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Abstract

In this paper, we survey numerical methods used in aeroelasticity simulations. These methods
are based on two-dimensional Fuler equations. However, they are quite general. First, we
consider fluid dynamics numerical methods, which are also used to solve moving boundaries
problems. Fixed computational domain methods (possibly with multiple moving frames of
reference) are introduced. Arbitrary Lagrangian-Eulerian and dynamic meshes formulations
are also presented. Second, we discuss the most used algorithm for interaction simulation in
aeroelastic computations. Finally, we present numerical methods for structural dynamics.

QUELQUES METHODES NUMERIQUES UTILISEES EN
AEROELASTICITE

Résumé

Dans ce rapport, nous présentons un éventail de méthodes numériques pour 1’ aéroélasticité. Ces
méthodes s’adaptent a de nombreux types d’équations. Elles sont ici exposées sur la base des
équations d’Euler bi-dimensionnelles. Dans un premier temps, nous considérons les méthodes
utilisées pour la partie fluide, qui permettent aussi de résoudre des problemes a parois mobiles.
Nous présentons des méthodes a domaine de calcul fixe, avec d’éventuels reperes mobiles,
ainsi que les formulations de type ALE ou maillages dynamiques. Ensuite, nous analysons
I’algorithme généralement utilisé pour simuler 'interaction. Enfin, nous présentons quelques
méthodes numériques pour simuler les mouvements des structures.



1 Introduction

Aeroelastic phenomena are particular cases of fluid-structure interactions. In aeroelasticity, an
external or internal flow and an elastic deforming structure are submitted to forces or physical
actions from one another. The pressure of the fluid is exerted on the shape of the structure
and the structure enforces boundary conditions to the flow. These boundary conditions along
the fluid-structure interface are enforced in location and speed by the structure.

Years ago, arerodynamics specialists turned their investigations towards moving boundaries
problems. Another step was made when the first aeroelasticians studied new fluid-structure
interactions. In those cases, the motions of the boundary conditions were no longer a priori
decided, but flow dependent. The coupling phenomena between the fluids and the structures
were about to be numerically simulated and investigated.

This kind of computations was first necessary for safety studies on heavy structures submit-
ted to a certain flow. They were not only aeroelastic simulations but also hydroelastic (cases
where the fluid is rather heavy and incompressible like liquids : sea water, liquid sodium,
etc...). For example, lots of computations were performed for Nuclear Reactor Safety studies.
In [7], the authors give many references to hydroelastic computational efforts. For this kind
of problems, the question was : in which way can a nuclear structure react under an internal
explosion, shock waves or periodic excitations from the fluid. This last problem was met in the
French ”surregenerateur” Super-Phenix in which a periodic mode had been observed with a
threatening amplitude (outflow of liquid sodium between a thin, deforming vessel and a thicker
external one). Structural fatigue was also studied for motions of non-negligible amplitude.
Other hydroelastic calculations were performed for objects like submarines, which can meet
explosions and shock-waves produced by depth-charges. Other cases could be considered, such
as motions and acoustics in pipes.

Another kind of computations were performed mainly in an aeroelastic framework in order
to study and understand instabilities in flows when they are coupled with a structure. For
example, lots of structural dynamists and civil engineers have brooded over the case of the
original Tacoma Narrows bridge and its famous failure. In [27], Scanlan surveys the 1979 state
of the art on the three outstanding problems of suspended-span bridges in wind, namely vortex
shedding, flutter and buffeting. In figure 1, we can understand how torsional flutter can find
its origin in an evolution of aerodynamic damping towards negative values as wind velocity
increases. Rotation of the leading surface upward is accompanied with vortices displacements
which give rise to locally destabilizing pressures (tending to increase the motion that created
them).

In aeronautics, flutter phenomena have been much studied. Lots of aeroelastic computations
were produced on the solution of the very well known transonic dip [8]. The aeroelastic coupling
was also used to enhance the performances of modern planes. These more and more flexible
structures need a very efficient limitation of aeroelastic interactions with active control surfaces.
These control surfaces were introduced for example in [13] and improved in [10].

In this bibliographical report, we survey the numerical methods which are most commonly
used in aeroelastic simulations. These methods are generally applicable to other fluid-structure
interaction simulations, like hydroelastic cases. We will discuss neither the model equations
used for the flow nor the complexity of the geometry under consideration (a typical wing



Figure 1: vortices around a bridge in torsional motion.

profile, a wing-body configuration, a complete airfoil...). A summary and a brief chronology of
the development of advanced computational fluid dynamics techniques and their application
to aeroelasticity can be found in [8].

In the following, we will use the two-dimensional Fuler equations for the fluid. The methods
presented are consistent with any other model equations (like Full Potential equations or Navier-
Stokes equations). As we just stated, the integration of a phenomenon with aeroelastic coupling
can be achieved if we can perform integrations of both model equations for the fluid and the
structure at the same (computational and physical) time. In this paper, we will first present
in Section 2 numerical methods for flow simulations which have been created or adapted to
aeroelastic cases. They are identical with numerical methods for moving boundaries problems.
We will then study in Section 3 the general algorithm for a simultaneous integration of reciprocal
actions of the fluid and the structure on one another. At last, we will present numerical methods
for the resolution of structural dynamics in Section 4.



2 Numerical methods for flow simulations.

In this section, we consider the fluid part of the problem. The flow evolves in a moving boundary
domain and we suppose that the movement of these boundaries is already known. All methods
presented here are adaptable or used in pure time-dependent domain problems.

Since the location of the structure changes, the spatial discretization — a structured or
unstructured mesh — has to be calculated and updated after (or before) each time step, or at
least after every significant move of the structure.

However, there are cases where these grid calculations can be limited or simply eliminated.
For example, if one simulates the two-dimensional gas flow around a rigid wing profile, one
can write the whole set of equations of your physical model in a moving body-fixed frame of
reference. The motivation of the different methods used for the flow simulation lies in the
simplifications of the equations or of the CPU expensive grid computation phases. Most of the
following procedures have features which are real advantages in very specific configurations.

The sequel of the section is dealing first with basic fixed computational domain methods and
then with fixed computational domain methods with moving frames of reference. Thereafter,
the class of methods based on pure Arbitrary Lagrangian-Fulerian formulation is presented,
and this flow-devoted section will be concluded with the dynamic meshes methods, which are
not very different from ALE methods, excepted that they can be made consistent with global
upwind schemes.

2.1 Fixed computational domain methods.

Let us consider the case of the numerical simulation of a two-dimensional flow around a wing
profile. The wing is likely to move and/or warp. Therefore, the grid used for the spatial
discretization will have to be updated. Since the grid moves, spatial derivatives in Euler
equations will need higher cost computations.

It is generally preferred to use a structured body-conforming grid (for example, a O-mesh or
a C-mesh around a profile), which is perfectly regular in the space of body-fitted coordinates.
If the body moves, the grid may change, but the indices of the cells in the structured grid
will remain fixed. The computational domain of cell indices is fixed and the transformation
Jacobian from the computational domain to the physical domain is varying. Thereby, it is
much simpler to write the model equations in body-fitted coordinates. The computations of
all body-fitted derivatives will be very cheap since the fixed computational domain (FCD) is
uniformly grided. In the following, the curvilinear body-fitted coordinates will be & and 7.
For example, the case of a flow around a wing profile is shown on figure 2. The curvilinear
body-fitted coordinate £ is taken around the wing and 5 normal to the wing.

