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Abstract

We present a parallel algorithm based on a deterministic particle method for solving
the Boltzmann equation (B.G.K. model). Two test cases are performed : the Sod
shock tube and a rarefied gas flow on a flat plate. We present performance results on
the Connection Machine CM200 and compare them to those obtained on a CRAY-
YMP.
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Introduction

The Boltzmann equation is the basic model in the kinetic theory of gases. Boltz-
mann type equation are also involved in modeling electron transport in solids and
plasmas, neutron transport in nuclear reactors, and radiative transfer in planetary
and stellar atmospheres.

We are concerned here in the Bhatnagar-Gross-Krook (B.G.K.) model which is a
relaxation model describing the evolution of a gas through a kinetic theory. This
model does not contain relevant features of the classical Boltzmann equation but
despite its simplicity, it contains most of the basic properties of fluid dynamics such
as the conservation of mass, momentum and energy [1].

Therefore, B.G.K. equations are widely used for testing numerical methods for ki-
netic equations. It explains the growing interest in numerical approaches to solve
B.G.K. problems.

Nevertheless, approximated solutions need to deal with a very large number of par-
ticles; pratically millions of particles have to be used in realistic computations. Well
it is clear that whatever scheme one may use, the computation time on serial ma-
chines will grow at best linearly with the number of particles. To be more exact,
the computation time per particle is expected to be constant in the best cases.
The advent of parallel systems raised hopes in going beyond this limit. Indeed, one
could expect that the CPU time per particle will decrease if the number of particles
grow together with the number of processors. However, interactions between par-
ticles may translate into complex and numerous interprocessor communications in
parallel implementations.

Aiming at parallel implementations, one has to pay a great attention in the choice
of the numerical method. There are mainly two approaches in numerical kinetic:
the probabilistic approach which is the most used and the deterministic one which
is in rise nowadays.

The numerical method to be used here belongs to the latter class and was introduced
by S. Mas-Gallic [4]. Our aim here was to propose a parallel algorithm issued
from the weighted particle method and its implementation on a massively parallel
computer. A Connection Machine (CM200 model) was chosen for the numerical
experiments to be presented here.

This paper consists of four sections. In section 1, we recall the B.G.KK model. Sec-
tion 2 is devoted to the presentation of the particle method. In section 3, we present
briefly the Connection Machine and describe the parallel algorithm. Finally we
present some numerical solutions and performance results obtained on the Connec-
tion Machine. Comparisons with the CRAY-YMP results are also reported.

1 Mathematical Model

1.1 The Boltzmann Equation

The evolution of the particle distribution in the six-dimensionnal space (z,¢)
is modellised by the Boltzmann equation [1]. In the case of a monoatomic gas



where particles interact through a finite range conservative force, the evolution of
the distribution f is governed by the following Boltzmann equation :
af

ot ff*_ff*)Q(f*_fvn)df* dn (1)
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where f = f(t,x,£), t is the time, x is the position, £ is the velocity and ¢ is the
diffusion cross section. The prime superscript refers to before-collision states and
the star subscript denotes the dummy variable :

fo=fa, &), o= T2, &), [ = f(t,2,6).

The before-collision velocities are related here to the after-collision ones through the
following elastic shock law:

¢ =¢+n(l—&n)and & =& —n(b —E&n)

The right-hand side of the Boltzmann equation (1) usually denoted by Q(f, f) is
called the collision operator.

1.2 The B.G.K. Model

Because of the complicated structure of the collision operator, simpler collision
terms have been suggested.

In fact, it was observed that a large amount of details of the two-body interaction
does not affect significantly the values of many measures in physical experiments.
Thus, it was expected that the fine structure of the collision operator Q(f, f) could
be replaced by a simpler one J(f) which retains only the qualitative and average
properties of Q(f, f). Consequently, J(f) must satisfy the following relations :

oed(f)dE =0 (2)
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where ¢p—o 4= (1,&=123,| £ |*) are the elementary invariants by collision. One
gets the equality in (3) if, and only if, the density f is a Maxwellian [1].
Equation (2) expresses the conservation of mass, momentum and energy and the
Boltzmann inequality (3) shows the tendency of the density to a Maxwellian dis-
tribution. The simplest way to take (3) into account is to assume that the average
effect of collisions changes the density f by an amount proportional to its departure
from a Maxwellian M.

We introduce the Knudsen number Kn = [/d where [ denotes the mean free path
and d is a characteristic length scale. The Knudsen number is related to the relax-
ation time 7 by: Kn = 7¢/d, ¢ being a typical molecular velocity.

