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Abstract

In this paper, we analyze a preconditioning operator for the scattering problem in acoustics.
We first recall the integral equations we use to modelize the problem. Then, we study the
case of a plane scatterer as a preliminary. We show that the preconditioning operator has a
limit when the frequency grows to infinity. We repeat this study with a more general though
compact geometry of the scatterer. We obtain the same result as in the plane case. Then,
in order to understand the effects of the preconditioning operator, we apply this result to the
sphere, as we can perform more analytical computation in this case. We can observe that it
makes the higher part of the spectrum of the scattering operator much more empty. This fact
explains the reduction of the number of iterations to reach convergence. Finally, we show some
numerical experiments that reveal the actual efficiency of the preconditioner.

UN PRECONDITIONNEUR POUR LES EQUATIONS
INTEGRALES MODELISANT L'EQUATION DE
HELMHOLTZ

Résumé

Dans ce papier, nous analysons un préconditionneur adapté aux problemes de diffraction acous-
tique. Nous commencons par rappeler la formulation en équations intégrales que nous utilisons,
puis nous étudions comme préliminaire le cas d’une surface plane comme objet diffractant. Nous
voyons qu’alors le préconditionneur a une limite lorsque le nombre d’onde, et donc la fréquence,
croissent. Nous refaisons la méme étude dans le cas d’une surface diffractante plus générale
mais compacte. Nous obtenons exactement la méme limite pour le préconditionneur. Nous ap-
pliquons ensuite le résultat a la sphere afin de pouvoir comprendre 'action du préconditionneur.
Il apparait que celui-ci a pour effet de rendre le haut du spectre de 'opérateur plus creux. Ceci
explique "amélioration de la vitesse de convergence. Nous montrons dans la derniere partie des
résultats numériques qui montrent la bonne qualité du préconditionneur obtenu.
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Introduction

Numerical treatment of integral equations is known to be a hard problem because it leads to full
non hermitian matrices which are often ill-conditioned. Many authors already contributed to
improve this treament. Among them we can mention G. Markham [8] who studied conjugate
gradient methods for complex and non hermitian systems or K. Chen [3] who presented a
preconditioner for boundary integral equations which has proven to be efficient in the vicinity
of the singularities of the boundary. In our paper, we present and analyze a new and efficient
preconditioner for the solution integral equations arising from Helmholtz equations. We will
first recall the mathematical problem under consideration and briefly present the numerical
method. In a second part we will study the theoretical properties of the preconditioning
matrix. We will study the case of the sphere with a special attention. Finally we will present
numerical experiments showing the efficiency of the preconditioner.

1 The mathematical problem

We want to solve the classical problem of scattering. Given  a regular and bounded open
set of IR? and ' the interior of its complementary, we are looking for u in HY(Q)n H} ()
solution of the Helmholtz equation with Neumann boundary conditions. Let I' be the boundary

of 2, n the outgoing unitary normal vector, and ¢ € H‘l/z(F) the Neumann condition, then

Au+E*u=0in QU (1)
1

% + iku = O(F)fOI’ T — 00 (2)

% =gonT (3)

We will use integral representation of the solution. More precisely, we take as the unknown the
jump of u through I' :¢ = [u];r. Then the integral equation for ¢ writes, as shown by Hamdi
5, :

Vo € HYA(T)

ei |l’—y|
/ Ji_(mtw(w)-mtrdy)—anx-nW(w)qﬁ(y))dwd@/ = (4)
rxr Ar|z —y|
[ vtalgta)de (5)

We discretize this variational formulation with a finite element method. This leads to a
full complex and non hermitian matrix A. For solving the discretized equation, we use the
preconditioned iterative method “Orthomin” (cf. [6]). The preconditioning matrix B is a
submatrix of matrix A. More precisely, we keep only coefficients that represent interactions
between degrees of freedom whose distance is less than a constant times the wavelength. On
a mathematical point of view, it means that B is the discretization of variational formulation

tkr L

(5) in which the kernel G(r) = s replaced by G,(r) = G(r).%. Here x is a “cut-oft”
r

around 0 in IR, regular and with compact support.

In the following we will discuss the behaviour of the preconditioner as k grows to infinity.




2 Preliminaries

In this section we will first study the case of a plane surface. Second we will recall some
technical points of geometry

2.1 Case of a plane surface

We start with studying the case where I' is a plane. The first interest in this simplification is
that we can use Fourier transform and convolution so that we may hope optimal results. The
second one is that all surfacic differential operators are much more simpler because the normal
is the same everywhere. We will denote by B the operator made with the preconditioning
kernel, so that < Bo,1 >= —k? < Gp*x o, > + < Gp *x Vo,Vip > where * denotes the

convolution. In this section we will prove the following theorem.