Formulation (see e.g. [9]) :
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Figure 2: body-fitted curvilinear coordinates transformation.

o The first step to obtain the formulation consists in moving from the Cartesian coordinates
to the curvilinear coordinates using

T =1
5 = f(w,y,t) (1)
n = 77(9073/775)-

e The transformation is chosen in order to handle near and farfield fluid boundary conditions
very easily. For an O-mesh, the shape of the structure would be defined by n = 1y and the
farfield fluid boundary by 1 = 7.

¢ The two-dimensional Euler equations for an ideal gas in Cartesian coordinates may be written

as
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where p, u, v, € and p are respectively the density, the projected gas velocities along Cartesian
axes, the volumic energy and the pressure given by

p= (1= Dle— 5p(u? 4 7)) (1)

e These equations are transformed when expressed in curvilinear coordinates and they now
take the form
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where for instance the notation ’¢,’ stands for 0¢/dx, J is the determinant of the transformation
to curvilinear coordinates defined by (1), i.ei :

fx fy ft
J=|n Ty T | = fxny - 5@/771’ (7)
0 0 1

and where U and V are contravariant velocity components defined as

U= 5t‘|‘£xu‘|‘£yv (8)
Vo= + nzu+ nyo.

The uniform grid of the fixed computational domain has unit steps in all directions ( A¢ =
1,An = 1). Since the grid is structured, the derivatives of any quantity w according to the
curvilinear coordinates £, may be computed by we = w(&,41) — w(&,), ete ... The Cartesian
derivatives of w are easily expressed with curvilivear derivatives with relations such as

The cartesian derivatives of curvilinear coordinates appearing in (6), (8) or (9) can be obtained
via chain-rule expansions stemming from
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which give after simplifications
fx = J@/n Ne = _Jyf
& =—Jx, ny = Jxg (11)
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o The equations (2) and (5) have identical characteristics (they are both hyperbolic systems
of conservation laws) and several numerical schemes for the transformed equations have been
developed from classical Fuler solvers. For example, Van Leer flux decomposition for curvilinear
coordinates can be found in [1] and streamwise flux vector splittings and Roe’s approximate
Riemann solver are written in [24]. It is also possible to obtain similar equations for three-
dimensional problems. The complete set of equations for the fluid and the geometric variables
can be found in [9]. The global algorithm is now described.



Algorithm :

e At the current step of the numerical simulation, we suppose that we know at time level ¢,
the following quantities :

o all geometric quantities on the whole grid, like the functions @ = z(&,1,t,), vy = y(£, 1, t,)
and the derivatives z¢, 2y, Y¢, Yy,

o the grid speeds z, and y;,

o the transformed vector of conserved variables (.

e The system (5) is integrated from time level ¢, to t,41 = t, + 6t, with fixed geometric
quantities. The boundary conditions for this integration are translated from the physical ones

(no normal speed along the surface of the structure boundary and fixed values on the farfield
fluid boundary).

o All geometric quantities must then be updated to evaluate them at time level ¢,4;. There
are many different routines for this last phase.

In a first family, the boundary points are first updated (according to the known motion
of the boundaries) and, in a second step, the locations of interior points are deduced with
several methods. Guruswamy has introduced in [9] an algebraic grid regeneration formula for
a complete three-dimensional wing. Batina used in [2] an adaptation method based on springs
analogy. Nakahashi and Deiwert presented in [22] variational principles with smoothness and
orthogonality constraints for the generation of the new interior grid. At the end of this step,
all purely geometric quantities should be computed and the grid speeds updating scheme takes
the following finite difference form :

xn—l—l _ yn-l-l _ yn
ettt =~ and Ml 7 12

7 5 y; 5 (12)

In a second family of grid updating methods, the new locations of all interior points are

deduced from their previous location and their previous grid speed according to
" = 2" 4 6t,.2”  and YT =y 4 t,.y" (13)

During the second step, new grid speeds must be generated. Shankar and Ide have presented
in [28] such a scheme with linear interpolation from the structure to the fixed farfield fluid
boundary along ”& = &,” lines.

Both types of methods are nearly equivalent. Their qualitative difference is induced by the
different roles played by the grid speeds in (12) and (13).

Drawbacks and limits.

e The original Euler equations have become much more complex but the resolution of the new
equations is more efficient.



e Difficulties may appear in the cases of important deformations and/or large motions. The
updating schemes we just reviewed have no theoretical generality.

e These methods strongly use the fact that the grid is structured. Extension to body-fitted
coordinates with unstructured meshes seems uneasy. Even if this extension could be done, the
computational time used for spatial derivatives calculations would reduce the efficiency of the
method.

o Numerical unstabilities may appear with the use of auxiliary geometric time-dependent vari-
ables such as cell-volums, transformation Jacobians — like J=1 in (5). There exists a geometric
conservation law, described by Thomas and Lombard in [29], which is deriving from the fol-
lowing principle : the volume of a portion of physical space does not depend on the space
discretization. This law can be written as

8J‘1 n 8(J_1£t) n 8(J_177t)
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(14)

After a time step, it would be dangerous to update the Jacobian J of the transformation at
the cell (7, j) of the structured grid according to

2AEANT ™Y = [(wigr — i) (Yit1j41 — Yigt1)
—(Tip1 41 — i) (Yirr, — ¥ig)] (15)

(we remind that AL = An = 1) or to anything else but a scalar version of the time-integration
scheme used for (5).

o For all the fixed computational domain methods presented heretofore, all geometric variables,
the grid, the spatial and temporal Jacobians fields, have to be regenerated and updated. These
CPU expensive phases of the algorithm are run without searching any possibility of global
simplification, as for a simple rigid-body motion. This is precisely why methods with moving
frames of reference have been developed.

2.2 FCD methods with moving frames of reference.

The need for moving frames of reference appeared in the study of particular flows around a
structure. The algorithm presented in the previous section is in some sense the algorithm of
the worst case. The structure is moving and may be deforming, so heavy grid computations are
necessary after each time step to be ready for every emergency. This blind policy is certainly
inefficient in cases where global simplifications or CPU savings are possible.

For example, Kandil and Chuang presented in [14] a numerical simulation of a two-dimen-
sional flow around a rigid moving wing-profile. In a wing-linked frame of reference, different
from the laboratory frame of reference, the wing is obviously rigid and fixed. In this frame of
reference, the original grid — and geometric quantities — can be used during the whole time-
integration. We just need a new formulation of our physical problem in a moving frame of
reference.



Formulation (see e.g. [9]) : Formulation (see [18]):

o The classical Euler equations (2) and (3) are rewritten in a frame of reference different from
the frame linked to the laboratory. There may coexist several frames of reference. The j*"
time-dependent frame is defined by :

o 7; : position of the origin,
o T} : set of direct orthonormal axes directions,
o v; =dr;/dt and a; = dv}/dt : velocity and acceleration of the moving frame,

o wj; and cJ} = duw;/dt : angular velocity and acceleration of the moving frame.

