few lemmas. The detailed proofs are given in [4].Lemma 1 For all � in IR2, limk!1 k2Ĝp(�) = C� where Ĝp is the Fourier transform of Gp andC� = 14� Z 10 ei��(�)d�.This is a straightforward application of the Lebesgue dominated convergence theorem.Lemma 2 There exists a constant C0 such that, for all � in IR2,jk2Ĝp(�)� C�j < C 0min(1; �k )Proof :As k2Ĝp(�)�C� = 12� Z 2�0 Z 10 �(�)ei�4� (ei� j�jk cos ��1)d�d�, the result follows from the simpleinequality : jei� j�jk cos � � 1j < 2min(1; � j�jk ):The third lemma is just a technical one.Lemma 3 For all s, verifying 12 � s � 0 and for all k > 0,max� (min(1; j�jk )(1 + �2)s ) < 1k2s (8)



We won't prove this lemma, you have again to refer to [4] have the complete proof of it. Wejust want to stress the following point. When s is greater than 1/2, we have the same kind ofinequality with the exponent of k in the right-hand side of (8) will be kept �xed at 1.We are now able to prove Theorem 1. Let s and s0 satisfy 1 � s + s0 > 0. We are �rstgoing to show that there exists a positive constant �, such that for all � in Hs+1(R2) and  inHs0+1(R2) ���< k2Gp � �;  > �C�< �;  >��� < � jj�jjHsjj jjHs0ks+s0 : (9)Indeed, ���< k2Gp � �;  >�C�< �;  >��� = j < (k2Ĝp � C�)�̂; �̂ > j (10)�� 1ks+s0j < (1 + �2)s=2�̂; (1 + �2)s0=2 �̂ > j (11)�� 1ks+s0 jj�jjHsjj jjHs0 : (12)Here, �̂ (�) =  ̂(��). The �rst inequality is obtained using the former lemmas. The second onedirectly comes from the de�nition of Sobolev norms by the mean of the Fourier transform.The second point consists of showing a similar inequality with gradients :Given positive s, s' satisfying 1 � s + s0 > 0, there exists a positive constant �, such that forall � in Hs+1(R2) and  in Hs0+1(R2)����< Gp � r�;r > �C�k2 < r�;r >���� < � jj�jjHs+1jj jjHs0+1ks+s0+2 : (13)To prove it you have just to apply the inequality (9) to r�;r . We then prove the Theoremby adding inequalities (9) and (13).2.2 Review of some fundamentalsIn the next section we will consider the case where the boundary � is a curved surface. Beforegoing into demonstrating a theorem similar to Theorem 1, we have to recall some well knowntechnical points of geometry. We will restrict ourselves to closed compact and orientable man-ifolds. The main point we want to stress is the existence of a local parametrisation of specialinterest for our purpose.Let � be the surface, x a point of �. Let's call t1; t2 an orthonormal basis of the tangentspace Tx� at x. We may suppose that t1 and t2 are eigenvectors of the curvature matrix. Wecomplete this basis into a basis of IR3 by adding the outer normal vector n.Then we can locally de�ne a parametrization of � by Tx�. Let U be an open neighborhood ofx in �. We de�ne � to be the orthogonal projection of � onto Tx�. If we identify the tangentspace with IR2, then for each point y of U, there exists (�1; �2) such that y = ��1(�1; �2), andwe have y = x+ �1t1+ �2t2+( �212R1 + �222R2 )n+O(j� j3), where R1 and R2 are the principal radiiof curvature and � is the vector �1t1 + �2t2. We then have a few properties.Lemma 4 (i)if y 2 U; jx� yj = j� j+ O(j� j3)(ii) DyD� = 1 + O(j� j2)where DyD� is the jacobian of the mapping ��1:
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Figure 2: The local mapping of � onto Tx�.



The proofs are just exercises and may be found in [4].3 Case of a compact curved surfaceIn this section, we will prove the following theorem, which is really similar to Theorem 1.Theorem 2 For 0 < s < 1, there exists a positive constant C1 such that for all functions � inHs+1(�) and  in H1(�),j < B�;  > + < C�(Id+ ��k2 )�;  > j � (14)C1( 1ks jj�jjHsjj jjL2 + 1ks+2 jj�jjHs+1jj jjH1) (15)where C� is the same constant as before.Before giving the proof of the theorem, we will again state some lemmas.Lemma 5 When k grows to in�nity, thenZ� k2Gp(jx� yj)dx = C�(1 +O( 1k2 )) (16)Z� nx:nyk2Gp(jx� yj)dx = C�(1 +O( 1k2 )) (17)where C� is the same constant as before. Furthermore, the convergences are uniform in y whenk grows to in�nity.The skecht of the proof is the following. The �rst point to notice is that one can use theparametrization, because � has a compact support, so that when k grows to in�nity, thesupport of Gp will be small enough to be correctly parametrized. Then, we can write x =y + � + L(�; �)n+ O(j� j3). The last error term in this expansion is uniform in y, because ofthe compactness of the support of � for k large enough and the compactness of the surface. Itcan therefore be replaced by a O( 1k3 ). The second point is to compute the integrals using theparametrisation and the evaluation of the Jacobian done in lemma 4. Thus, we have:Z� k2K2(jx� yj)dx = Z� k�(kjx� yj) eikjx�yj4�jx� yjdx (18)= ZR2 k�(kj� j+ O( 1k2 )) eikj� j4�j� j(1 +O( 1k2 ))d� (19)=  ZR2 k�(kj� j) eikj� j4�j� jd�! (1 +O( 1k2 )) (20)= C�(1 +O( 1k2 )) (21)(22)The second part of the lemma is shown just in the same way, using the fact that nx:ny =1 +O(j� j2).Using the same kind of demonstration, you can prove the following lemma.