Theorem 1 Given positive s, s verifying 1 > s+ s > 0, there exists a positive constant «
such that for all functions ¢ in H*YY(R?) and < in H¥T1(R?)

< Bo, v > +Cy < (Id+ )¢¢>‘ (6)
Hollaellll o | Nl gegr ¥l
o ( ks+s! =+ Hks+s’+2H +1) (7)

where C'y is a constant which depends only on the cut-off.

Ar
This result means that, when k grows to infinity, B is equivalent to /d + —- 2 . Before giving the

proof of theorem 1, we will enonce a few lemmas. The detailed proofs are given in [4].

Lemma 1 For all € in IR?, klim kzép(f) = (' where Gp is the Fourier transform of G, and

I
c, = — L dp.
X 47r/0 ¢ x(p)dp

This is a straightforward application of the Lebesgue dominated convergence theorem.

Lemma 2 There exists a constant C' such that, for all & in IR?,

G,(6) — €] < Cmin(1, 5)

Proof :
€]

As K26 () — v c p?cose—nd d6, the result follows from the simpl
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inequality :

ip|k£| cosd €]

e -1l < Qmin(l,p%).

The third lemma is just a technical one.

Lemma 3 For all s, verifying % > s> 0 and for all k > 0,

¢]
=)

(1+ 52)
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We won’t prove this lemma, you have again to refer to [4] have the complete proof of it. We
just want to stress the following point. When s is greater than 1/2, we have the same kind of
inequality with the exponent of k in the right-hand side of (8) will be kept fixed at 1.

We are now able to prove Theorem 1. Let s and s’ satisfy 1 > s+ s’ > 0. We are first
going to show that there exists a positive constant a, such that for all ¢ in H*T1(R?) and ¥ in
Hs'—l—l(RQ)

IS
|< 12Gyx 6,10 > —C< 6,4 >‘<a%. (9)
Indeed,

< K2Gy 5 6,0 >=C< 6,0 >] = | < (3G — ()6, > | (10)

1 . PR
Sapd < (L4720, (14672 > | (11)

1

<y llolal[¢lly.. (12)

Here, 1@(5) = 1@(—5) The first inequality is obtained using the former lemmas. The second one

directly comes from the definition of Sobolev norms by the mean of the Fourier transform.
The second point consists of showing a similar inequality with gradients :

Given positive s, s’ satisfying 1 > s+ s’ > 0, there exists a positive constant «, such that for

all ¢ in H*t'(R?) and ¢ in H* ' (R?)

[l e+ [[9]] o
fsts'+2 . (13)

C
< Gp* Vo, Vip > —k—§ <Vo,Vip >| < a
To prove it you have just to apply the inequality (9) to V¢, Vip. We then prove the Theorem
by adding inequalities (9) and (13).

2.2 Review of some fundamentals

In the next section we will consider the case where the boundary I' is a curved surface. Before
going into demonstrating a theorem similar to Theorem 1, we have to recall some well known
technical points of geometry. We will restrict ourselves to closed compact and orientable man-
ifolds. The main point we want to stress is the existence of a local parametrisation of special
interest for our purpose.

Let T' be the surface, z a point of I'. Let’s call ¢y, {3 an orthonormal basis of the tangent
space T,.I" at . We may suppose that ¢; and t; are eigenvectors of the curvature matrix. We
complete this basis into a basis of IR by adding the outer normal vector n.

Then we can locally define a parametrization of I' by T,I'. Let U be an open neighborhood of
x in I'. We define € to be the orthogonal projection of I' onto T,I'. If we identify the tangent

space with IR?, then for each point y of U, there exists (1, 7;) such that y = 67(r, ), and
2 2

we have y = o + 17111 + Taols + (% + %)n +O(|7)?), where Ry and R, are the principal radii
1 2

of curvature and 7 is the vector 7t + mot2. We then have a few properties.
Lemma 4

()ify € U, le—y|=]|r|+ O(r])

(i4) 5L =14 O(1r )

D
where D—y is the jacobian of the mapping 0~ 1.
T



(=D

Figure 1:

Figure 2: The local mapping of I onto T,.T".



The proofs are just exercises and may be found in [4].

3 Case of a compact curved surface
In this section, we will prove the following theorem, which is really similar to Theorem 1.
Theorem 2 For 0 < s < 1, there exists a positive constant C'1 such that for all functions ¢ in
H*tYT) and v in HY(T),
|<B¢¢>+<C(Id+ )¢¢>|< (14)
1
CI(E||¢||H5||¢||L2+W||¢||Hs+1||¢||H1) (15)

where C' is the same constant as before.
Before giving the proof of the theorem, we will again state some lemmas.