We want to translate Fuler equations in multiple moving frames of reference. We have to recall
that spatial derivatives in Euler equations will induce spatial derivatives of new conservative
variables for the fluid and also spatial derivatives of the definitions elements of the frames of
reference, since the frame considered depends on the location in the frame of the laboratory.
Euler equations take the form :
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In the preceding equations, the temporal derivative d/dt means a differentiation with re-
spect to the time with the moving frame of reference coordinates (z’,%’) held constant. The



divergence term divV, represents the influence of the variation of the transformation velocity
with the physical point. We could think that divV, = 0 because of the form of V,. But we must
recall that the frame of reference a physical point is referred to depends on this point. Thus,
the term divV, includes derivatives of the quantities defining the reference frames with respect
to the spatial coordinates.

These equations are valid if all variables (speeds, vector components, basis directions (2, y'),
etc...) are taken in the same frame of reference. The divergence terms do not depend of the
frame considered since for any vector field K we have

K =K, @+ K,j=Kpa' + Ky

b (19)

0K, 0Ky
ox’ oy

0K, 0K,
ox dy

= diva(K) = divg(K) =

e F'rom the preceding intermediate formulation, it is now possible to use again a transformation
to curvilinear body-fitted coordinates. Since the equations (16) and (17) are already very heavy,
the relative cost of the transformation is reduced. The new mapping is given by :

T =t
¢ = @y, (20)
o= 2y ).

and the curvilinear transformation leads to
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(21)
where

Sr=Jtg! (22)
and @', E’, F” and J' are given by equations similar to (6), (7), (8) and (11), written with the
quotted variables u', v', ¢/, U, V', &, o/, a', ¢/

Algorithm :

e The algorithm is very similar to the previous one. Before a time step, we dispose of the vector
field (', the geometric mappings 2’ = (&' ), v =y (&, ', 7), and their derivatives x’g,,
Ty Yiry Yy T and yr. We have also stored the definitions of the moving frames of reference
(ie. 773,17, V;, aj, Wy, cJ}) and for each point of the grid, the index of the frame of reference in
which it is considered.

e The system (21) is integrated from time level " to ¢"*! = " + §" with the preceding
geometric quantities. The boundary conditions are translated in the corresponding frame of
reference.



o All geometric quantities are updated with equations corresponding to (12) and (13). The
characteristics of the moving frames of reference need also an updating scheme. The moving
frames are very often linked to positions of structural elements, for example the center of grav-
ity and the chord of a rigid two-dimensional wing-profile. As soon as all geometric variables
are updated, the definition elements r;, T V}, w; are easily deduced. The translational ac-
celerations @; (and of course the angular acceleration cJ;) can be updated with formulas such
as

—sn+1 _ 1 -n+1 —n

a; = W( 5 —V, ) (first-order accurate) (23)
— 1 2 —-n+1 —-n —n
or: 4 = W( 5 =V, )—a;" (second-order accurate). (24)

Advantages of these methods :

Up to now, the advantages of fixed computational domain methods with moving frames
of reference are mostly hidden behind the drawbacks we listed in the previous section and
the additional complexity due to multiple moving frames of reference. The savings and the
updating schemes for the characteristics of the moving frames also increase the computational
total cost. However, we show in the following particular cases where strong advantages appear.

The first category of favourable cases we consider regroups rigid-body motions of structures
in an external flow. We find in this class the case presented by Kandil and Chuang in [14]
but no cases with one fixed and one moving structure at the same time, like the cases of an
object falling into supersonic free stream under a wing or a shock-box interaction near a wall
presented by Lohner in [19]. For these cases, it is not possible to keep the same grid along the
whole computation with one single moving frame of reference linked with the moving structure,
since the boundaries move in this frame. On the contrary, for a rigid-body moving wing-profile,
no grid updating computation is needed with a single frame of reference attached to the wing.
In this case, it is worth noticing that the source term S’ in (21) is a little lightened since

div(V;) = 0.

A second family of applications is formed by cases of a flexible structure undergoing light
elastic deformations. Due to the small changes of the shape, the grid and the spatial metrics
have to be updated. In [18], Lin demonstrated that the actual positions of the grid points are
not necessary for the resolution of (21), and showed an approximate spatial metrics updating
scheme for the case of a flexible wind-profile in an external flow. This fast updating scheme is
strongly related to multiple moving frames of reference. There is actually one frame for each
£ = ¢ line of the grid. Each frame has the orientation of the wing chord and for origin the
point with curvilinear coordinates equal to (£;,10) (see figure 3). The main idea of the scheme
is to deduce variations of the metrics on the whole grid from the corresponding variations along
the shape of the structure, which themselves are deduced from the deformations of the elastic
structure (see [17] for more details). This formulation is particularly well suited to the physical
problem under consideration, since every specific feature of the problem is taken into account
in order to speed up the resolution : body-fitted coordinates, only farfield fluid boundaries,
moving frames of reference corotational with the chord of the elastic wing-profile (with small
deformations).

10
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Figure 3: wing linked multiple moving frames of reference.

Though these methods allow consequent savings in computation time and memory, they are
not really general, i.e. the fast metrics updating scheme must be adapted to each simulation.
Furthermore, two secondary drawbacks are still persisting. First, difficulties may arise for large
and/or rapid deformations. Second, the use of body-fitted curvilinear coordinates requires
structured meshes, which are seldom available for cases such as complex aircraft configurations.

In methods with fixed computational domain, we considered cells fixed in the non-physical
computational domain. Fach cell represented in a certain way a part of the physical space. Since
we had to deal with this given representation, we used structured meshes for simplification. We
can now imagine methods where physical cells are considered. In such methods, like Arbitrary
Lagrangian-Fulerian methods or methods using dynamic meshes we will now present, the form
of the cells can be chosen freely and we will be able to use unstructured meshes.

2.3 Arbitrary Lagrangian Eulerian methods.

The Arbitrary Lagrangian Eulerian formulation (ALE) [7] has been constructed in order to
avoid the shortcomings of both purely Lagrangian and Fulerian formulations and to gather
all their advantages. On the one hand, the Lagrangian approach was employed with good
efficiency in hydro-structural problems [6] for the kinematic description of the fluid domain.
However, its ability to follow strong distorsions in complex flows is very limited. On the other
hand, the Fulerian formulation easily deals with complex strongly distorted flows, but treats
with less accuracy interface definitions and fluid-structure coupling.

The basic principle of ALE formulations consists in having an hybrid point of view on the
flow. In a purely Eulerian study, our point of view is fixed in the physical laboratory and we
study at each point physical variables during the experience. In a purely Lagrangian study,
the point of view is linked to each particle and we study around this particle physical variables
as a function of time. In an ALE approach, the point of view is linked to a mesh, which is
embedded in the fluid. We choose its physical speed W. It is not necessary equal to 0 (as in
Eulerian formulation) or to the fluid velocity V (as in Lagrangian formulation). Tt can vary

11



arbitrarily and smoothly from 0 to V. Thus, the ALE formulation will be purely Lagrangian
or purely Eulerian where it is needed, and hybrid everywhere else.