By setting

=M - ) (1)



we get the Bhatnagar, Gross and Krook (B.G.K.) model [2].

The above Maxwellian M depends on the disposable scalar parameters (p, pU, E)
which represent respectively the density, the momentum and the energy . According
to equations (2) and (4), we have :

oM (f)d = [ o de

M 1is usually called the local Maxwellian and may be written :
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The temperature T is deduced from the total energy of monoatomic molecules :
v 3
E= —pT. 7
Pt gp (7)

Diatomic case

The above model describes the evolution of a monoatomic gas. In the case of di-
atomic molecules, one has to take into account the rotational energy in the definition
of the internal energy (see [3],[8]). This leads to slight modifications concerning the
collision operator J(f). More precisely, the local Maxwellian M is replaced by an
other equilibrium function also denoted M and defined by :

p E-vuy r
M U b 1l)=——= T op T 8
(pvp » ) (27TT)5+3 exp( 27T T) ( )
2(v —1
I represents the internal energy term associated to rotation mode and 6 = %
_ f}/ —

where 7 is the ratio of specific heats. One may observe that the two definitions of
M are almost the same if we set v equals to 5/3 (monoatomic case) in (8).
The moments of f are now defined by :
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We use this extension to perform diatomic gas simulations to be presented later.
We refer the reader to [7] for a mathematical analysis of this model.

It is well known that Euler system of equations can be derived from the conser-
vation laws for the moments of the distribution f in the limit process 7 — 0. This
property will be used in part 3.1 to validate the numerical method to be presented
in the next section. For the sake of simplicity, the method will be described in the
case of a monoatomic gas.



2 Numerical Method

For solving numerically the kinetic equations, one generally use probabilistic
approaches and more precisely the Monte-Carlo method (see [6]). However, par-
allelising the Monte-Carlo method on fine grained machines is not straightforward
(see [12] for example).

More recently, deterministic approaches for particle methods have been suggested.
The aim of this paper is to prove that determimistic particle methods are well
adapted to massive parallelism.

We propose here a parallel algorithm based on the weighted particle method
introduced by S. Mas-Gallic [4]. In this method, particles move according to a
collisionless dynamic. The collision part is then considered by allocating a weight
to each particle. Integrals involved in (6) are evaluated by a quadrature formula
where the particles themselves play the role of quadrature points. We shall describe
briefly the method and refer to [4],[5] for more details.

2.1 Description of the method

Given an initial distribution f° on a set of points (2%,£9);e7cz, we search fi(¢),
x;(t) and &;(t) such that the measure

frn= Z;wifi(tﬁ(w —zi(1)) @ 6(£ = &i(1)) (10)

is some approximation of the solution f and w; are the associated positive weights.
Using (10), we introduce a quadrature formula associated to the points (x;,¢;) and
the weights w; defined as follows :

| [otteydede ~ Fwiglt.aift), ) (11)

where g is a continuous function in (z,&) variables.

The main idea of deterministic particle methods is to point out that f, is a good
approximation of f in the space of measures if (11) is a good quadrature formula
and if f; is an approximated value of f(t,x;(t),&(1)), see [15].

Convective terms

z;(t) and &;(1) are solutions of the following differential system :

dl‘i

77 (t)=¢& , x(0) = a7

dé i (12)
Ty (1)=0 , &0)=¢

Since &; are constant w.r.t. time, solutions are given by :

zi(t) = 2+ £ and &(t) = &



Note: The jacobian determinant of the change of variables (2, &) — (z:(t), &(t))
takes the constant value 1 . Consequently, if (w;, 2, £?) is a good quadrature for-
mula, the same is true for (w;, x;(t),&(1)).

Collision terms

The main difficulty here consists in computing the macroscopic quantities p, plU
and F which define the Maxwellian (5). Let us note that integrations are done in the
velocity space. The quadrature formula (11) which is set in the phase space will be
used to define approximate values of the integrals (6). This is done by introducing
a continuous function ¢ which transforms the integral in ¢-space into an integral in
the phase space. The function ( has the following properties:

do =1

| ayde

/xlc(x)dx:o 1<i<k-1;: k>2
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Let us set : (. () = —BC(f) for ¢ > 0. Approximate discrete values of p, pU and F,
€

at time t are then defined by :

ph(t,l') 1
(pU)(t ) | = ij & ) fiCe(x — () (13)
Ey(t, ) i€l | &5 |

In our study, we use the cut-off functions (. with compact support in [—¢,¢]. Con-
sequently, the only particles which occur in the computation of pp, (pU), and Ej,
are those which verify | @ — z; |< e.

