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IntroductionThe Boltzmann equation is the basic model in the kinetic theory of gases. Boltz-mann type equation are also involved in modeling electron transport in solids andplasmas, neutron transport in nuclear reactors, and radiative transfer in planetaryand stellar atmospheres.We are concerned here in the Bhatnagar-Gross-Krook (B.G.K.) model which is arelaxation model describing the evolution of a gas through a kinetic theory. Thismodel does not contain relevant features of the classical Boltzmann equation butdespite its simplicity, it contains most of the basic properties of 
uid dynamics suchas the conservation of mass, momentum and energy [1].Therefore, B.G.K. equations are widely used for testing numerical methods for ki-netic equations. It explains the growing interest in numerical approaches to solveB.G.K. problems.Nevertheless, approximated solutions need to deal with a very large number of par-ticles; pratically millions of particles have to be used in realistic computations. Wellit is clear that whatever scheme one may use, the computation time on serial ma-chines will grow at best linearly with the number of particles. To be more exact,the computation time per particle is expected to be constant in the best cases.The advent of parallel systems raised hopes in going beyond this limit. Indeed, onecould expect that the CPU time per particle will decrease if the number of particlesgrow together with the number of processors. However, interactions between par-ticles may translate into complex and numerous interprocessor communications inparallel implementations.Aiming at parallel implementations, one has to pay a great attention in the choiceof the numerical method. There are mainly two approaches in numerical kinetic:the probabilistic approach which is the most used and the deterministic one whichis in rise nowadays.The numerical method to be used here belongs to the latter class and was introducedby S. Mas-Gallic [4]. Our aim here was to propose a parallel algorithm issuedfrom the weighted particle method and its implementation on a massively parallelcomputer. A Connection Machine (CM200 model) was chosen for the numericalexperiments to be presented here.This paper consists of four sections. In section 1, we recall the B.G.K model. Sec-tion 2 is devoted to the presentation of the particle method. In section 3, we presentbrie
y the Connection Machine and describe the parallel algorithm. Finally wepresent some numerical solutions and performance results obtained on the Connec-tion Machine. Comparisons with the CRAY-YMP results are also reported.1 Mathematical Model1.1 The Boltzmann EquationThe evolution of the particle distribution in the six-dimensionnal space (x,�)is modellised by the Boltzmann equation [1]. In the case of a monoatomic gas1



where particles interact through a �nite range conservative force, the evolution ofthe distribution f is governed by the following Boltzmann equation :@f@t + �:rxf = ZIR3�S2(f 0f 0� � ff�)q(�� � �; n) d �� dn (1)where f = f(t; x; �), t is the time, x is the position, � is the velocity and q is thedi�usion cross section. The prime superscript refers to before-collision states andthe star subscript denotes the dummy variable :f� = f(t; x; ��), f 0� = f(t; x; �0�), f 0 = f(t; x; �0).The before-collision velocities are related here to the after-collision ones through thefollowing elastic shock law:�0 = � + n(�� � �; n) and �0� = �� � n(�� � �; n)The right-hand side of the Boltzmann equation (1) usually denoted by Q(f; f) iscalled the collision operator.1.2 The B.G.K. ModelBecause of the complicated structure of the collision operator, simpler collisionterms have been suggested.In fact, it was observed that a large amount of details of the two-body interactiondoes not a�ect signi�cantly the values of many measures in physical experiments.Thus, it was expected that the �ne structure of the collision operator Q(f; f) couldbe replaced by a simpler one J(f) which retains only the qualitative and averageproperties of Q(f; f). Consequently, J(f) must satisfy the following relations :ZIR3�kJ(f)d � = 0 (2)ZIR3 log fJ(f)d � � 0 (3)where �k=0;:::;4 = (1; �l=1;2;3; j � j2) are the elementary invariants by collision. Onegets the equality in (3) if, and only if, the density f is a Maxwellian [1].Equation (2) expresses the conservation of mass, momentum and energy and theBoltzmann inequality (3) shows the tendency of the density to a Maxwellian dis-tribution. The simplest way to take (3) into account is to assume that the averagee�ect of collisions changes the density f by an amount proportional to its departurefrom a Maxwellian M .We introduce the Knudsen number Kn = l=d where l denotes the mean free pathand d is a characteristic length scale. The Knudsen number is related to the relax-ation time � by: Kn = � ��=d, �� being a typical molecular velocity.By setting J(f) = 1� (M � f ) (4)2