In the following, we present in details the ALE formulation and the general algorithm which

is usually used (see also [7]). We close this overview with a discussion on the advantages and
drawbacks of the method.

Formulation :

¢ In the following, we will consider spatial coordinates and derivatives in the physical space of
the laboratory. This spatial coordinates will be denoted #. We will also work with Lagrangian
variables @. Holding the vector @ fixed means following the corresponding particle in its motion.

o A physical variable ”¢” will be tilded § when it is considered as a function of the Lagrangian
variables (@,?). The notation g will be used only if the variable is considered as a function of
the Eulerian coordinates (Z,1).

e The ALE formulation uses mixed coordinates. They depend on Lagrangian coordinates (@, t)
and will be denoted

? = ?(6715) (25)

For simplicity, we will write 5 instead of 5 We will write subscripted variables when they are
held constant in evaluating partial derivatives. We define the mixed Jacobian and the mesh

speed by :
T o]
J(d,t) = det [% t(a,t)] (26)
= &
Wia,t) = 8—§ 4(6,15). (27)

This Arbitrary Lagrangian-Fulerian description is summerized on figure 4.

e For this formulation, we will also need a pass from Lagrangian coordinates to Eulerian
coordinates. For any function § of Lagrangian coordinates, we define the function g of spatial
coordinates by :

g(Z,1) = §(@,t) where @ is such that # = £(a,1). (28)
At the same time, we also need a pass from Eulerian coordinates to Lagrangian coordinates.
For any function g of spatial coordinates we define the function § of Lagrangian coordinates

by :

—

g(d,t) = g(Z,t) where ¥ is given by : ¥ = £(d,t). (29)

In both correspondences, we then have the identity

—

g(f((i,t),t) = g((i,t). (30)

o We will use two general lemmas, which can be proved in the same way as Lemmas 3 and 4

12
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Figure 4: Lagrangian, Eulerian and mixed variables in the ALE description.

below. Both lemmas are purely algebraic. They include no physical considerations. The first
one gives a differential equation for the mixed Jacobian J defined above.

Lemma 1 J is solution of the following partial differential equation :

%%—aﬁﬁt):efﬁﬁtwﬁvglv)(f@ﬁt%t). (31)

The second lemma gives a mean to have a translation from Lagrangian-type time-derivatives
with the material coordinates held constant to Eulerian-type time-derivatives with spatial co-
ordinates held constant.

Lemma 2 For any scalar quantity g, we have :

Jg)| . 7. 09
o (a,t)=J(a,t) [E‘

g+dwgm@ﬂ(ﬁaﬂ¢)- (32)

-
a

e Let us consider the vector of conservative variables @ (3), function of Eulerian coordinates
and the corresponding Lagrangian function Q defined by (29). We can apply the preceding
lemma to each scalar component of Q. Since @ is solution of Euler equations, we obtain the
following general ALE formulation :

0JQ) (da,t) + f(c?,t) divg [(E, F)-Q® I/?/] (g((_ivt)vt) — 0.

(33)




which can be expanded in :

d(Jp)

| (@ +J(@,1) [divz [p(V — W)]] (€l@.1).1) o,
a(g,jﬂ) (@1 A T(@0) [divs [pu(V =] + B (€@.0).1) =0,

o (34)
G(g,tov) a(a,t) +J(@,t) [di@f [m] + Py] (g(ﬁ,t),t) — 0,
a(éfté) (@ +J(@,1) [dive [e(V = W)+ PV]] (@ 0,1) =0

It may be easily verified that these equations take the form of Lagrangian equatlons when
we have uniformly W= V and they reduce to classical Euler equations when W =0.

e We can now obtain an interesting formulation. We integrate equation (33) on an elementary
volume of the material space. Time derivatives with the material coordinates held constant
can be put out of the integral signs. Using a change of coordinates from @ to &, we can write :

m/ @%+/ divs (F(Q) = Q 0 W) d€ =

(35)

We will see that this formulation, where all materials coordinates have disappeared, is also
used (in a different way) in dynamic meshes methods.

Algorithm :

The general algorithm for ALE methods is different from all other algorithms used in fluid-
structure interaction. Though the formulation is very similar to dynamic meshes methods, the
time-integration is based on a two step algorithm which excludes global upwind schemes. On
the other hand, the goal of this specific formulation is the elegant and simultaneous integration
of actions of the fluid and the structure on one another.

o In the first step, we calculate the Lagrangian nodal velocities resulting from the pressure and
body forces of the previous time step. Supposing that W= ‘7, we compute the Lagrangian part
of the second integral in (35). This phase and the computation of the motion of the structure
can be performed at the same time. They can be integrated in time with implicit schemes. At
the end of this step, we know the location, speed and acceleration of the structure after the
time step and we have computed the Lagrangian part of the flow’s evolution.

e The second step executes two tasks. Knowing all characteristics of the structure’s motion,
we can affect new values to W and update the mesh. We also have to compute the convective
part of the fluxes, due to the new mesh speed W. The first task can be completed with one of
the mesh updating schemes we already presented in (12) and (13). The second one is not very

14



complex. It includes among others the computation of the new cell volumes. Mass, momentum
and energy convective fluxes are added to Lagrangian fluxes to complete the integration.

Advantages and Drawbacks :

It is clear that Arbitrary Lagrangian-Fulerian methods have several advantages. First, they
use very simple equations. They are just a little more complex than the original fluid dynamics
equations, because of Jacobians and mixed coordinates speeds. Second, this kind of method
can deal with all types of geometries since the mesh can be of any form (and in particular un-
structured). Third, the Lagrangian step of the integration allows a real interaction simulation.
During this step, since all cells are considered closed (no convection through interfaces), the
fluid and the structure play similar roles. In some sense, we have taken into account that the
action of the structure on the fluid and the action of the fluid on the structure are opposite.

However, this formulation has also drawbacks. Though it is valid for all configurations, it
is not necessarily optimal. The formulation could be slightly changed in particular cases, rigid-
body motions for example. Moreover, the splitting in Lagrangian and convective fluxes can
give time accurate solutions only for very small time steps. The problem of good interaction
resolution has been transferred to this Lagrangian-convective fluxes splitting. Last drawback
but not least, these methods do not match with global upwind schemes, which allow good
computational efficiency and robustness.

In short, the Arbitrary Lagrangian-FEulerian formulation produces original methods different
from fixed computer domain methods with moving frames of reference. The formulation is
general and treats the fluid-structure interaction in an elegant way. However, the splitting
between Lagrangian and convective fluxes reduces the global accuracy for large time steps. We
will now see the family of methods using so-called dynamic meshes. Their formulation is very
near from an ALE formulation, but it is much more precise. Treatments of boundaries are
classical and global upwind schemes can be used.

2.4 Methods using dynamic meshes.

These methods are formulated on dynamic meshes, which means that the cells of the spatial
discretization have their own absolute speed — possibly different from zero and from the fluid
speed. This kind of formulation do not explicitly use the forms of the cells (triangle, quadran-
gle...) and the type of the grid (structured or unstructured). The methods can therefore used
on unstructured meshes, which is an important advantage in comparison with fixed computa-
tional domain methods. The formulation in dynamic meshes is slightly different from Arbitrary
Lagrangian-Fulerian formulation since no reference to Lagrangian coordinates is made.