Using (5), one can define the associated local Maxwellian at each time t by :

Mh(tvxvf) = M(Ph,PU}HEh)(t,l',f) and we put Ml(t) = Mh(tvxi(t)v&(t))

2.2 Time integration

We want a time integration scheme which remains stable for both large and
small values of the Knudsen number. However, we restrict ourselves to explicit
schemes for they are in general more adapted to unsteady calculations and are also
nicely parallelisable. Under these constraints, we choose a scheme based on the time
integration of the B.G.K. solution :

At 1

At At — s
FU+AL ,6) = f(t = A1 € exp(=— )+~ [T M(1+s, 056, exp(—=

)ds
(14)

One may easily verify that f given by the above formula is a solution of the B.G.K.
equation by deriving along characteristics : x(?) = x(0) + &t.
In the following we note M(t + s) = M(t + s, @ — s&,§).

5



If we write the implicit expression (14) for ¢t = t" = nAt where At is the time step,
we get:

At

T

At — s

T

At
F = exp(= S - [ M s)esp(-

Assuming the Maxwellian M to be constant w.r.t. time on [t",¢"T!], the above
integral may be evaluated as:

)ds

At — s

T

At — s

T

At At
/ M(t, + s)exp(— )ds ~ M”/ exp(— )ds
0 0

Finally, the resulting explicit scheme may be written :

= hleg)

15
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where the subscript ¢ refers to the phase-space discretisation described previously.
It is easy to check that for a fixed 7 the above scheme is a first-order time accurate
approximation of (14) and is unconditionally stable in L'. The latter assertion is
based on the fact that the Maxwellian is a L' isometric application.

3 Numerical experiments

In order to validate the method, we performed two test cases :

1. The Sod shock tube: this classical one-dimensional test case was selected here
for we can compare the numerical results to the exact solution in the limit
T — 0.

2. Leading edge problem: this academic test case was chosen for it is a true two-
dimensional case and thus allows us to validate the numerical treatment of the
boundary conditions.

3.1 Sod shock tube

In terms of fluid dynamics, the Sod shock tube problem [13] corresponds to a
Riemann problem in IR with the following initial data :

{p%:ll Ug,LZO U;,LZO PB:II
0 0 0 0
pR:g U$7 :0 Uy,RZO PR:E

The subscripts L. and R refer to left and right states respectively. The initial dis-
tribution function f° is given by: f° = M(p°, (pU)°, E°) where M is given by (5).
The classical slip condition turns here into specular reflection :

f(t,l’,f,]):f(t,l',—f,]) J}ZO, L.
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TEMPERATURE

In this experiment we used the described scheme with 7 = 1078, The computed
density, pressure,temperature and velocity are plotted on the figures 1 to 4 at time
t = 0.16 and compared to the exact Euler solution (dotted lines). The results show a
slight amount of numerical dissipation particularly visible on the rarefaction and the
contact discontinuity waves. This dissipation is usually attributed to the presence
of large velocities which induce some diffusion [8]. Despite this diffusion, one can
claim that the results are quite good.
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3.2 Leading edge problem

We use here the physical data given in [12]. We consider a flow of 1200 m/s
of air at a number density of 7.10%° and a temperature of 300 K past a plate of
length 0.21 m. The flow data are taken to be the values of the free stream flow and
are denoted as U, po and T, respectively. The surface temperature is of 300 K.
Numerical solutions of this problem, get by a Monte-Carlo method, can be found in
[11]. Tt was assumed that there is a complete thermal accomodation on the plate.
The domain of computation 2 is shown on the figure 5.
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Boundary conditions

- On I'y,, the gas is assumed to be in thermal equilibrium:

ft,2,8) = M(poo, (pU)oo, Ee)  En <0 2 €T

where T, is evaluated from the free stream flow values given above through the
energy definition (7).