we get the Bhatnagar, Gross and Krook (B.G.K.) model [2].The above Maxwellian M depends on the disposable scalar parameters (�; �U;E)which represent respectively the density, the momentum and the energy . Accordingto equations (2) and (4), we have :ZIR3�kM(f)d� = ZIR3�kf d�M is usually called the local Maxwellian and may be written :M(�; �U;E) = �(2�T ) 32 exp(�(� � U)22T ) (5)where : 0B@ ��UE 1CA = ZIR3 0BBB@ 1�j � j22 1CCCA f d� (6)The temperature T is deduced from the total energy of monoatomic molecules :E = � j U j22 + 32�T: (7)Diatomic caseThe above model describes the evolution of a monoatomic gas. In the case of di-atomic molecules, one has to take into account the rotational energy in the de�nitionof the internal energy (see [3],[8]). This leads to slight modi�cations concerning thecollision operator J(f). More precisely, the local Maxwellian M is replaced by another equilibrium function also denoted M and de�ned by :M(�; �U;E; I) = �(2�T ) 32+ 1� exp(�(� � U)22T � I�T ) (8)I represents the internal energy term associated to rotation mode and � = 2(
 � 1)2 � 3(
 � 1)where 
 is the ratio of speci�c heats. One may observe that the two de�nitions ofM are almost the same if we set 
 equals to 5=3 (monoatomic case) in (8).The moments of f are now de�ned by :0B@ ��UE 1CA = ZIR3�IR+ 0BBB@ 1�j � j22 + I� 1CCCA f d� dI (9)We use this extension to perform diatomic gas simulations to be presented later.We refer the reader to [7] for a mathematical analysis of this model.It is well known that Euler system of equations can be derived from the conser-vation laws for the moments of the distribution f in the limit process � ! 0. Thisproperty will be used in part 3.1 to validate the numerical method to be presentedin the next section. For the sake of simplicity, the method will be described in thecase of a monoatomic gas. 3



2 Numerical MethodFor solving numerically the kinetic equations, one generally use probabilisticapproaches and more precisely the Monte-Carlo method (see [6]). However, par-allelising the Monte-Carlo method on �ne grained machines is not straightforward(see [12] for example).More recently, deterministic approaches for particle methods have been suggested.The aim of this paper is to prove that determimistic particle methods are welladapted to massive parallelism.We propose here a parallel algorithm based on the weighted particle methodintroduced by S. Mas-Gallic [4]. In this method, particles move according to acollisionless dynamic. The collision part is then considered by allocating a weightto each particle. Integrals involved in (6) are evaluated by a quadrature formulawhere the particles themselves play the role of quadrature points. We shall describebrie
y the method and refer to [4],[5] for more details.2.1 Description of the methodGiven an initial distribution f0 on a set of points (x0i ; �0i )i2I�Z, we search fi(t),xi(t) and �i(t) such that the measurefh =Xi2Iwifi(t)�(x� xi(t))
 �(� � �i(t)) (10)is some approximation of the solution f and wi are the associated positive weights.Using (10), we introduce a quadrature formula associated to the points (xi; �i) andthe weights wi de�ned as follows :Z Z g(t; x; �) d x d � � Xi2Iwig(t; xi(t); �i(t)) (11)where g is a continuous function in (x; �) variables.The main idea of deterministic particle methods is to point out that fh is a goodapproximation of f in the space of measures if (11) is a good quadrature formulaand if fi is an approximated value of f(t; xi(t); �i(t)), see [15].Convective termsxi(t) and �i(t) are solutions of the following di�erential system :8>>><>>>: d xid t (t) = �i ; xi(0) = x0id �id t (t) = 0 ; �i(0) = �0i (12)Since �i are constant w.r.t. time, solutions are given by :xi(t) = x0i + �0i t and �i(t) = �0i4