Formulation :

e The first way to obtain the final formulation looks like an ALFE approach. Let gbe a mixed
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geometric variable. The iso-£ curves can be the mesh lines if the grid is structured. Both
variables # and £ are time dependent functions of each other, as

£=¢(#,t) and & =F(E 1) (36)

Differentiating from the last equation, let J and & be the following quantities :

J:det(a—{
J

; t) (37)

(38)

and

The subscripted variables are held constant in partial derivatives and the following notations
are used hereunder :

dg;

— J dg ! L
J J ) and  divg(g) = Z D

i"g:(a—xlvv

ozp

Lemma 3 We have the following partial differential equation for J :

aJ o
n = J divg(W) (39)

Proof :
We have (writing 7'r for the trace operator)

awz dw; OE; 9
dies() = 105 2235 ai - ([agl l ﬂ). (40)

def

If we write J for 8%/d€, noticing that §@/9€ = 8.7 /O1= J’, we deduce from (40)
diva(@) = Tr(J'T ). (41)
For s small enough, we have
T(t+s)=J@) (Id+ T T'(1) + o)) = T exp(sT 1 T) + ols). (42)

Since the determinant is a continuous function, using identities such as Tr(AB) = Tr(BA) and

det(exp(sA)) = exp(s Tr(A)), we obtain
J(t+s)=J(t)exp(s Tr(T' T +ols) = J(t) + s JO)Tr(T' T) + os), (43)
and then
J =JTr(J'Th. (44)
Equations (41) and (44) give the proof ¢{

From the preceding lemma, we deduce
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Lemma 4 For any scalar quantity g, we have :

d(Jg) dg )
— 27 = = divz(qw . 4
o e J (315 f—l— wx(gw)) (45)
Proof : _
The classical chain relation from £-derivatives to Z-derivatives takes the form
dg dg — 07
— = = Vzg.—| . 46
ot~ ol T VA (46)

Multiplying by J and using the definition of &, we obtain

9| _ 599 | ) Vg . (47)

/ E‘g ot

If we multiply both sides of (39) by ¢ and add it to (47), we obtain (45) since
—
divz(gw) = g divg(W) + Veg. i §

If we apply Lemma 4 to the conservative variables p, pu, pv and e, we have the following
equation :

W)\ divyF = 0
ot g
(48)
where
pu pv
F, = put —l— P , Fy = ,{uv and ?f TUT e (49)
pon pov+p V=0 — Wy
eu + pu ev + pv

It is here interesting to notice that the meaning of these equations is fully conserved for
special cases of our variable coordinate £, The case where £(,1) = & gives for (48) and (49)
the classical Euler equations (since @ = 0). The case where £(&,1) = @(&,1) is the Lagrangian
material coordinate of the particle located in & at time ¢ gives the usual Lagrangian equations

of gas dynamics.

o We can obtain an integral formulation of (48) identical with the formulation used by Batina in
[2]. Let us call C' a cell of our discretization. This cell occupies respectively the domains C'z in
Z-coordinates and Cg in £-coordinates. We suppose that Cgis not time-dependent. Integrating

(48) over Cg, we find
/ 9(JQ)
C ot

3

4d§—|—/ J divgF d€ = 0.
£ Ce
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Since the time-derivative is done with gheld constant and since Cg does not vary in time, we

can put it out of the integral. Then, using the change of variables 5: £(#,t) and di = Jdg,
we finally get

i[/ Qdf]—|— divsF di = 0.
dt Cg Cg

(50)

We remind that this formula is valid when Cz is a spatial domain corresponding to a fixed
domain Cz of mixed coordinates. This last integration formula can be used for a finite-volume
formulation. Using averages on cells, we will write

n(z) o .
ATHLQET — ATQT + ALY |0CH.9(Qi, Q5 57) = 0, (51)

J=1

where Q7 is the average of () on cell C; at time ¢,,, A” is the area of cell C; at time ¢,,, At is the
time step, n(7) is the number of neighbour cells for C;, dC;; is a time-mean interface between

the cell C; and its neighbour C; (of length H@FCT]H and normal 7327] oriented from C; to C;) ,
and @ is a numerical flux such that

N ~ At -
ALOC1-(Q:, Q) = | [/ P da] dr (52)
tn aCy,

The reader will find in [12] a general one-dimensional formulation for Godunov-type schemes
on moving meshes. For the resolution of (48), we can make use of global upwind differencing
and flux-vector splitting schemes similar to those developed for computations on structured
meshes. For example, it may be deduced from (52) an expression for Roe’s method on moving
grids in a very classical way [12]. In a two-dimensional case, the expression for Roe’s numerical
flux would take the form :

8(Qi. Qs = 5 [(F4 B) - |[A— (1] (@i - ] (53)

where A is Roe’s matrix for the flux En, + Fn, and the sign | | is taken on the matrix after
diagonalization.

We now have to make two remarks on the preceding equation. First, it may be easily shown
that the numerical flux ® depends only on % through its normal component .77. Second, since
the grid is moving, the field of grid speed @ varies with time. We should have used average
values 0, 8’@]‘ and 1:7.77?]‘ in (49) and (53). We still have to make a choice for the preceding
averaged tilded quantities.

The same expressions as (53) can be obtained with a spatio-temporal approach of the
problem. In [23], N’Konga and Guillard consider spatio-temporal work-volumes generated by
the deforming cells C; during a time step. Integrating unsteady Fuler equations on these
volumes, they finally get the same formulation (51). Furthermore, they give a justification for
a natural choice for 5675 and 1%7%; We will see below the main principle of this justification.

Calling P;;; and P;j2 the ends of 0C;;, they decide that 82’:]‘ is the segment whose ends are
the mean position of P;;; and P;js during the time step and that

@iy = = (B(Pij1) + B(pij2)) 175 (54)
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This extension for moving meshes has already been done for many different methods : for
instance, Roe’s approximate Riemann solver with several orders of accuracy [15] or Van Leer’s
flux-vector splitting [3].

Algorithm :

o The first phase of each time step is the integration of (48) with the method given by (51),
(52) and (53).

e In a second phase, we must update all geometric variable needed in the first phase. The
updating scheme for @ may follow (12) or (13) like for fixed computational domain methods.
This very simple algorithm can get along with all inventions for unstructured meshes, like
adaptive refinement [19](also consistent with ALE formulations) or multigrid methods [21].

Since we use for each cell the areas in (51), we have to update them abiding by the geometric
conservation law [29]. As for (14), we have to update the cells areas with the same scheme as
for a uniform field ). Then the scheme should be :

n(z) L o
AT — AT+ ALY NOC(|(—wa) = 0. (55)

J=1

We then have to choose 8’@]‘ and 1%73?] such that the area S covered by 9C;; during a time
step At verifies

8 = A|OC || (w.57) - (56)

The formulas given by N’Konga and Guillard in [23] are built in order to have the best approx-
imation of § with 5675 and E?}Z in (56).