- On I'y,, the boundary conditions describe the interactions of the gas molecules
with the solid boundary. Let us note R(fl — £, x,t) the probability density that a
molecule stricks the solid boundary with velocity between ¢ and ¢ + d¢” at the point
x and time t and re-emerges at pratically the same point with velocity between ¢ and
£+ dé. Tt R is known, a boundary condition beared on f can be deduced. Because
of the complexity of the phenomena taking place on the surface, physical models
defining a corresponding kernel R(fl — ) were constructed. The first attempt to
solve such a problem is due to Maxwell who suggested for R (see [1]) :

R(¢ — &a,t) = (L= a)b(§ +2n(n)) + afo( 1) [ €n ] (§n>0 €n<0)
where « is the fraction of evaporated molecules and f; is defined by :
1 2 I¢
Jo= ———— Tex ¢
CTO(QWCTO)E-I—3

Ty is the temperature of the solid boundary; « is also called the accomodation
coefficient. For o = 0, we obtain a pure specular reflection. Complete thermal
accomodation corresponds to o = 1 and leads to the following boundary condition:

F(ta,61) = fol&, 1) /( F(a, € D) dEdT 2 €T, =09 &n >0

&' n<0)x IR+
As in the previous case, we assume that at time ¢ = ¢y the gas is in thermal equi-

librium, the initial distribution function is a Maxwellian which depends on the
characteristics of the upstream flow. The Knudsen number is about 1072 in this

calculation.
We present on the figures 6 and 7 the pressure and shear stress distributions along
2p 2Ty
the wedge. They are respectively defined by : ), = —— and (s = .
g y p y viC = il



PRESSURE COEFFI Cl ENT

We compare our results to those obtained by Bird [11] who used the DSMC (Direct
Simulation Monte Carlo) method. We can observe that the difference in amplitude
does not exceed 10% except at the tips of the plate where the effect of the upstream
flow is particularly perceptible. It is not easy to conclude which result is the most
accurate although the kinetic model we used is unlikely to give the best results in
this case. One may note however that the results are in good agreement.
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Incident case

We consider again the same problem with now an incidence angle of 20° and a
surface temperature of 678 K. The pressure and skin friction coefficient distributions
are plotted on the figures 8 and 9 and are compared with Bird’s results. Although
this test case is appreciably more difficult than the non incident one, we obtain
comparable results with no more extra work on the code. The numerical parameters
(At, e, number of particles...) were unchanged and we got the solution with the same
time cost as in the previous case.

We believe that these experiments demonstrate the reliability and the robustness
of the scheme used.
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4 Parallel implementation

4.1 The Connection Machine System

We first recall the main features of the Connection Machine CM200. The CM200
is a SIMD (Single Instruction Multiple Data) distributed memory machine con-
taining up to 64 K (K=1024) bit-serial processors having their own memory. These
processors are arranged 16 to a chip in a hypercube topology of dimension 12 in the
64 K configuration. Fach pair of chips may be supported by a 32 or 64-bit floating
point accelerator (FPA) which increases floating point calculations rate by a factor
of 20.

The Connection Machine is provided with two communication models:

- The NEWS (North-East-West-South) network is a structured mechanism which
optimizes grid communications by exploiting the four nearest neighbour connections.

- The general mechanism (ROUTER) allows parallel accesses among the dis-
tributed memory so that any processor can access the memory of any other proces-
sor. This mechanism uses the hypercube topology. NEWS network is the fastest
but requires regular patterns.

The Connection Machine system allows to use more processing nodes than it is
physically available through a splitting of the distributed memory. Each physical
processing node simulates some number of virtual processing nodes and the ratio
between the virtual ones to the physical ones is called the Virtual Processor Ratio
(VPR). Connection Machine system software is provided with three high-level lan-
guages, among which is the CM Fortran: it is based on Fortran 77 but also uses the
array extensions in the draft Fortran 90 standard to express data parallel operations.
We refer to [14] for more details on the system.

4.2 Description of the algorithm

Parallelising well an algorithm on a massively parallel computer consists first in
finding a "good” distribution of the computation data among thousands of proces-
sors.

An appropriate data distribution is a one that :

1. Minimises inter-processor communications.

2. Involves no redundant operations and needs no extra storage.

Such a distribution does not always exist and we more usually have to find a com-
promise between communications, operations and storage.
For the B.G.K. model, there are mainly two ways in distributing data :

1. One may associate one particle to each processor. The convective part of the
algorithm becomes pertectly parallelisable i.e. no communication occur while
computing new positions of particles. However, the collision part which is the
most costly in floating point operations would involve a large amount of com-
munications. This would result in an inefficient algorithm on the Connection
Machine and we rejected such a distribution.

11



2. Another way to distribute data is then to privilege the collision part. This
is done in a such way that no communication may occur now during the
computation of the collision operator. However, as it will be explained in the
following, the privilege given to the collisions will be paid by an extra storage
which may result in a limitation of the number of numerical particles.