Note: The jacobian determinant of the change of variables (x0i ; �0i )! (xi(t); �i(t))takes the constant value 1 . Consequently, if (wi; x0i ; �0i ) is a good quadrature for-mula, the same is true for (wi; xi(t); �i(t)).Collision termsThe main di�culty here consists in computing the macroscopic quantities �, �Uand E which de�ne the Maxwellian (5). Let us note that integrations are done in thevelocity space. The quadrature formula (11) which is set in the phase space will beused to de�ne approximate values of the integrals (6). This is done by introducinga continuous function � which transforms the integral in �-space into an integral inthe phase space. The function � has the following properties:8>>>>>><>>>>>>: ZIR3�(x) d x = 1ZIR3xl�(x) d x = 0 1 � l � k � 1 ; k � 2ZIR3 j xk j j �(x) j d x < +1Let us set : ��(x) = 1�3�(x� ) for � > 0. Approximate discrete values of �, �U and E,at time t are then de�ned by :0BBB@ �h(t; x)(�U)h(t; x)Eh(t; x) 1CCCA = Xj2I wj 0B@ 1�jj �j j2 1CA fj �� (x� xj(t)) (13)In our study, we use the cut-o� functions �� with compact support in [��; �]. Con-sequently, the only particles which occur in the computation of �h, (�U)h and Ehare those which verify j x� xj j< �.Using (5), one can de�ne the associated local Maxwellian at each time t by :Mh(t; x; �) = M(�h; �Uh; Eh)(t; x; �) and we put Mi(t) = Mh(t; xi(t); �i(t))2.2 Time integrationWe want a time integration scheme which remains stable for both large andsmall values of the Knudsen number. However, we restrict ourselves to explicitschemes for they are in general more adapted to unsteady calculations and are alsonicely parallelisable. Under these constraints, we choose a scheme based on the timeintegration of the B.G.K. solution :f(t+�t; x; �) = f(t; x��t�; �) exp(��t� )+ 1� Z �t0 M(t+s; x�s�; �) exp(��t� s� )ds(14)One may easily verify that f given by the above formula is a solution of the B.G.K.equation by deriving along characteristics : x(t) = x(0) + �t.In the following we note M(t+ s) = M(t+ s; x� s�; �).5



If we write the implicit expression (14) for t = tn = n�t where �t is the time step,we get: fn+1 = exp(��t� )fn + 1� Z �t0 M(t+ s) exp(��t� s� )dsAssuming the Maxwellian M to be constant w.r.t. time on [tn; tn+1], the aboveintegral may be evaluated as:Z �t0 M(tn + s) exp(��t� s� )ds 'MnZ �t0 exp(��t� s� )dsFinally, the resulting explicit scheme may be written :f0i = f0(x0i ; �0i )fn+1i = exp(��t� )fni + (1 � exp(��t� ))Mni (15)where the subscript i refers to the phase-space discretisation described previously.It is easy to check that for a �xed � the above scheme is a �rst-order time accurateapproximation of (14) and is unconditionally stable in L1. The latter assertion isbased on the fact that the Maxwellian is a L1 isometric application.3 Numerical experimentsIn order to validate the method, we performed two test cases :1. The Sod shock tube: this classical one-dimensional test case was selected herefor we can compare the numerical results to the exact solution in the limit� ! 0.2. Leading edge problem: this academic test case was chosen for it is a true two-dimensional case and thus allows us to validate the numerical treatment of theboundary conditions.3.1 Sod shock tubeIn terms of 
uid dynamics, the Sod shock tube problem [13] corresponds to aRiemann problem in IR with the following initial data :8<: �0L = 1 U0x;L = 0 U0y;L = 0 P 0L = 1�0R = 18 U0x;R = 0 U0y;R = 0 P 0R = 110The subscripts L and R refer to left and right states respectively. The initial dis-tribution function f0 is given by: f0 = M(�0; (�U)0; E0) where M is given by (5).The classical slip condition turns here into specular re
ection :f(t; x; �; I) = f(t; x;��; I) x = 0; 1:6



In this experiment we used the described scheme with � = 10�8. The computeddensity, pressure,temperature and velocity are plotted on the �gures 1 to 4 at timet = 0:16 and compared to the exact Euler solution (dotted lines). The results show aslight amount of numerical dissipation particularly visible on the rarefaction and thecontact discontinuity waves. This dissipation is usually attributed to the presenceof large velocities which induce some di�usion [8]. Despite this di�usion, one canclaim that the results are quite good.