Since this updating scheme corresponds to (51) for a scalar variable constant and equal to
one, the geometric conservation law will not be transgressed [29]. The scheme is simple and
will not generate unstabilities. It is exactly the same scheme as presented in the first section
for body-fitted curvilinear coordinates.

Advantages and Drawbacks :

This method gathers lots of advantages. First, global upwing schemes can be used, which
was not the case for the ALE formulation. Second, no geometric elements but the cells areas are
used. They have to be updated after each time step, but the scheme (55) is simple, conservative
and avoids the numerical unstabilities shown in [29]. The only drawback of the method is the
need of an grid updating phase after each time-step. Though dynamic meshes method may be
less efficient than the one presented by Lin in [18], it is certainly more general. Furthermore,
according to Batina [2], the mesh updating scheme with prediction-correction based on strings
gives efficient results.
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2.5 Conclusion.

In this section, we surveyed several methods for the resolution of gas dynamics in moving
boundaries problems. The model equations have been the Euler equations (2-3). Start point
for all explanations, they have been written differently : we have seen Euler equations in body-
fitted curvilinear coordinates (5-6), their new form in body-fitted coordinates and moving
frames of reference (21) and finally their integral form in the ALE formulation and dynamic
meshes methods (35-50).

We can notice that the latter formulas (35-50) are very close to each other. In both formulas,
all material coordinates have disappeared. On the contrary, we still have derivatives with the
spatial coordinates held constant. At this point, we can make two remarks. First, the whole
ALE formulation was certainly not optimal. It should have been derived with only two systems
of coordinates : the mixed coordinates gand either the Lagrangian coordinates or the Fulerian
coordinates. Obviously, this other system of coordinates should be the Eulerian coordinates for
very general cases. It could be pseudo-Lagrangian coordinates for special cases (for example,
the case of a two-dimensional rigid wing profile in an external flow : the coordinates should be
linked to the profile). Second, ALE methods and dynamic meshes methods only differ in the
use they make of the integral formulation. In pure ALE methods, a Lagrangian phase and a
convective phase are performed during each time step. Pure ALE methods are mostly used in
hydroelastic studies [7].

All methods presented above are quite general. They just consist in looking at the model
equations from different points of view. Thus, they can be applied to potential formula-
tions (three-dimensional transonic small disturbances for unsteady inviscid flow [4] and three-
dimensional unsteady full potential equation [28]) or Navier-Stokes equations (unsteady three-
dimensional body-fitted version [11]).

For all presented methods, we have not written in detail the boundary conditions. These
boundary conditions actually produce no additional difficulties. In each specific formulation,
they are to be translated in the frames or coordinates under consideration. Their underlying
physical principles do not change. For example, on the far-field fluid boundary, the flow is fixed
in a galilean frame of reference; this condition is possibly tranlated and introduced directly or
with the method of characteritics. On the surface of the moving/deforming structure, the
translation of the slip condition is enforced or induced by wall fluxes.

Heretofore, the motion and the deformation of the structure and the flow boundaries have
been supposed known. We used them for the expression of the fluid boundary conditions and
for all general geometric updating schemes. We can consider that we just dealt with the action
of the structure on the fluid. In the next section, we will handle the question of the interaction.
We will study how to include the dependence of the structure’s motion on the flow.
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3 Fluid-structure interaction.

In this section, we want to deal more precisely with the interaction at the interface between the
fluid and the structure. This kind of interaction has the same characteristics in aeroelasticity,
hydroelasticity or any fluid structure coupling phenomenon. In the following, we first study
this interaction and the possible ways to perform a numerical simulation. Then, we present
the most simple, general and used algorithm for interaction computations.

3.1 The cycle of interaction.

The coupling phenomenon between the fluid and the structure, this so-called interaction, can
be understood with the idea of a cycle, covered instantaneously and constantly by an imaginary
operator responsible for physical phenomena. During the evolution of the fluid and the struc-
ture, the movement and/or deformation of the shape of the structure induces at once a change
in the flow. This induction is made through the location and the own speed of the boundary
for the external flow. Since the flow changes, the pressure field on the structure varies and
the movement and/or deformation of the shape changes. And again this last change induces a
variation in the flow... We see that the variation of the flow and the movement of the structure
are coupled phenomena. They affect each other through boundary conditions from structure
to fluid and through pressure field (or viscous efforts) from fluid to structure.

Nearly all the methods used in aeroelasticity are based on this simple cycle. Such methods
use a staggered solution strategy. There exist also pressure elimination strategies and simulta-
neous solution which are computationnaly prohibitive [25]. ALE methods also are exceptions
to this general agreement in some sense. We will explain later why. Other methods could be
summed up as follows :

SnLBnéFTL—LPnéSn—I—I _5_>Bn—|—1:6>Fn—|—1 L.

In the preceding scheme, the superscripts correspond to the time level. Respectively, 5, B,
F and P represent the state of the structure, the boundary conditions for the fluid problem,
the state of the fluid and the pressure field on the structure’s surface. The double arrows =—
represent heavy computations : for example, the state of the fluid after an elementary time step
knowing the boundary conditions (:2>), or the state of the structure after a time step knowing
the pressure (:4>) The simple arrows — represent obvious computations like getting the
boundary conditions for the flow knowing the state of the structure (L) or the pressure field

knowing the state of the fluid (i>)

The scheme for the interaction cycle can be applied to various physical problems [28]. For
static rigid computations (only steady aerodynamics), phase 2 is only performed. The pseudo-
unsteady scheme should converge towards the steady solution. For dynamic rigid computations,
all phases are performed, but phase 4 is rather light since the structure has few degrees of
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freedom. For flexible cases, all phases are totally performed. Static flexible cases can be quite
interesting. For example, an elastic panel in the wind (see figure 5 for static cases). Flutter
problems on airplanes are all dynamic cases.

7%77
_— T pressure
forces
—

 —

—

_—

ey -

Figure 5: static rigid and static flexible cases.

The superscripts in the scheme hide an interesting difficulty. During phase 2, the speed of
the movind and/or deforming shape is held constant. During phase 4, the flow is supposed
constant. Thus, comparing with the structure, the flow is a little late. It is obvious that we
could have started writing superscripts n+1 in the scheme after another phase of the cycle. In
that case, the structure would have been a little late. This little problem is in general overcome
by taking time steps small enough. Since the typical time of evolution is much smaller for the
fluid than for the structure, aeroelasticians have rather the structure late. The following choice
is then mostly made :

1

Sn_>Bn:2>Fn—|—1 _3_>Pn—|—1:4>5n—|—1 _5_>Bn—|—1:6>Fn—|—2 L. (57)

It may be a little surprising that we dispose only of two staggered schemes, the last one
being the best (57). In reality, the coupling between the structure and the fluid is present
constantly, and, the actions of the fluid on the structure and of the structure on the fluid are
simultaneous and opposite. Only ALE methods take into account the simultaneity of both
actions. It is done in the first (Lagrangian) phase of each integration step. But the quality of
the ALE algorithm also depends on the validity of the Lagrangian-convective splitting of fluxes
for large time steps.