Since we choose a cut-off function with compact support of size €, we can introduce
a fictitious discretisation of the physical space into cells of the same size (¢). Finally,
we associate to each processor the content of a cell and the data of the neighbouring
cells. Thus, the collision operator is computed without performing any communica-
tion.

Communications will occur in the convective part of the algorithm. Indeed, at each
time step of length At we have to compute the new position of each particle:

T = a + ARG

Thus, a particle may leave its initial cell to a new one which may be located in an
arbitrary physical processor. In this case, the general mechanism of communication
( ROUTER ) is required and the communication cost can be very important.

In order to minimise time communication, we choose the time step At such as the
particles can only reach the neighbouring cells. Thus, we communicate only with
the neighbouring processors and then we can use the NEWS network. The resulting
algorithm may be summarised as follows:

For each time step do:

Convect particles
Communicate data to the neighbours
Integrate the boundary conditions

Compute the collision operator

AN

Update the solutions

5 Performance results

We present now the performance results and compare them to those get on a
CRAY-YMP. Let us precise that the code has been implemented in CM-Fortran
and that no optimisation was performed. The results have been get on 8 K and
16 K CM200 configurations.

We have reported on Table 1 the CPU Times and Gflops (i.e. 107 floating point
operations per second). The number of spatial cells used equals the number of vir-
tual processors. The number of particles per cell was constant, taken as 99 leading
to a total number of particles of 99 times the number of spatial cells. We note
a decrease of 30% in performance with double precision (DP) in comparison with
single precision (SP) (fig. 10). Nevertheless, the results of Table 1 show a very high
level of parallelism since the part of the communication time is less than 5% of the

12
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total CPU time. One can also observe a good scaling by comparing for example the
results obtained on the 8 K physical configuration at a VPR of 2 with the corre-
sponding results on the 16 K configuration at a VPR of 1. This allows us to expect
a performance of 8 Gflops on a 64 K configuration in single precision and of 5.5
Gflops in double precision. However, the main observation one can make from these
results is that the CPU time per particle is decreasing with the number of physical
processors on the CM200 while it remains constant on the CRAY, as it was expected.

Machine | Spatial | CPU Time | CPU Time | % Comm. | GFlops
Type Cells | per iter per per iter
particle (ps) (s)
CM 8K | 8192 56 45.6 4.1 1.01
CM 8K | 16384 54 88.7 3.6 1.04
CM 16 K | 16384 28 45.5 4.1 2.0

Table 1: CM200 results

Comparisons in terms of CPU time and performance between the 8 K’ CM200
results and the CRAY-YMP ones are plotted on the figures 10 to 12. The results
show that a 8 K CM200 is about 2.5 faster than the CRAY-YMP one-processor
in single precision and about 1.6 in double precision. Indeed, the latter observa-
tion makes sense in terms of CPU time since the performance in flops depends too
much on the configuration used (cf. Table 1). More precisely, the algorithms being
slightly different on the two machines, we decided to consider mainly the CPU time
needed to obtain the physical solution. Let us note that the number of iterations
is the same in both cases (CRAY and CM200) allowing us to consider the cost per
iteration as a good measure of performance. However, the figure 12 shows that the
method reaches a high level of parallelism on the CM200 (the performance increases
with the number of cells) together with a good level of vectorisation on the CRAY
(150 Mflops).
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6 Conclusion

We have reported here on our efforts in kinetic numerical simulations using the
B.G.K. model in 2-D space dimension. The numerical approach is based on a deter-
ministic particle method and on a non classical time integration scheme. Numerical
solutions of the Sod shock tube and of a flat plate were presented and compared to
the exact solution in the first case and to Monte Carlo simulations in the second
one. We mainly observed that the B.G.K. numerical solutions compare well with
the full Boltzmann simulations. The plate experiments where the Knudsen number
is about 1072 demonstrate that the B.G.K. model used remains reliable even for
rarefied gas flows.

A particular attention was given to the implementation on a massively parallel ma-
chine : the Connection Machine CM200. Performance results show that the 16 K
CM200 is about five times faster (in CPU time) than the CRAY-YMP one-processor.
The ratio reduces to 3.5 in favour of the 16 K CM200 in double precision. These
excellent results are, for a large part, a consequence of the fact that collision phase
is performed with no communications. This was achieved via the storage of the
neighbouring cells. Such a choice is not restrictive for 2-D simulations since one can
use about two million of particles. However, this could result in more severe limits
for 3-D simulations.

The high level of parallelism achieved for the presented method allows us to sug-
gest an extension to the full Boltzmann equation. Besides, implementation of the
algorithm on a MIMD parallel machine is in progress.
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