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Fig. 1. Density at time t=0.16 Fig. 2. Velocity at time t=0.16
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Fig. 3. Temperature at time t=0.16 Fig. 4. Pressure at time t=0.163.2 Leading edge problemWe use here the physical data given in [12]. We consider a 
ow of 1200 m/sof air at a number density of 7:1020 and a temperature of 300 K past a plate oflength 0.21 m. The 
ow data are taken to be the values of the free stream 
ow andare denoted as U1; �1 and T1 respectively. The surface temperature is of 300 K.Numerical solutions of this problem, get by a Monte-Carlo method, can be found in[11]. It was assumed that there is a complete thermal accomodation on the plate.The domain of computation 
 is shown on the �gure 5.7



--U1�1 �1�1�wFig. 5: Computation Domain 
Boundary conditions- On �1, the gas is assumed to be in thermal equilibrium:f(t; x; �) = M(�1; (�U)1; E1) �:n < 0 x 2 �1where T1, is evaluated from the free stream 
ow values given above through theenergy de�nition (7).- On �w, the boundary conditions describe the interactions of the gas moleculeswith the solid boundary. Let us note R(�0 ! �; x; t) the probability density that amolecule stricks the solid boundary with velocity between �0 and �0 + d�0 at the pointx and time t and re-emerges at pratically the same point with velocity between � and� + d�. If R is known, a boundary condition beared on f can be deduced. Becauseof the complexity of the phenomena taking place on the surface, physical modelsde�ning a corresponding kernel R(�0 ! �) were constructed. The �rst attempt tosolve such a problem is due to Maxwell who suggested for R (see [1]) :R(�0 ! �; x; t) = (1� �)�(�0 + 2n(�:n)) + �f0(�; I) j �:n j (�:n > 0 �0 :n < 0)where � is the fraction of evaporated molecules and f0 is de�ned by :f0 = 1T0(2�T0) 12+ 1� exp(� �22T0 � I�T0 )T0 is the temperature of the solid boundary; � is also called the accomodationcoe�cient. For � = 0, we obtain a pure specular re
ection. Complete thermalaccomodation corresponds to � = 1 and leads to the following boundary condition:f(t; x; �; I) = f0(�; I)Z(�0 :n<0)�IR+f(t; x; �0; J)d�0dJ x 2 �w = @
 ; �:n > 0As in the previous case, we assume that at time t = t0 the gas is in thermal equi-librium, the initial distribution function is a Maxwellian which depends on thecharacteristics of the upstream 
ow. The Knudsen number is about 10�2 in thiscalculation.We present on the �gures 6 and 7 the pressure and shear stress distributions alongthe wedge. They are respectively de�ned by : Cp = 2 p�1U21 and Cf = 2 �w�1U21 .8



We compare our results to those obtained by Bird [11] who used the DSMC (DirectSimulation Monte Carlo) method. We can observe that the di�erence in amplitudedoes not exceed 10% except at the tips of the plate where the e�ect of the upstream
ow is particularly perceptible. It is not easy to conclude which result is the mostaccurate although the kinetic model we used is unlikely to give the best results inthis case. One may note however that the results are in good agreement.