Because of the constant coupling of both elements, the simulation may be more accurate if
we have simultaneous integrations for the fluid and the structure. But this kind of simulation
would require among others estimates of complex abstract functions giving dependances on the
structure’s shape of its action on the outer domain or the action of the fluid on it, through the
pressure field. The first function could be given by structural dynamists if the mechanics were
linear. Different versions of the second one exist for several structural dynamics problems.

Dynamists use these approximate formulas when they want to limit their study to their spe-
ciality. For example, Lottati [20], in a study on the role of structural and aerodynamic damping
on the aeroelastic behavior of wings, used such approximate formulas for the dependance of
unsteady aerodynamic forces and moments on the reduced frequency of an oscillating wing. In
[16], Lin et al. worked on plates flutter and used a linearized potential model (stemming from
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the unsteady lifting surface theory coupled with the doublet-lattice method [5]) for subsonic
fluid flows. They obtained formulas such as the integral equation

v@ _ L

Ueo 8w surf

AC(d3). K(% — a7 )day, (58)

which gives the expression of the vertical fluid’s speed around a wing as a function of the
pressure field (K is a kernel function representing the downwash at # induced by a unit impulse
load at #3). Sarma and Varadan studied in [26] a nonlinear panel flutter under supersonic flow
with the help of quasisteady supersonic flow theory, and used expression converse of (58) such
as the following expression (where M, is the freestream Mach number) :

-2 dv 1 (M2 -2\ dv
AC, = | ——= ||+ — | ] = 59
v ( Mgo—l)[é?x—l_uoo(Mgo—l)@t] (59)

These methods avoid aerodynamic computations. They use good approximations of phe-
nomema which take place in the flow, but they are only valid for very specific cases (totally

subsonic or supersonic) and they use linearizations. Thus, they may give very poor results for
complex studies like transonic flows or very nonlinear phenomena.

In short, we have seen that all methods use the same time step for the fluid and the
structure, which is certainly necessary to get time-accurate simulations. However, the actual
simultaneous integration of the structure and the fluid is not practised. All methods are based
on staggering schemes, which — up to now — seem to enforce very strong limitations of the time
step. These limitations have been theoretically explained in some interesting cases [25]. The
simultaneous integration of both actions may probably be a necessary step towards implicit
integration of fluid-structure interaction simulations.

3.2 General algorithm.

We describe now the process summed up on the scheme (57). We use the same notations and
we write § and 5 for the speed and acceleration of the structure. In Table 1, the downwards
vertical axis represents the CPU-time during the computation. We suppose that we have saved
at the beginning of a time step the state of the fluid F’, the state of the structure (and its speed
and acceleration) S, S and §. We also know all geometric variables (mesh, Jacobians, etc...)
and the geometric speeds (grid speeds and possibly variables corresponding to moving frames
of reference).

Since we use the idea of a cycle of interaction, Table 1 is cyclic. In fact, only six lines are
performed during each time step of the integration. The second line is only performed for FCD
methods with moving frames of reference. Heavy aerodynamic computations are performed in
line 4 and heavy structural dynamics computations are done in line 6.

We have already discussed how to perform some lines of the general algorithm. The mesh

for a new time step is computed with formulas (12) or (13). The metrics are then deduced
according to (11) if curvilinear coordinates are used. Moving frames of reference are possibly
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VARIABLES COMPUTED

VARIABLES USED

mesh and metrics at ¢

S(1")

moving frames of reference at ¢"

S(t™) and S(t")

boundary conditions B(t")

S(t") and S(1")

state of the fluid F(t"+1)

F(t"), B(t"), whole geometry

surface pressure field P(t" 1)

P

Sy, (1) and S(#)

P>, S(17), S(¢") and S(")

mesh and metrics at t*t1

Sttt

moving frames of reference at ¢"+!

S(¢+1) and S(t”"’l )

boundary conditions B(t"T!)

S(t"t1) and S(")

state of the fluid F(1"+?)

F(tn+1)7 B(tn+1), whole geometry

Table 1: The general form of staggering algorithms.




updated with respect to the movement of the structural element they are linked to. Boundaries
are given new locations and new walls normal speeds are computed. The state of the fluid at
the next time step is the result of an aerodynamic integration. This integration is not based on
the classical Euler equations (2), but on equations modified by use of curvilinear body-fitted
coordinates (5) or multiple moving frames of reference (16) or both of them (21). It can also
be based on a dynamic mesh formulation (48), with an integral form (50).

In short, we have described very precisely the global staggering algorithm used for fluid-
structure interaction simulations. In the first section, we had presented numerical methods
for moving boundaries problems. In such problems, the motions of the boundaries are pre-
determined. They are used to update after each time-step the mesh, the metrics and their
time-derivatives, and/or the moving frames of reference. Since they are preset, these motions
do not depend on the flow. But, in fluid-structure interaction simulations, the motions of the
structure are not predetermined. We will see, in the next section, the structural part of aeroe-
lastic simulations. We will show models for the motions of the structure and numerical schemes
for the time integration of these motions.
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4 Structural dynamics.

In this section, we study the methods commonly used by aeroelasticians to compute the struc-
tural dynamics part of their numerical simulations.

In fluid-structure interaction simulations, the structure evolves dynamically under external
forces (pressure on the surface, gravity). We suppose that the mechanical response of the
structure is linear and elastic. Since we use the general algorithm presented in Table 1, we will
have to compute the location, speed and acceleration of the structure at a new time step "1
using their values at time ¢" and the action of the fluid at time ¢"™! (the structure is therefore
a little late).

In the following, we present the model equations for the structure and the method of
discretization fot its motion. Then, we propose numerical schemes for the time integration
from " to ¢"t1,

4.1 Structural model equations.

Since the structure considered is continuous, the set of its displacements is a space of infinite
dimension. We use a finite-element type of discretization to reduce the space of displacements
to a finite dimension (which is number of degrees of freedom in the discretization). In a second
step, using Lagrange’s equation, we write a general model equation for the aeroelastic motion
of the structure. We can also compute structural modes from this equation and obtain a modal
equation for the motion.

Discretization.

o We use a finite-element type discretization (see e.g. [5]). It is assumed that the elastic
deformation of the continuous structure can be represented by deflections at a set of discrete
control points. Thus, the displacement r is taken of the form

"/ Or
=3 (5 ) - (60)

where n is the finite dimension of the discretization space, dr/dq; are basis functions and ¢;
are called generalized coordinates.

e Using the definition (60) and writing doted signs for time derivatives, we can give the expres-
sions for kinetic, elastic and dissipated energies.

o The kinetic energy T is given by :
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where p is the density of the structure and M is the (n x n) generalized mass matrix. Its
term on k" line and I** column is given by :

or \' [ or
= o G) (5): ”
The elastic potential energy U is given by :
17 _ 1
U= 5/5 o §thq, (63)
where o and & are respectively the stress and strain tensors (the colon stands for a

contracted product) and K is the generalized stiffness matrix. If o and £; are the stress
and strain tensors in the basis displacement 0r/dqy, the (k,l)-term of K is given by :

I(kJ = / Ok : &l (64)
The dissipated energy D is given by :

D= %/ Jdis -7, (65)

where fy;, is a dissipation force field. In most cases, this force is supposed to be viscous,
which means that it is a linear function of ¢. It is defined by :

Jais = Zn: (afdis) G (66)

=1 8qk

With this hypothesis, D can be written as

1
D = 3' B, (67)

where the generalized dissipation matrix B has its (k,[)-term given by :

Bk,l:/ (881[;;5)(3—;) . (68)

The matrix M is supposed definite. Like K, it is also symmetric and positive. Though
B may not be symmetric, only its symmetric part has a role in (67). Writing again B for
this symmetric part, it can be shown that B is positive.

e We can also consider the external forces. If f is the field of these surface forces, their work
in a displacement r can be written as

W:/Ert.f:qt.Q (69)

where 3 represents the structure’s shape and ¢) is the vector of generalized forces defined by

Qk:/zg—;)t-f- (70)
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Model equations.