Lemma 6 For 0 < s < 1, when k grows to in�nity, Z� k4Gp2(jx� yj)jx� yj2+2sdx = O( 1k2s ),the convergence is still uniform in y.Before stating a few more lemmas we recall a de�nition of the Hs(�) Sobolev norm.De�nition 1 If � 2 Hs(�), for all s such that 0 < s < 1, thenjj�jj2Hs(�) = jj�jj2L2 + Z��� j�(x)� �(y)j2jx� yjn+2s dxdy where n is the dimension of the manifold �.We refer to [7] for more information. We have to set a last lemma before proving theorem 2.Lemma 7 Let s satisfy 0 < s < 1; there exists a positive constant C1 such that,(i) jj Z� k2K2(jx� yj)(�(x)� �(y))dyjj2L2 � C1 jj�jj2Hsk2s (23)(ii) jj Z� k2K2(jx� yj)(�(x)nx:ny � �(y))dyjj2L2 � C1 jj�jj2Hsk2s (24)Proof :For (i) we havejj Z� k2K2(jx� yj)(�(x)� �(y))dyjj2L2 (25)� Z�����Z� k2K2(jx� yj)(�(x)� �(y))dy����2 dx (26)� Z� Z�k4K22 jx� yj2+2sdyZ�j�(x)��(y)j2jx� yj2+2s dy!dx (27)� C1k2s jj�jj2Hs (28)The �rst inequality is set by using of Cauchy-Schwarz inequality, the second with the use ofthe previous de�nition and lemma 6. For (ii) we are going to evaluatejj Z� k2K2(jx� yj)(nx:ny � 1)�(x)dxjjL2, then, combining it to (i), we will have our result.jj Z� k2K2(jx� yj)(nx:ny � 1)�(x)dxjj2L2= Z� dy�Z� k2K2(jx� yj)(nx:ny � 1)�(x)dx�2� Z� dyjj�jj2L2 Z� k2�(kjx� yj)2 (nx:ny � 1)216�2jx� yj2dx:Yet, for x in a neighborhood of y, we have nx:ny � 1 = O(jx� yj)2 uniformly in y. Using againthe change of variables x! � , we havejj Z� k2K2(jx� yj)(nx:ny � 1)�(x)dxjj2L2 � C2jj�jj2L2 Z 10 k2�(kr)2r4r2rdr (29)� C3 jj�jj2L2k2 : (30)



Finally, jj Z� k2K2(jx� yj)(nx:ny � 1)�(x)dxjj2L2 � C3 jj�jj2L2k2 � C3 jj�jj2Hsk2s . Adding this resultto (i), we get (ii)�We can now prove Theorem 2. First, we are going to considerj < Z� k2Gp�(x)nx:nydx;  > �C < �;  > j. We havej < Z�k2Gp�(x)nx:nydx;  > �C < �;  > (31)� jj jjL2jjC�� Z� k2Gp(jx� yj)�(x)nx:nydxjjL2 (32)� jj jjL2(jj(C �Z� k2Gpnx:ny(jx� yj)dx)�jjL2 (33)+jj Z� k2Gp(�(x)nx:ny � �(y))dxjjL2): (34)The part (33) is bounded from lemma 5, the part (34) with lemma 7.Hence, we havej <Z� k2Gp(jx� yj)�(x)nx:nydx;  > �C < �;  > j (35)� C1jj jjL2jj( jj�jjL2k2 + jj�jjHsks ) (36)� C1jj jjL2 jj�jjHsks : (37)For the term concerning the gradients in (15), we proceed just in the same way.j < Z�Gp(jx� yj)rot��(x)dx; rot� > �Ck2 < rot��; rot� > j� jj jjH1jjCk2rot��� Z�Gp(jx� yj)rot��(x)dxjjL2� jj jjH1(jj(Ck2 � Z�Gp(jx� yj)dx)rot��jjL2+jj Z�Gp(jx� yj)(rot��(x)� rot��(y))dxjjL2)As above, the �rst part is bounded from lemma 5, the second one from lemma 7. Thus,j < Z�Gp(jx� yj)rot��(x)dx; rot� > � Ck2 < �;  > j � C1jj jjH1jj( jj�jjH1k4 + jj�jjHs+1ks+2 )� C1jj jjH1 jj�jjHs+1ks+2 :Adding the computations done for each of the two components of the initial expression, we endthe proof of the theorem�The two terms of the dominant part of the inequation of theorem 2 do not seem to be ofthe same order. Nevertheless when one uses �nite elements, the typical size h of an element ischosen to be proportional to 1/k, so that, for such meshes, jjrujjL2 is equivalent to kjjujjL2;then the two terms in the right hand side of (15) appear to be of the same order in practice.