Lemma 5 When k grows to infinity, then

[ K6l = sl = 0,1+ O()) (16)
r

[yl = ylida = €1+ 0(5)) (17)
I

where C, is the same constant as before. Furthermore, the convergences are uniform in y when
k grows to infinity.

The skecht of the proof is the following. The first point to notice is that one can use the
parametrization, because x has a compact support, so that when k grows to infinity, the
support of ), will be small enough to be correctly parametrized. Then, we can write z =
y+ 7+ L(r,7)n+ O(|7|?). The last error term in this expansion is uniform in y, because of
the compactness of the support of y for k large enough and the compactness of the surface. It

can therefore be replaced by a O(E) The second point is to compute the integrals using the

parametrisation and the evaluation of the Jacobian done in lemma 4. Thus, we have:

ciklz—yl
/Fk21(2(|x—y|)dx - /kx (kle = o) gy (18)
62k|7’|
= [ kI £ O ) o1+ Ol (19)

62k|7’|
kx(k 1 2
(42x<vuhh| (14 0(:3)) (20)
1
= 1+ 0(5) (21)
The second part of the lemma is shown just in the same way, using the fact that n,.n, =

1+ 0O(7]?).

Using the same kind of demonstration, you can prove the following lemma.



1
Lemma 6 For 0 < s < 1, when k grows to infinity, / G2 (|2 — y))|e — y*T*ode = O( k?s)’
r

the convergence is still uniform in y.
Before stating a few more lemmas we recall a definition of the H*(I') Sobolev norm.

Definition 1 If ¢ € H*(T'), for all s such that 0 < s < 1, then

2
||¢||H = [|¢l|7- -I-/ %dwdy where n is the dimension of the manifold T.

We refer to [7] for more information. We have to set a last lemma before proving theorem 2.

Lemma 7 Let s satisfy 0 < s < 1; there exists a positive constant C'y such that,

1 [ 1Kl — w(oe) — otu)asl . < o 100 29
()11 [ FEale — u(men, — oyl < oo o1

Proof :
For (i) we have

1 KKl = ) 6e) = ow)dsl. (25)

2

< ][ #5202 = o) — ot9))a| da (26)
o J(frte A e
< 1613 (28)

The first inequality is set by using of Cauchy-Schwarz inequality, the second with the use of
the previous definition and lemma 6. For (ii) we are going to evaluate

I / k?*Ky(|z — y|)(ng.ny, — 1)¢(x)dz||z2, then, combining it to (i), we will have our result.
r

| [ Kol = y)(nem, = Dola)dal[

_ / dy (/ K Ko(|e — y))(na.n, — 1)(/5(90)(190)2
< [avliglis [ el -yt =Ly,

1672|x — y|?

Yet, for z in a neighborhood of y, we have n,.n, — 1 = O(|z — y|)* uniformly in y. Using again
the change of variables & — 7, we have

2 7 _ _ 2 2 [712 2ﬁ
| [ K Kale wmwynammmsawméknm>rm (29)
o Il

(30)



2 2
Finally, || / B EKy(Je — y))(npny — Dé(a)dz||3, < Cg”i# < C3||(Z|2|5H Adding this result
r

to (i), we get (ii)e
We can now prove Theorem 2. First, we are going to consider

| < /szqub(x)nx.nydw,lb > —C < ¢, > |. We have

| < [IGomamyda, > ~C < 6,6 > (31)
< IlselCo = [ Bl = y)o(ene.n,drl|se (32
< laal(C = [ KGymmy (2 = yl)dr)ol] (33
HI [ KRG (0 nm, = oy)dall). (34

The part (33) is bounded from lemma 5, the part (34) with lemma 7.
Hence, we have

| </Fk2Gp(|x — g2 nenyda, b > —C < $y1 > | (35)
< Culllaf 102 o e (36)
< Gl 1A (37)

For the term concerning the gradients in (15), we proceed just in the same way.

C
| < /FGp(|96 — yl)rotré(z)dz, rotrp > 2 < rotr ¢, rotr > |

C
< Illnllggrotes = | Golle = ylyrotrota)dally;
C
< Wl (s = [ Golle = sl)de)roteollz
HI [ Golle = yl(rotréta) — rotro(y)dallyz)

As above, the first part is bounded from lemma 5, the second one from lemma 7. Thus,

C
| < /FGp(|96 — y|)rotré(z)dz, rotr > 2 < ¢ ) > |

A, ol
< Culloll (10 1l

¢ s+1
< Cl||¢||H1||k|%-

Adding the computations done for each of the two components of the initial expression, we end
the proof of the theoreme

The two terms of the dominant part of the inequation of theorem 2 do not seem to be of
the same order. Nevertheless when one uses finite elements, the typical size h of an element is
chosen to be proportional to 1/k, so that, for such meshes, ||Vu||;2 is equivalent to k||u||r2;
then the two terms in the right hand side of (15) appear to be of the same order in practice.