¢ Using the principle of virtual work, rewriting (61), (63), (65) and (69) for a virtual displace-
ment, we obtain Lagrange’s equation

d (0T or oD oU

il e I T H s 1
dt(@f) or T Ty = (1)
From the linear form of T', D, U and @), we deduce our model equation in generalized coordi-
nates :

Mi+ Bi+ Kq=Q.

(72)

e This model equation for the movement of the structure is the most accurate model equation
we can obtain with our discretization. As a matter of fact, it deals with a great number (n :
dimension of the discretization) of generalized coordinates. If we suppose that the system in
(72) is globally diagonalizable, we imagine that the preceding model equation handles with n
structural modes. It may be more simple and efficient to limit our model equation to a fixed
number of modes. In [8], Guruswamy presents the first mode shapes for a typical uniform
rectangular wing. More complex modes for a simplified wing-body configuration can also be
found in [8].

e We call a structural mode of (72) a displacement field U; (with an associated pulsation w;)
such that
¢; = U;cos(w;t) is solution of M{+ Kq=0

which is equivalent to
(K —wM) U =0. (73)

FEach U; is an eigenvector of the matrix M~'K with the eigenvalue w;%. Since the matrix

M~1K is symmetric and positive, the family of displacement vectors U; is a basis of the space
of displacement fields. We can now rewrite equations (60) to (72) with U; instead of 0r/d¢;.
Using tilded coordinates ¢; and tilded matrices and forces, we obtain

MG+ Bi+ Ki=Q. (74)

If we take for granted that all eigenvalues of M are distinct (which is the case in most studies),
it can be shown that the new matrices M and K are both diagonal. We will write respectively
(1) and (7) instead of M and K. However, the matrix B is generally not diagonal. In most
cases, the hypothesis is made, that B is a linear combination of M and K (hypothesis of
Rayleigh) or more simply that B is diagonal (hypothesis of Basile) which is weaker. It has
been shown [5] that Basile’s hypothesis is valid for lightly-dissipative structures. For example,
Borland and Rizzetta use in [4] this hypothesis with specified structural damping coefficients
g; for each mode such that
B = diag(g;) K"/* M'/2,

With this new formulation and with Basile’s hypothesis, writing (/) instead of B, we obtain
the following modal equation, which is a set of scalar equations :

(1)g+ (B)i+ (v)i= Q.

(75)
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This modal approach has been used in most available studies (see however [18] for an exception).
The modal formulation allows to handle with a chosen number of variables (which are the
coordinates of the displacement field on these modes). If we choose to deal with very few
modes, the differential equation (75) will be solved exactly. If we choose to handle with a great
amount of modes, but much less than the dimension n of the discretization, we will use the
following time-integration schemes, which are much more efficient with the diagonal form (75).

4.2 Time-integration schemes.

Though the diagonal modal equation (75) could be solved exactly, a direct resolution would be
too expensive in computational time. Moreover, since the general algorithm includes a rather
weak simulation of the coupling between the fluid and the structure (since the structure evolves
under pressure held fixed during a time step), the accuracy given by an exact resolution would
be useless.

Starting from (72) and using generalized coordinates, we perform the sixth line of Table 1.
Before this step, we know P(t"*1) and S(t")-$(t")-S(¢"), which are respectively translated
into the generalized forces Q(t"*!) and generalized coordinates derivatives §(¢"™)-¢(t")-q(t™).
After this step, we must have computed the new variables §(t"*1)-¢(t"*1)-¢(¢"T!) which will
give simply S(#"+1)-S(¢"+1)-S(¢"+1) after another translation.

Writing ¢,, instead of ¢(¢"), the scheme which is most often used takes the form :

Gnt1 = Gn + Atdn + 55 (1= B)iin + Fiar1)
and
MQn+1 + BQn+1 + I((Zn—l—l = Qn—l—l- (77)

This scheme may be explained in a few words. Since we have (72) at time ¢"*! and since we
dispose of @, 1, we can use an expression of the derivatives of ¢ at time t**! in function of one
of them. The most natural choice consists in giving the leading role to the acceleration g1
(because an error on it is reduced by time-step factors) as in (76)-(77). In the first line of the
scheme (76), we have used a trapezoidal method. In the second line, we have written a hybrid
method depending on a parameter 3. For example, this method reduces to the trapezoidal
method when § = 1/2 (see for example [18]) and to the linear acceleration method when

5 =1/319]

The global time-integration algorithm takes the final computational form of the five following
steps :

) . A,
0 Gx = gn+ 7(]71 (78)
. AP i
o (Z*:(Zn‘l'Atqn‘l'T(l_ﬁ)Qn (79)
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At At?

© ijn-l—l =M+ 7B + ﬁTI( (Qn-l—l — B¢, — Kf]*) (80)
. . AL
© nt1 = Gx F S 0nt (81)
N
° fnt1 = ¢t ﬁTf]m—l (82)

This algorithm is actually general. We could have written the corresponding algorithm with
modal matrices, forces and coordinates. In that case, the most expensive step written in (80)
would have been much more cheaper because M, B and K are diagonal.

We see here the most important advantage of the modal formulation. The computations of
the structural modes and the modal mass, damping and stiffness matrices are made once and for
all. The time-integration algorithm is thereafter very efficient, since no complex computations
are performed during each time step. After each step, it is however necessary to compute the
position and the speed of the structure, written $™*! and 57+Lin the preceding section. These
variables are actually used in the aerodynamic part of the general algorithm. They may be
obtained with help of the fixed transformation matrix from dr/d¢; to U;.

In short, the structural dynamics phase on line 6 of Table 1 is quite cheap for each time step
when modal equations are used. Several tasks must be accomplished for each time step. First, a
translation of pressure forces at the current step and dynamic characteristics of the structure at
the previous step into generalized coordinates is performed. Second, the scheme (78) to (82) (the
most difficult step is the inversion of a diagonal matrix) gives new generalized coordinates for the
displacements. Finally, another translation of these coordinates into dynamic characteristics
of the structure at the end of the step is necessary.

The computations performed once and for all are the calculations of generalized matrices
M, B and K, the diagonalization of M 1K, the saving of a chosen number of eigenvectors and
of the diagonal matrices (u), () and (). Last but not least, transfer matrices from generalized
to modal and modal to generalized coordinates must be computed and saved.
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