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Fig. 6: Pressure coe�cient Fig. 7: Skin friction coe�cientIncident caseWe consider again the same problem with now an incidence angle of 20o and asurface temperature of 678K. The pressure and skin friction coe�cient distributionsare plotted on the �gures 8 and 9 and are compared with Bird's results. Althoughthis test case is appreciably more di�cult than the non incident one, we obtaincomparable results with no more extra work on the code. The numerical parameters(�t; �, number of particles...) were unchanged and we got the solution with the sametime cost as in the previous case.We believe that these experiments demonstrate the reliability and the robustnessof the scheme used.
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4 Parallel implementation4.1 The Connection Machine SystemWe �rst recall the main features of the Connection Machine CM200. The CM200is a SIMD (Single Instruction Multiple Data) distributed memory machine con-taining up to 64K (K=1024) bit-serial processors having their own memory. Theseprocessors are arranged 16 to a chip in a hypercube topology of dimension 12 in the64K con�guration. Each pair of chips may be supported by a 32 or 64-bit 
oatingpoint accelerator (FPA) which increases 
oating point calculations rate by a factorof 20.The Connection Machine is provided with two communication models:- The NEWS (North-East-West-South) network is a structured mechanismwhichoptimizes grid communications by exploiting the four nearest neighbour connections.- The general mechanism (ROUTER) allows parallel accesses among the dis-tributed memory so that any processor can access the memory of any other proces-sor. This mechanism uses the hypercube topology. NEWS network is the fastestbut requires regular patterns.The Connection Machine system allows to use more processing nodes than it isphysically available through a splitting of the distributed memory. Each physicalprocessing node simulates some number of virtual processing nodes and the ratiobetween the virtual ones to the physical ones is called the Virtual Processor Ratio(VPR). Connection Machine system software is provided with three high-level lan-guages, among which is the CM Fortran: it is based on Fortran 77 but also uses thearray extensions in the draft Fortran 90 standard to express data parallel operations.We refer to [14] for more details on the system.4.2 Description of the algorithmParallelising well an algorithm on a massively parallel computer consists �rst in�nding a "good" distribution of the computation data among thousands of proces-sors.An appropriate data distribution is a one that :1. Minimises inter-processor communications.2. Involves no redundant operations and needs no extra storage.Such a distribution does not always exist and we more usually have to �nd a com-promise between communications, operations and storage.For the B.G.K. model, there are mainly two ways in distributing data :1. One may associate one particle to each processor. The convective part of thealgorithm becomes perfectly parallelisable i.e. no communication occur whilecomputing new positions of particles. However, the collision part which is themost costly in 
oating point operations would involve a large amount of com-munications. This would result in an ine�cient algorithm on the ConnectionMachine and we rejected such a distribution.11



2. Another way to distribute data is then to privilege the collision part. Thisis done in a such way that no communication may occur now during thecomputation of the collision operator. However, as it will be explained in thefollowing, the privilege given to the collisions will be paid by an extra storagewhich may result in a limitation of the number of numerical particles.Since we choose a cut-o� function with compact support of size �, we can introducea �ctitious discretisation of the physical space into cells of the same size (�). Finally,we associate to each processor the content of a cell and the data of the neighbouringcells. Thus, the collision operator is computed without performing any communica-tion.Communications will occur in the convective part of the algorithm. Indeed, at eachtime step of length �t we have to compute the new position of each particle:xn+1i = xni + �t �0iThus, a particle may leave its initial cell to a new one which may be located in anarbitrary physical processor. In this case, the general mechanism of communication( ROUTER ) is required and the communication cost can be very important.In order to minimise time communication, we choose the time step �t