4 The spherical caseIn this section we are going to show the interest of the previous results when � is a sphere.We consider here the sphere because both the operator and the limit of the preconditioner forlarge k may be diagonalized in the same basis. So, we are going to study the spectrum of thetwo operators and analyse the e�ect of the preconditioning.Let us �rst recall some fundamental points about special functions on the sphere. Referringto [2] or [9] for more details. Let �; � be the spherical coordinates, with � the polar angle
x

φ

θ

Figure 3:(cf. �g. 3); then, there exists an orthonormal basis of L2(�) built with eigenvectors of theLaplace-Beltrami operator �� on the sphere, called spherical harmonics and noted Yn;l(�; �)with n = 0; :::;+1 and l = �n; :::; n. It is a well-known fact that��Yn;l(�; �) = �n(n + 1)Yn;l(�; �): (38)So, (I + ��k2 )Yn;l = (1� n(n + 1)k2 )Yn;l: (39)Furthermore, we introduce spherical Hankel an Bessel functions noted hn and jn. It is alsoa well known fact that hn(kr)Yn;l is a solution of the Helmholtz equation outside the spherewith the Sommerfeld radiation condition, and that jn(kr)Yn;l is a solution of the Helmholtzequation inside the sphere. If we note A the integral equation operator we are interested in, itmay be shown that AYn;l = h0n(k)j 0n(k)ki Yn;l (40)(cf. [4] or [1]).To analyze these results, we are going to give an equivalent to h0n(k)j 0n(k) when n is goingto in�nity. We have h0n(k) � i(2n)!(n+ 1)2nn!kn+1 and j0n(k) � 2nn!nkn(2n+ 1). Thus h0n(k)j 0n(k)ki �n(n+ 1)2n+ 1 � n2 . Hence, the action of the preconditioner is to transform the highest eigenvalues ofthe operator into the smallest. Indeed, when n >> k, the eigenvalues of the preconditioner areequivalent to n2k2 and they transform the eigenvalue of Yn;l, equivalent to n2 , to a value equivalentto k22n . This is not reducing the condition number because, instead of having eigenvalues going



to in�nity, one has them going to zero as 1n . Nevertheless, it improves the rate of convergence,because the highest eigenvalues of A have a high mutiplicity. h0n(k)j 0n(k)ki is of multiplicity2n + 1. So, the upper part of the spectrum of A is very dense and when one applies thepreconditioning operator you make the upper part of the spectrum of AB�1 be much moreempty. This point as been shown by F.X. Roux (cf. [10]) and others to be a really importantone in the improvement of the rate of convergence.5 Numerical experimentsFirst we show the repartition of the spectrum for both the preconditioned and the unprecondi-tioned operator when � is a sphere of radius 1 and k=14.7 in �g. 4 and 5. In these �gures we
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Figure 4:clearly see that for the unpreconditioned operator, the spectrum gets denser and denser whenthe eigenvalues are growing and that, at the opposite, for the preconditioned one, the spectrumis more and more empty as the eigenvalues grows.The second test aims to show the real e�ciency of the preconditioning method in theimprovement of the rate of convergence. We still consider a sphere of radius 1, and for variousvalues of the frequency kc2� , we show the number of iterations needed to reach convergence.In tables 5 and 5, � is the value of the residual under which we say that we have reachedconvergence. The mesh has 1026 degrees of freedom. These numerical results really clearlyshow the strong e�ciency of our method.
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Figure 5:�2 500Hz 600Hz 700Hz 750Hz 780Hz10�4 > 300 185 85 265 > 30010�5 > 300 > 300 > 300 > 300 > 30010�6 > 300 > 300 > 300 > 300 > 300Table 1: number of iterations with the unpreconditioned algorithm.�2 500Hz 600Hz 700Hz 750Hz 780Hz10�4 12 2 3 2 210�5 25 4 4 4 510�6 > 50 10 9 12 21Table 2: number of iterations for the preconditioned algorithm.ConclusionIn this paper, we have presented a preconditioning method for an integral equation problemwhich is really e�cient from a numerical point of view. The explanation given for this, is thatthe preconditioning operator makes the upper part of the spectrum much more empty. It is animportant fact that the mathematical result obtained in the plane case still remains true for amore general surface.References[1] T. Abboud, Etude math�ematique et num�erique de quelques probl�emes de di�ractiond'ondes �electromagn�etiques, PhD thesis, Ecole polytechnique, 1991.
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