4 The spherical case

In this section we are going to show the interest of the previous results when I' is a sphere.
We consider here the sphere because both the operator and the limit of the preconditioner for
large k may be diagonalized in the same basis. So, we are going to study the spectrum of the
two operators and analyse the effect of the preconditioning.

Let us first recall some fundamental points about special functions on the sphere. Referring
to [2] or [9] for more details. Let 6,¢ be the spherical coordinates, with 6 the polar angle

A

.
P
.

. .
.

. .

s et

v

Figure 3:

(cf. fig. 3); then, there exists an orthonormal basis of L*(T') built with eigenvectors of the
Laplace-Beltrami operator Ar on the sphere, called spherical harmonics and noted Y, ;(8, ¢)

with n =0,...,400c and [ = —n, ..., n. It is a well-known fact that

ArY, 1(0,¢) = —n(n + 1)Y,,,(6,0). (38)
So,

(I+ %)Ym —(1- %)Ym. (39)

Furthermore, we introduce spherical Hankel an Bessel functions noted h, and j,. It is also
a well known fact that h,(kr)Y,; is a solution of the Helmholtz equation outside the sphere
with the Sommerfeld radiation condition, and that j,(kr)Y,; is a solution of the Helmholtz
equation inside the sphere. If we note A the integral equation operator we are interested in, it
may be shown that

)

AY, = h%(k)j;l(k)éYnl (40)
(cf. [4] or [1]).

To analyze these results, we are going to give an equivalent to i, (k)j. (k) when n is going

! Ty Vs LT
to infinity. We have Al (k) ~ zw and j! 2"nink Thus h%(k)]%(k)ﬁ ~
i

k) ~ ——.
2nplkntl oK) (2n+1)
nn+1l) n . > . . .
T ~ g Hence, the action of the preconditioner is to transform the highest eigenvalues of
n
the operator into the smallest. Indeed, when n >> k, the eigenvalues of the preconditioner are
2
n n
equivalent to — and they transform the eigenvalue of Y,, ;, equivalent to 5 to a value equivalent

k2
2

to ot This is not reducing the condition number because, instead of having eigenvalues going
n



1
to infinity, one has them going to zero as —. Nevertheless, it improves the rate of convergence,
n

because the highest eigenvalues of A have a high mutiplicity. h%(k)]%(k)ﬁ is of multiplicity
i

2n + 1. So, the upper part of the spectrum of A is very dense and when one applies the
preconditioning operator you make the upper part of the spectrum of AB~! be much more
empty. This point as been shown by F.X. Roux (cf. [10]) and others to be a really important
one in the improvement of the rate of convergence.

5 Numerical experiments

First we show the repartition of the spectrum for both the preconditioned and the unprecondi-
tioned operator when I is a sphere of radius 1 and k=14.7 in fig. 4 and 5. In these figures we

repartition of the spectrum for the unpreconditioned operator
0 T & 1 ° o v e y
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Figure 4:

clearly see that for the unpreconditioned operator, the spectrum gets denser and denser when
the eigenvalues are growing and that, at the opposite, for the preconditioned one, the spectrum
is more and more empty as the eigenvalues grows.

The second test aims to show the real efficiency of the preconditioning method in the
improvement of the rate of convergence. We still consider a sphere of radius 1, and for various

c
values of the frequency —, we show the number of iterations needed to reach convergence.

In tables 5 and 5, € is the value of the residual under which we say that we have reached
convergence. The mesh has 1026 degrees of freedom. These numerical results really clearly
show the strong efficiency of our method.



repartition of the spectrum for the preconditioned operator
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€ 500Hz | 600Hz | 700Hz | 750Hz | 780Hz
10~ || > 300 185 85 265 | > 300
10> || > 300 | > 300 | > 300 | > 300 | > 300
107% || > 300 | > 300 | > 300 | > 300 | > 300

Table 1: number of iterations with the unpreconditioned algorithm.

€2 500Hz | 600Hz | 700Hz | 750Hz | 7R0Hz
10-* 12 2 3 2 2
10~° 25 4 4 4 5
107 { > 50 10 9 12 21

Table 2: number of iterations for the preconditioned algorithm.

Conclusion

In this paper, we have presented a preconditioning method for an integral equation problem
which is really efficient from a numerical point of view. The explanation given for this, is that
the preconditioning operator makes the upper part of the spectrum much more empty. It is an
important fact that the mathematical result obtained in the plane case still remains true for a

more general surface.
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