such as theparticles can only reach the neighbouring cells. Thus, we communicate only withthe neighbouring processors and then we can use the NEWS network. The resultingalgorithm may be summarised as follows:For each time step do:1. Convect particles2. Communicate data to the neighbours3. Integrate the boundary conditions4. Compute the collision operator5. Update the solutions5 Performance resultsWe present now the performance results and compare them to those get on aCRAY{YMP. Let us precise that the code has been implemented in CM-Fortranand that no optimisation was performed. The results have been get on 8K and16K CM200 con�gurations.We have reported on Table 1 the CPU Times and G
ops (i.e. 109 
oating pointoperations per second). The number of spatial cells used equals the number of vir-tual processors. The number of particles per cell was constant, taken as 99 leadingto a total number of particles of 99 times the number of spatial cells. We notea decrease of 30% in performance with double precision (DP) in comparison withsingle precision (SP) (�g. 10). Nevertheless, the results of Table 1 show a very highlevel of parallelism since the part of the communication time is less than 5% of the12



total CPU time. One can also observe a good scaling by comparing for example theresults obtained on the 8K physical con�guration at a VPR of 2 with the corre-sponding results on the 16K con�guration at a VPR of 1. This allows us to expecta performance of 8 G
ops on a 64K con�guration in single precision and of 5.5G
ops in double precision. However, the main observation one can make from theseresults is that the CPU time per particle is decreasing with the number of physicalprocessors on the CM200 while it remains constant on the CRAY, as it was expected.Machine Spatial CPU Time CPU Time % Comm. GFlopsType Cells per iter per per iterparticle (�s) (s)CM 8K 8192 56 45.6 4.1 1.01CM 8K 16384 54 88.7 3.6 1.04CM 16K 16384 28 45.5 4.1 2.0Table 1: CM200 resultsComparisons in terms of CPU time and performance between the 8K CM200results and the CRAY-YMP ones are plotted on the �gures 10 to 12. The resultsshow that a 8K CM200 is about 2:5 faster than the CRAY-YMP one-processorin single precision and about 1:6 in double precision. Indeed, the latter observa-tion makes sense in terms of CPU time since the performance in 
ops depends toomuch on the con�guration used (cf. Table 1). More precisely, the algorithms beingslightly di�erent on the two machines, we decided to consider mainly the CPU timeneeded to obtain the physical solution. Let us note that the number of iterationsis the same in both cases (CRAY and CM200) allowing us to consider the cost periteration as a good measure of performance. However, the �gure 12 shows that themethod reaches a high level of parallelism on the CM200 (the performance increaseswith the number of cells) together with a good level of vectorisation on the CRAY(150 M
ops).
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Fig. 12 Performance in MFlops6 ConclusionWe have reported here on our e�orts in kinetic numerical simulations using theB.G.K. model in 2-D space dimension. The numerical approach is based on a deter-ministic particle method and on a non classical time integration scheme. Numericalsolutions of the Sod shock tube and of a 
at plate were presented and compared tothe exact solution in the �rst case and to Monte Carlo simulations in the secondone. We mainly observed that the B.G.K. numerical solutions compare well withthe full Boltzmann simulations. The plate experiments where the Knudsen numberis about 10�2 demonstrate that the B.G.K. model used remains reliable even forrare�ed gas 
ows.A particular attention was given to the implementation on a massively parallel ma-chine : the Connection Machine CM200. Performance results show that the 16KCM200 is about �ve times faster (in CPU time) than the CRAY-YMP one-processor.The ratio reduces to 3.5 in favour of the 16K CM200 in double precision. Theseexcellent results are, for a large part, a consequence of the fact that collision phaseis performed with no communications. This was achieved via the storage of theneighbouring cells. Such a choice is not restrictive for 2-D simulations since one canuse about two million of particles. However, this could result in more severe limitsfor 3-D simulations.The high level of parallelism achieved for the presented method allows us to sug-gest an extension to the full Boltzmann equation. Besides, implementation of thealgorithm on a MIMD parallel machine is in progress.
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